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Abstract. Accurate representation of mineral dust remains a
challenge for global air quality or climate models due to in-
adequate parametrization of the emission scheme, removal
mechanisms, and size distribution. While various studies
have constrained aspects of dust emission fluxes and/or dust
optical depth, annual mean surface dust concentrations still
vary by factors of 5–10 among models. In this study, we fo-
cus on improving the annual simulation of fine dust in the
GEOS-Chem chemical transport model, leveraging recent
mechanistic understanding of dust source and removal, and
reconciling the size differences between models and ground-
based measurements. Specifically, we conduct sensitivity
simulations using GEOS-Chem in its high performance con-
figuration (GCHP) version 14.4.1 to investigate the effects
of mechanism or parameter updates on annual mean con-
centrations. The results are evaluated by comparisons ver-
sus Deep Blue satellite-based aerosol optical depth (AOD)
and AErosol RObotic NETwork (AERONET) ground-based
AOD for total column abundance, and versus the Surface
Particulate Matter Network (SPARTAN) for novel measure-

ments of surface PM2.5 dust concentrations. Reconciling
modelled geometric diameter versus measured aerodynamic
diameter is important for consistent comparison. The two-
fold overestimation of surface fine dust in the standard model
is alleviated by 39 % without degradation of total column
abundance by implementing a new physics-based dust emis-
sion scheme with better spatial distribution. Further reduc-
tion by 20 % of the overestimation of surface PM2.5 dust is
achieved through reducing the mass fraction of emitted fine
dust based on the brittle fragmentation theory, and explicit
tracking of three additional fine mineral dust size bins with
updated parametrization for below-cloud scavenging. Over-
all, these developments reduce the normalized mean differ-
ence against surface fine dust measurements from SPARTAN
from 94 % to 35 %, while retaining comparable skill of total
column abundance against satellite and ground-based AOD.
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1 Introduction

Mineral dust exerts significant impacts on air quality as the
most abundant aerosol component by mass globally (Kok
et al., 2021b), on ecosystem health through nutrient trans-
port and deposition such as phosphorous (Bayon et al., 2024;
Swap et al., 1992) and iron (Jickells et al., 2005), and on
climate through its direct scattering and absorbing of radia-
tion and indirect modifications of cloud properties (Kok et
al., 2017; Liao and Seinfeld, 1998; Mahowald et al., 2014).
Despite its importance, accurate representation of long-term
concentrations of mineral dust remains a challenge for global
air quality or climate models due to inadequate parametriza-
tion of the emission scheme (Darmenova et al., 2009; Kok,
2011; Leung et al., 2023), removal mechanisms (Jones et al.,
2022; Petroff and Zhang, 2010; Ryu and Min, 2022; Wang et
al., 2014b; Zhang and Shao, 2014; Zhang et al., 2001), and
size distribution (Kok et al., 2017; Mahowald et al., 2014).
Observational constraints from satellite have been applied to
reduce the large uncertainty of simulated mineral dust and
its emissions (Mytilinaios et al., 2023; Ridley et al., 2016).
However, intercomparison projects with various models still
suggest large variability within a factor of 2 for the annual
mean total column abundance of mineral dust, with even
larger variability in surface concentrations and deposition by
factors of 5–10 (Huneeus et al., 2011; Uno et al., 2006; Wu
et al., 2020).

In addition to total column observations, ground-level
measurements of mineral dust offer another promising op-
portunity to understand mechanisms affecting the accuracy
of the surface concentration simulation and the variable per-
formance from the surface to the total column in intercom-
parison projects. The Surface PARTiculate mAtter Network
(SPARTAN, https://www.spartan-network.org/, last access:
4 February 2025) is a globally distributed monitoring net-
work that measures the chemical components of fine partic-
ulate matter (PM2.5), including in arid environments (Liu et
al., 2024; Snider et al., 2015). These ground-based measure-
ments of mineral dust in PM2.5 offer new data to evaluate,
understand, and improve fine dust simulation in global mod-
els.

Dust emissions play a central role in controlling the sur-
face and total column abundance of mineral dust (Kok et al.,
2014; Leung et al., 2023; Tian et al., 2021). The predicted
spatial distribution of dust emissions particularly affects the
downwind dust concentrations through long-range transport
and deposition (Prospero, 1999). A new physics-based dust
emission scheme (Leung et al., 2023) includes recent devel-
opments in the parametrization of the threshold of friction
velocity for dust mobilization (Martin and Kok, 2018), com-
bined drag partitioning effects due to rocks (Marticorena and
Bergametti, 1995) and vegetation (Pierre et al., 2014a) for a
better representation of exerted surface friction velocity (Le-
ung et al., 2023), and intermittent dust mobilization due to
high-frequency turbulence (Comola et al., 2019). This dust

emission scheme has achieved better spatial correlations of
dust column abundance against ground-based and satellite-
derived dust optical depth in the Community Earth System
Model version 2 (CESM2) (Leung et al., 2023, 2024). How-
ever, the effects of these new developments of dust emission
scheme on the bias against ground-based measurements of
surface fine dust concentrations are less well known and re-
quire further investigation.

