Articles | Volume 18, issue 19
https://doi.org/10.5194/gmd-18-6767-2025
https://doi.org/10.5194/gmd-18-6767-2025
Development and technical paper
 | 
02 Oct 2025
Development and technical paper |  | 02 Oct 2025

Improving annual fine mineral dust representation from the surface to the column in GEOS-Chem 14.4.1

Dandan Zhang, Randall V. Martin, Xuan Liu, Aaron van Donkelaar, Christopher R. Oxford, Yanshun Li, Jun Meng, Danny M. Leung, Jasper F. Kok, Longlei Li, Haihui Zhu, Jay R. Turner, Yu Yan, Michael Brauer, Yinon Rudich, and Eli Windwer

Related authors

Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024,https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024,https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Variable effects of spatial resolution on modeling of nitrogen oxides
Chi Li, Randall V. Martin, Ronald C. Cohen, Liam Bindle, Dandan Zhang, Deepangsu Chatterjee, Hongjian Weng, and Jintai Lin
Atmos. Chem. Phys., 23, 3031–3049, https://doi.org/10.5194/acp-23-3031-2023,https://doi.org/10.5194/acp-23-3031-2023, 2023
Short summary
Improved advection, resolution, performance, and community access in the new generation (version 13) of the high-performance GEOS-Chem global atmospheric chemistry model (GCHP)
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022,https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary

Cited articles

Amato, F., Schaap, M., Denier van der Gon, H. A. C., Pandolfi, M., Alastuey, A., Keuken, M., and Querol, X.: Short-term variability of mineral dust, metals and carbon emission from road dust resuspension, Atmospheric Environment, 74, 134–140, https://doi.org/10.1016/j.atmosenv.2013.03.037, 2013. 
Bagheri, G. and Bonadonna, C.: On the drag of freely falling non-spherical particles, Powder Technology, 301, 526–544, https://doi.org/10.1016/j.powtec.2016.06.015, 2016. 
Bayon, G., Garzanti, E., Dinis, P., Beaufort, D., Barrat, J.-A., Germain, Y., Trinquier, A., Barbarano, M., Overare, B., Adeaga, O., and Braquet, N.: Contribution of Saharan dust to chemical weathering fluxes and associated phosphate release in West Africa, Earth and Planetary Science Letters, 641, 118845, https://doi.org/10.1016/j.epsl.2024.118845, 2024. 
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research: Atmospheres, 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. 
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biogeochemical Cycles, 11, 561–587, https://doi.org/10.1029/97GB02266, 1997. 
Download
Short summary
This study develops the fine mineral dust simulation in GEOS-Chem by: 1) implementing a new dust emission scheme with further refinements; 2) revisiting the size distribution of emitted dust; 3) explicitly tracking fine dust for emission, transport and deposition in 4 size bins; 4) updating the parametrization for below-cloud scavenging. All revisions significantly reduce the overestimation of surface fine dust from 94 % to 35 % while retaining comparable skill in representing columnar abundance.
Share