The source and removal of dust in the size bins used in
dust parametrizations can vary by orders of magnitude across
the broad size range of mineral dust (Kok, 2011; Wang et
al., 2014b; Zhang et al., 2001). Accounting for this size het-
erogeneity among dust bins could enable better representa-
tion of the global dust cycle. Prior studies have found an un-
derestimation of coarse dust emissions and an overestima-
tion of fine dust (Cakmur et al., 2006; Kok, 2011; Kok et
al., 2017). While various studies have focused on develop-
ing the representation of coarse or super coarse dust (Kok
et al., 2017; Meng et al., 2022), investigation of the effects
of different emission size distributions on ambient fine dust
are needed through comparison with in situ fine dust mea-
surements. In addition, the developments and improvements
of parallel computing in air quality or climate models (East-
ham et al., 2018; Harris et al., 2020; Hu et al., 2018; Mar-
tin et al., 2022) offer computational capabilities to extend
dust size bins with explicit treatments that could enable bet-
ter representation of dust, especially with rapid variation in
processes across different sizes. While the parametrization
of dry deposition has been revisited and evaluated against
observations (Emerson et al., 2020), below-cloud or washout
scavenging has been generally limited to lumped treatments
for fine and coarse aerosols in the bulk models (Jones et al.,
2022; Wang et al., 2011, 2014a). Developments of the size-
resolved parametrization for below-cloud (washout) scav-
enging (Wang et al., 2014b) are promising to improve the
wet deposition of fine dust, which is especially important in
distant downwind regions due to long-range transport.

Many studies have examined daily dust variability for the
purpose of short-term prediction (Amato et al., 2013; Tindan
et al., 2023; Yu et al., 2021). Our study focuses on a different
objective of accuracy of annual mean concentrations.

In this study, we implement recent developments of a new
dust emission scheme with further refinements including the
clay content and wetness in the topsoil layer; reducing the
dust emissions over wet, snow and vegetation covered land
surfaces; while constraining the global and regional source
with satellite aerosol optical depth (AOD). We revisit the
size distribution of emitted dust, explicitly track mineral dust
with geometric diameter less than 2 µm in four size bins, and
update the parametrization for size-resolved washout scav-
enging. We conduct sensitivity simulations using the GEOS-
Chem chemical transport model in its high performance con-
figuration (GCHP) to investigate the effects of these devel-
opments. We focus on improving the annual fine dust repre-
sentation in GCHP from the surface to the column, by com-
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parisons against ground-level fine dust measurements, and
against the ground-based and satellite-retrieved AOD over
dusty regions of the Sahara, the Middle East and Asia.

2 Data sources and model description

2.1 Data sources

Ground-based AOD measurements are obtained from the
Aerosol Robotic Network (AERONET) Version 3 Level 2
database with improved cloud screening (Giles et al., 2019).
The median number of days with AERONET measurements
is 168 d for each site. We average daily AERONET AOD to
an annual mean in the year of 2018. We use satellite retrievals
of AOD from the Deep Blue algorithm (Hsu et al., 2019)
based on Collection 6.1 of the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument aboard the satellite
platforms of Terra with local overpass around 10:30 and of
Aqua around 13:30, and the Version 2.0 Deep Blue aerosol
global product of the Visible Infrared Imaging Radiometer
Suite (VIIRS) instruments aboard the joint NASA/NOAA
Suomi National Polar-orbiting Partnership (Suomi NPP) and
NOAA-20 satellites with local overpass around 13:30 (Cao
et al., 2014). We choose the Deep Blue aerosol product due
to its optimization for the retrieval of aerosol properties over
bright surfaces, which is typical over arid regions. We av-
erage daily Deep Blue aerosol data for the year 2018. Simu-
lated AOD is coincidently sampled with available daily Deep
Blue AOD. We compare simulated AOD over mainly dusty
regions (defined as AODDust/AOD> 0.5 from simulations)
against satellite and AERONET AOD to reduce the effects
of errors in other AOD components and focus on the perfor-
mance of mineral dust.

We use the Version 4.2 Level 3 gridded cloud-free tro-
pospheric aerosol extinction profile product during daytime
and nighttime of the last 15 years (2007–2021) retrieved
from the Cloud–Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) on board the Cloud–Aerosol Lidar Infrared
Pathfinder Satellite Observations (CALIPSO) satellite for
climatological aerosol profiles (Young et al., 2018).

We use global ground-based data from the Sur-
face Particulate Matter Network (SPARTAN; https://www.
spartan-network.org/, last access: 4 February 2025) with
filter-based PM2.5 chemical composition data (Liu et al.,
2024; Snider et al., 2015). Particles with aerodynamic di-
ameter less than 2.5 µm are collected on Teflon filters using
AirPhoton SS5 sampling stations with a sharp-cut cyclone
(SCC) 1.829 that operates at a target flow rate of 5 L min−1.
The sampling station follows either a standard sampling pro-
tocol or the National Aeronautics and Space Administration
(NASA) – Italian Space Agency (ASI) Multi-Angle Imager
for Aerosols (MAIA) sampling protocol. Under the standard
sampling protocol, PM2.5 is collected at staggered 3-hour in-
tervals over a 9 d period, generating a 24 h PM2.5 sample cov-

ering a full diel cycle. Under the MAIA sampling protocol,
PM2.5 is collected continuously for 24 h from 09:00 a.m. to
09:00 a.m. at a mission-defined frequency, which has been
typically every 3 d during the sampling periods used here.
The starting dates for MAIA sites are listed in Table A1 in
the Appendix. SPARTAN samples are analyzed for fine min-
eral dust concentrations using X-ray Fluorescence (XRF) and
a global mineral dust equation (Eq. A1 in the Appendix; Liu
et al., 2022) including correction of attenuation effects due
to mass loading. The 5-year averaged surface fine dust con-
centrations from SPARTAN sites are listed in Table A1. We
use data from sites with at least 10 samples for the 5-year
(2019–2023) period after the network began using XRF with
samples. A sensitivity analysis requiring at least 50 samples
per site is also conducted. This study used 2296 filters from
25 SPARTAN sites for a total of 10 072 observational days.

Ground-based observations of PM2.5 dust over North
America are constructed with a global dust (Eq. A1; Liu
et al., 2022) and the elemental measurements from the Air
Quality System (AQS) database for speciated PM2.5 obser-
vations in the United States (https://aqs.epa.gov/aqsweb/
airdata/download_files.html#Daily, last access: 8 April
2025) and from the National Air Pollution Surveillance Pro-
gram in Canada (https://data-donnees.az.ec.gc.ca/data/air/
monitor/national-air-pollution-surveillance-naps-program/
Data-Donnees/2018/?lang=en, last access: 8 April 2025).
The AQS database includes measurements from both the
Interagency Monitoring of Protected Visual Environments
(IMPROVE) and Chemical Speciation Network (CSN)
networks.

2.2 GEOS-Chem chemical transport model

We use the GEOS-Chem chemical transport model (http:
//www.geos-chem.org, last access: 4 February 2025) in its
high-performance configuration (Eastham et al., 2018) ver-
sion 14.4.1 (The International GEOS-Chem User Commu-
nity, 2024) with improved performance and usability (Mar-
tin et al., 2022). The model is driven by meteorological
inputs from GEOS Forward Processing (GEOS-FP; https:
//gmao.gsfc.nasa.gov/, last access: 4 February 2025) with
a fine resolution 0.25°× 0.3125° (∼ 25 km) and 72 hybrid
sigma-pressure vertical levels up to 0.01 hPa. GEOS-FP uses
dynamic near-real-time assimilation algorithms compared to
consistent static assimilation algorithms used in Modern-
Era Retrospective analysis for Research and Applications
Version 2 (MERRA-2; https://gmao.gsfc.nasa.gov/GMAO_
products/, last access: 19 April 2025). We choose GEOS-FP
over MERRA-2 for this study since GEOS-FP offers finer
resolution for dust emission calculations.

GEOS-Chem simulates detailed oxidant-aerosol chem-
istry in the troposphere and stratosphere, with gas-phase
mechanism of HOx-NOx-BrOx-VOC-O3 chemistry (Bey et
al., 2001; Wang et al., 2021), coupled to aerosol chem-
istry for sulfate-nitrate-ammonium (SNA) aerosol (Park et
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al., 2004), black carbon (BC) (Wang et al., 2014a), and
primary and secondary organic aerosol (Pai et al., 2020),
sea salt (Jaeglé et al., 2011), and natural and anthropogenic
dust (Fairlie et al., 2007; Meng et al., 2021; Philip et al.,
2017; Zhang et al., 2013). The gas-aerosol partitioning for
SNA is computed by the HETP v1.0 thermodynamic mod-
ule (Miller et al., 2024). We use the simple, irreversible,
direct yield scheme for secondary organic aerosol produc-
tion (Pai et al., 2020). The effects of aerosol on pho-
tolysis rates are computed with relative humidity depen-
dent aerosol size distributions and optical properties for hy-
drophilic aerosols with improved parametrization for the ef-
fective radii of inorganic and organic aerosols (Latimer and
Martin, 2019; Ridley et al., 2012; Zhu et al., 2023) and
updated optical properties for aspherical hydrophobic min-
eral dust (http://geoschemdata.wustl.edu/ExtData/CHEM_
INPUTS/CLOUD_J/v2025-01/FJX_scat-aer.dat, last access:
7 April 2025) for different dust size bins as calculated
by Singh et al. (2024) using the T-matrix method for an
equiprobable mixture of prolate and oblate spheroids with
varying aspect ratios using complex refractive indices from
Sinyuk et al. (2003).

The standard dry deposition scheme in GEOS-Chem ac-
counts for gravitational settling, aerodynamic resistance with
respect to turbulent transport within the surface layer, and
surface resistance to particle-surface contact due to Brownian
diffusion, impaction, and interception with an observation
constrained parametrization (Emerson et al., 2020; Zhang et
al., 2001). Wet deposition includes separate algorithms for
scavenging in convective updrafts, and in-cloud and below-
cloud scavenging from precipitation (Liu et al., 2001; Wang
et al., 2011, 2014a).

Emissions for GEOS-Chem are configured using the Har-
monized Emissions Component (HEMCO) module v3.9.1
(Lin et al., 2021). Global anthropogenic emissions are from
the Community Emissions Data System (CEDS) v2 at
0.5°× 0.5° resolution (Feng et al., 2020). Offline emissions
of lightning NOx (Murray et al., 2012), biogenic VOCs, soil
NOx , sea salt (Weng et al., 2020) and mineral dust (Sects. 2.3
and 4.2) at 0.25°× 0.3125° resolution are included to rep-
resent emission processes at the finest available resolution
and to enable consistent emission fluxes across model reso-
lutions. Open fire emissions are from the daily Global Fire
Emissions Database (GFED) v4.1s (Giglio et al., 2013) at
0.25°× 0.25° resolution. Other default emission inventories
in GCHP v14.4.1 include volcanic SO2 emissions (Fisher
et al., 2011), marine emissions of dimethylsulfide (DMS)
(Breider et al., 2017) at 1°× 1° resolution, and ammonia at
0.25°× 0.25° resolution (Bouwman et al., 1997; Croft et al.,
2016). We conduct GCHP simulations at C48 (∼ 200 km)
resolution for the full year of 2018 following a one-month
spin-up.

2.3 Default dust emission scheme

The default dust emission scheme in GEOS-Chem (hereafter
GC Dust) originally implemented by Fairlie et al. (2007) is
based on the semi-empirical Mineral Dust Entrainment and
Deposition (DEAD) emission scheme (Zender et al., 2003)
and the GOCART topographical source function (Ginoux et
al., 2001) updated to a fine resolution of 0.25°× 0.25° (Meng
et al., 2021). The total dust emission flux in kg m−2 s−1

is calculated based on Zender et al. (2003) and Fairlie et
al. (2007):

Fd = CgCNAfbareSϕQs (1)

where Cg is a global scaling factor and CNA is a regional
scaling factor in North America for total annual emissions of
∼ 2000 Tg yr−1 as optimized by Meng et al. (2021); fbare is
the bare ground fraction as specified in Zender et al. (2003) to
reduce dust emissions over wet, snow and vegetation covered
surfaces:

fbare = (1−Al−Awl)(1−Asnow)

(
1−

LAI
LAIthr

)
(2)

where Al, Awl, and Asnow is the fraction of land covered by
lakes, wetlands, and snow, respectively. LAI is the leaf area
index, and LAIthr is the threshold LAI to reduce the bare soil
fraction due to vegetation cover, which is set to 0.3 m2 m−2

by default.
S is a topographical source function (Ginoux et al., 2001)

updated at fine resolution of 0.25°× 0.25° and multiplied by
the fraction of bare surface within each grid cell (Meng et al.,
2021); ϕ is the sandblasting efficiency to convert horizontal
saltation flux to vertical dust flux (Marticorena and Berga-
metti, 1995):

ϕ = 1013.4fclay−4 (3)

where fclay is the clay content in the topsoil layer and is set to
a global constant value of 0.2 to reduce excessive sensitivity
of dust emission fluxes to fclay (Zender et al., 2003). Qs is
the horizontal saltation flux as described in Sect. A2 in the
Appendix.

2.4 Size distribution of emitted dust

The default size distribution of emitted dust in GEOS-Chem
implemented by Zhang et al. (2013) is based on the Brit-
tle Fragmentation Theory (Kok, 2011) with fitted parame-
ter values for better agreement of dust observations from the
Interagency Monitoring of Protected Visual Environments
(IMPROVE) ground-based monitoring network in the United
States:

dVd

dlnDd
=
Dd

cV

[
1+ erf

(
ln
(
Dd/Ds

)
√

2lnσs

)]
exp

[
−

(
Dd

λ

)3
]

(4)

where Vd is the normalized volume for emitted dust aerosols
in diameter of Dd in µm; cV is the normalization constant
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Table 1. The binning of mineral dust in 4-bin and 7-bin simulations
using GEOS-Chem. The geometric diameter range is listed in the
bracket adjacent to each size bin in unit of µm.

4-bin simulation 7-bin simulation

DST1 (0.2–2.0) DSTbin1 (0.2–0.36)
DSTbin2 (0.36–0.6)
DSTbin3 (0.6–1.2)
DSTbin4 (1.2–2.0)

DST2 (2.0–3.6) DSTbin5 (2.0–3.6)

DST3 (3.6–6.0) DSTbin6 (3.6–6.0)

DST4 (6.0–12.0) DSTbin7 (6.0–12.0)

to make the integration total of Vd of 1; Ds = 3.4 µm is the
median diameter of soil particles; σs = 3.0 is the geometric
standard deviation of soil particles; λ is the side crack propa-
gation length, whose value is 8 µm in the default particle size
distribution (PSD) used in the GEOS-Chem (GC PSD), and
is 12 µm in the Kok PSD (Kok, 2011).

Dust aerosols are conventionally separated into several
dust bins to compromise between accuracy and computa-
tional expense (Ginoux et al., 2001; Zender et al., 2003). Ta-
ble 1 summarizes the binning of mineral dust in 4-bin and
7-bin simulations. In the GEOS-Chem standard bulk config-
uration used here, 4 dust size bins are used including DST1
to DST4 covering geometric diameter of 0.2–12.0 µm (Fair-
lie et al., 2007). For DST1, 4 sub-bins of 0.2–0.36, 0.36–0.6,
0.6–1.2, and 1.2–2.0 µm are further separated for heteroge-
neous chemistry and AOD calculations, with shared emis-
sion, transport and deposition altogether as DST1 (Fairlie et
al., 2007). To improve submicron dust representation, we im-
plement full separation of the 7 dust bins for coupled physi-
cal and chemical processes in GEOS-Chem, as discussed in
Sect. 4.3.2.

2.5 Reconciling geometric and aerodynamic diameter

A recent study has emphasized the importance of reconciling
the geometric diameter used in models and the aerodynamic
diameter used in ground-based measurements, especially for
mineral dust with higher particle density of ∼ 2500 kg m−3

than the standard density of 1000 kg m−3 and with aspherical
shapes observed in the atmosphere (Huang et al., 2021). We
harmonize the differences between geometric diameter and
aerodynamic diameter based on Reid et al. (2003):

Daer =Dgeo

√
ρd

χρ0
(5)

where Daer is the aerodynamic diameter; Dgeo is the ge-
ometric diameter; ρd = 2500 kg m−3 is the dust density;
ρ0 = 1000 kg m−3 is the standard spherical particle den-
sity; χ is the dynamic shape factor calculated by χ =

1
2

(
F

1/3
s +

1
F

1/3
s

)
and Fs is Stokes form factor (Bagheri and

Bonadonna, 2016; Huang et al., 2020) which can be calcu-
lated by HWR( 1

AR )
1.3 where AR= 1.70±0.03 is the particle

length to width ratio, and HWR= 0.40± 0.07 is the particle
height to width ratio (Huang et al., 2021). With this conver-
sion, the aerodynamic diameter of 2.5 µm corresponds to the
geometric diameter of 1.7 µm. The mass fraction of each sim-
ulated dust size bin to the total fine dust mass concentrations
can be calculated by the integration of the dust size distribu-
tion of Eq. (4) with the λ value of 8 µm of the default PSD
used in the GEOS-Chem (GC PSD), which is 68 % of DST1
with diameter of 0.2–2.0 µm.

In addition to harmonizing different size types used in
models and measurements, prior studies also suggested that
the sharpness of size cut-off of different inlets used to col-
lect PM2.5 samples can affect the measured concentrations
(Kenny et al., 2000; Peters et al., 2001). To evaluate the ef-
fects, we obtain the dust size distributions of different in-
lets by multiplying their penetration efficiencies (Peters et
al., 2001) and GC PSD (Eq. 4).

Figure 1 shows the effects of the sharpness of size cut on
the size distribution of collected dust PM2.5 samples. All four
inlets have a penetration efficiency of near unity for dust with
geometric diameter less than 1.0 µm, which diminishes to 0.5
at a geometric diameter of 1.7 µm and further diminishes with
increasing diameter. The Well Impactor Ninety-Six (WINS)
referenced by the Federal Reference Method (FRM) exhibits
the sharpest size cut. The corresponding dust PSD is sharply
attenuated for geometric diameters greater than 1.7 µm. The
resultant effects on the mass fractions of the dust size bin to
be included in dust PM2.5 are small, with the mass fraction
of DST1 ranging from 65 %–70 %. The mass fraction based
on SCC 1.829 as used by SPARTAN differs by only −0.4 %
from that based on the original GC PSD without inlet pene-
tration correction. In our Base simulation using the standard
version of GEOS-Chem, we calculate surface PM2.5 dust as
67.6 % of DST1 to account for both aerodynamic diameter
and inlet collection efficiency. Neglect of these effects would
have increased simulated PM2.5 dust concentrations by a fac-
tor of 2.

3 Strong overestimation of surface fine dust

Figure 2 shows the spatial distributions of the annual to-
tal column AOD and surface PM2.5 dust from AERONET,
SPARTAN, and the Base simulation using the standard ver-
sion of GEOS-Chem in the year of 2018. Mineral dust largely
determines the AOD in AERONET and GEOS-Chem over
and downwind of the main dust source regions including the
Sahara, Middle East, and the Taklamakan and Gobi deserts
in Asia. The simulated AOD over dusty regions (simulated
AODDust/AOD> 0.5) exhibits a high degree of consistency
versus the ground-based observations of AERONET AOD
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Figure 1. Normalized particle size distribution (PSD) used by default in GEOS-Chem (GC PSD) in solid black with left axis; penetration
efficiencies for different types of PM2.5 inlets shown in dashed colored lines with right axis, including the Well Impactor Ninety-Six (WINS),
and three types of Sharp-Cut Cyclone (SCC) inlets; Solid colored lines show the adjusted GC PSD collected by different inlets. Grey dash-
dotted line indicates the corresponding geometric diameter of 1.7 µm for the aerodynamic diameter of 2.5 µm. Filled rectangles indicate size
ranges of 4 dust size bins. Percentages adjacent to GC PSD and different inlets are mass fractions of DST1 for the calculation of PM2.5 dust
concentrations.

with the regression slope near unity and R2 of 0.7. However,
the simulated surface PM2.5 dust exhibits a pronounced over-
estimation by a factor of 2.4 compared to the ground-based
measurements of SPARTAN. Simulated PM2.5 dust is over-
estimated at the dusty sites of Abu Dhabi in the United Arab
Emirates by 163 %, Ilorin in Nigeria by 108 %, and Kanpur
in India by 96 %.

Figure 3 shows the vertical profile of the aerosol extinc-
tion normalized by AOD over the main dust source regions
and associated downwind regions, to understand the signifi-
cant performance difference between the surface and the col-
umn, with the absolute extinction profile shown in Fig. A1 in
the Appendix. The simulated vertical profile exhibits overall
agreement against the 15-year (2007 to 2021) climatological
mean extinction vertical profile from the CALIOP, with no
evidence of a model overestimate in the lower mixed layer
versus aloft, indicating the vertical distribution of mineral
dust is not the main driver of the performance discrepancy
between the surface and the column. However, further eval-
uations of the vertical profile near the surface are needed as
CALIOP retrievals are challenging at lower altitudes espe-
cially below 100 m.

4 Model revisions to reduce the overestimation of
surface fine mineral dust

To reduce the overestimation of surface PM2.5 dust, we
(1) implement a new dust emission scheme with further re-
finements for soil properties including the clay content and
soil wetness in the top soil layer and the threshold of leaf
area index, (2) revisit the size distribution of emitted dust,
(3) explicitly track dust with geometric diameter less than
2 µm in four size bins, and (4) update the parametrization for
size-resolved below-cloud scavenging.

4.1 Sensitivity simulation setup

Figure 4 summarizes the setup of sensitivity simulations to
evaluate the effects of algorithmic modifications and their
performance versus satellite-retrieved AOD and surface dust
measurements. The default dust simulation (Base) in GEOS-
Chem as implemented by Fairlie et al. (2007) uses the DEAD
emission scheme (Zender et al., 2003) with a topographi-
cal source function (Ginoux et al., 2001; Meng et al., 2021)
for natural dust (GC Dust) with 4 dust sizebins for emis-
sion, transport and removal with 7 dust size bins for dust
optical depth calculation and heterogeneous chemistry. To
improve the spatial distributions of dust total column abun-
dance, we implement a new dust emission scheme developed
by Leung et al. (2023) (DustL23; Emis). Additional mod-
ifications on top of the original DustL23 emission scheme
include (1) reducing the sensitivity of soil clay content by
eliminating the multiplication of the factor of the capped soil
clay content f ′clay (EmisClay); (2) halving the topmost soil
wetness in the layer of 0–5 cm to approximate the soil wet-
ness in the top 1–2 cm layer which is most pertinent to dust
emissions (Darmenova et al., 2009; Wu et al., 2022) (Emis-
ClayWet); and (3) reducing the threshold of LAIthr from 1.0
to 0.5 m2 m−2 (EmisClayWetLAIthr or Emis∗). To further im-
prove the surface fine dust simulation, we update the GEOS-
Chem particle size distribution (PSD) with the PSD devel-
oped by Kok (2011) (Emis∗PSD) with a larger value for
the side crack propagation length of λ (12 µm versus 8 µm)
which reduced the mass fraction of emitted fine dust. The
Kok PSD was shown to have excellent agreement versus
various soil size measurements (Kok, 2011), especially for
fine dust distributions (González-Flórez et al., 2023). Lastly,
we allow for the four dust bins with geometric diameter
less than 2 µm to have separate emission, transport, and dry
and wet deposition while halving anthropogenic dust emis-
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Figure 2. Annual simulated aerosol optical depth (AOD) and comparison against ground-based observations from AERONET over dusty
regions (simulated AODDust/AOD> 0.5) (top) in the year of 2018; Annual simulated surface PM2.5 dust and comparison against ground-
based measurements from SPARTAN (bottom) from the Base simulation in the year of 2018. Filled circles on the maps represent ground-
based observations from SPARTAN and AERONET. Inset values at the bottom right of the maps are arithmetical mean with 5th and 95th
percentiles in the square brackets. Regression statistics including reduced-major-axis linear regression equation, coefficient of variation
(R2), total number of points (N ), normalized mean difference (NMD), and normalized root-mean-square difference (NRMSD) are listed at
the bottom right of the scatter plots. Major source regions over land are outlined in red including: (1) the Sahara – SA, (2) Middle East –
ME, and (3) Asia – AS. Major dust outflow regions over ocean are outlined in green including: (4) the Caribbean Sea – CRB, (5) the tropical
Atlantic Ocean – TAT, (6) the Mediterranean Sea – MED, (7) the Arabian Sea – ARB, (8) the tropical Indian Ocean and the Bay of Bengal –
IND, and (9) the northwestern Pacific Ocean – NWP.

sions from AFCID (Emis∗PSD7Bins0.5AD), and with up-
dated below-cloud or washout scavenging parametrization
(Emis∗PSD7Bins0.5ADWetDep). Each of these changes is
examined below.

The total global annual source strength for each sensitivity
simulation is scaled to achieve unity slope versus Deep Blue
AOD (Fig. A2) over major dust source regions. The surface
PM2.5 dust concentrations are calculated by accounting for
aerodynamic diameter and inlet penetration efficiency (Sec-
tion 2.5) as 0.676 DST1 for 4-bin simulations, and DSTbin1
+ DSTbin2 + DSTbin3 + 0.546 DSTbin4 for 7-bin simula-
tions. We focus our evaluation on the skill in representing in
situ PM2.5 dust concentrations measured by SPARTAN, and
in representing the spatial variation in annual mean AOD.
Regression equations are calculated using reduced-major-
axis linear regression (Smith, 2009) to account for uncertain-
ties in both simulations and measurements.

4.2 Improving the spatial distribution of mineral dust
with updated emission scheme

We implement into GEOS-Chem a new physics-based
dust emission scheme developed by Leung et al. (2023)
(DustL23) to replace the default dust emission scheme
(Sect. 2.3) used in GEOS-Chem (GC Dust). The spatial dis-
tributions of DustL23 in the Community Earth System Model
version 2 (CESM2) exhibited better correlation against dust
optical depth datasets and AERONET AOD than the DEAD
scheme (Leung et al., 2024). We modify DustL23 for imple-
mentation into GEOS-Chem by (1) reducing dust emissions
over wet, snow, and vegetation covered surfaces of semi-arid
regions using Eq. (7) below, (2) eliminating the multiplica-
tion of the capped clay content of the topsoil in Eq. (8) below,
(3) halving the soil wetness in the layer of 0–5 cm to repre-
sent the soil wetness in the top 1–2 cm layer which is most
pertinent to dust emissions (Darmenova et al., 2009; Wu et
al., 2022), (4) applying a regional scaling factor of 0.6 over
the Sahara to reduce its emissions (Eq. 8), and (5) scaling the
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Figure 3. Comparisons of the annual extinction vertical profile nor-
malized by total column aerosol optical depth from the Base sim-
ulation in the year of 2018 against the 15-year (2007 to 2021) cli-
matological mean extinction vertical profile from the CALIOP over
different regions including the major dust source regions over land
of the Sahara – SA, Middle East – ME, and Asia – AS, and the ma-
jor dust outflow regions over ocean of the Caribbean Sea – CRB,
the tropical Atlantic Ocean – TAT, the Mediterranean Sea – MED,
the Arabian Sea – ARB, the tropical Indian Ocean and the Bay of
Bengal – IND, and the northwestern Pacific Ocean – NWP.

global total emission flux to achieve unity regression slope of
simulated AOD versus Deep Blue AOD over dusty regions.

We begin with the formulation for total dust emission flux
Fd in kg m−2 s−1 following Leung et al. (2024):

Fd = ηCtuneCdfbaref
′

clay
ρa
(
u2
∗s− u

2
∗it
)

u∗st

(
u∗s

u∗it

)κ
for u∗s > u∗it (6)

where η is an intermittency factor, Ctune is a global tuning
factor for the emission strength, Cd is the time-varying soil
erodibility coefficient, fbare is the bare ground fraction, f ′clay
is the clay content in the topmost soil layer of fclay capped
at 0.2, ρa is the surface air density in kg m−3, u∗s is the soil
surface friction velocity in m s−1 corrected from the surface
friction velocity of u∗ by the drag partitioning effects of Feff,
u∗it is the dynamic or impact threshold friction velocity in

m s−1, u∗st is the standardized wet fluid threshold friction ve-
locity in m s−1, and κ is the fragmentation exponent. We use
u∗st in the denominator of Eq. (6) following Kok et al. (2014)
instead of u∗it following Leung et al. (2023) for tuning pur-
pose. The parametrization details for these factors following
Leung et al. (2023) can be found in the Appendix, Sect. A3.

We modify the DustL23 scheme (Leung et al., 2023) by
adopting the equation for the bare ground fraction in Zender
et al. (2003) to reduce dust emissions over wet, snow and
vegetation covered surfaces with the dry erodible land frac-
tion taken from satellite-based land cover:

fbare = Aerod (1−Asnow)

(
1−

LAI
LAIthr

)
(7)

where Aerod is the area fraction of erodible surfaces includ-
ing barren and sparsely vegetated land cover taken from
the MODIS Land Cover Climate Modeling Grid (CMG)
(MCD12C1) Version 6.1 data product;Asnow is the area frac-
tion of snow cover, LAI is the leaf area index (Yuan et al.,
2011), and LAIthr is the threshold LAI to reduce the bare
soil fraction due to vegetation cover. We set an intermediate
value of LAIthr = 0.5 m2 m−2 instead of 1.0 m2 m−2 in Le-
ung et al. (2023) to represent the reduction in dust emissions
from sparse vegetation over semi-arid regions, which is more
similar to the value of 0.3 used in prior work (Mahowald et
al., 1999; Zender et al., 2003).

The enhancement factor fm ≥ 1 for the wet fluid thresh-
old friction velocity due to soil wetness is calculated using
Eqs. (A8) and (A9), but with spatially varying clay content
fclay in the topsoil layer. The gridded fclay dataset is taken
from the Global Soil Dataset for use in Earth System Mod-
els (GSDE) with various inputs from global and regional soil
database (Shangguan et al., 2014), rather than the machine-
learning trained Soil Grids v2.0 dataset with very few obser-
vations over arid regions (Poggio et al., 2021) used in Le-
ung et al. (2023). In addition, we reduce the effects of clay
content on dust emissions by eliminating the multiplication
of the capped clay content f ′clay. Soil wetness is taken from
the parent meteorological inputs of GEOS-FP (Koster et al.,
2020) which targets the top 5 cm layer that desiccates more
slowly following precipitation than the soil wetness in the
top 1–2 cm layer (Swenson and Lawrence, 2014) that is most
pertinent to dust emissions; we halve the soil wetness in an
attempt to represent this process (Darmenova et al., 2009;
Wu et al., 2022).

The global scaling factor Ctune is determined by the
reduced-major-axis linear regression slope of simulated
AOD versus satellite-retrieved AOD over dusty regions
( AODDust

AOD > 0.5) in this study to constrain the intensity of dust
emissions, whose values corresponding to different emission
schemes are listed in Table A2. Additionally, a regional scal-
ing factor of 0.6 over the Sahara (Csah) and unity elsewhere
is applied to reduce regionally excessive dust emissions that
may be influenced by the tendency for global models to over-
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Figure 4. Sensitivity simulation setup. The grey box indicates default settings with the default dust emission scheme used in GEOS-Chem
(GC Dust) with 4 dust size bins (Base). The orange box indicates the implementation of a modified dust scheme based on DustL23 (Emis∗).
Modifications based on the original DustL23 scheme with the soil texture dataset from the Global Soil Dataset for use in Earth System Models
(GSDE) (Emis) include the soil clay content (EmisClay), soil wetness (EmisClayWet), and threshold leaf area index (EmisClayWetLAIthr).
The simulation setup for EmisClayWetLAIthr is the same as that for Emis∗. The blue box indicates the modification of size distribution
of emitted dust (Emis∗PSD). The green boxes indicate the improvements for fine dust including explicit tracking of dust with diameter
less than 2 µm with a total of 7 dust size bins with halved anthropogenic fugitive, combustion, and industrial dust (AFCID) emissions
(Emis∗PSD7Bins0.5AD), and updating below-cloud (washout) scavenging coefficients (Emis∗PSD7Bins0.5ADWetDep).

represent emissions from large source regions compared with
smaller sources (Kok et al., 2021a; Zhao et al., 2022).

The final formulation for dust emission flux is:

Fd = ηCsahCtuneCdfbare
ρa
(
u2
∗s− u

2
∗it
)

u∗st

(
u∗s

u∗it

)κ
for u∗s > u∗it (8)

The calculated offline hourly dust emissions at
0.25°× 0.3125° resolution using Eq. (8) are then used
to drive GCHP simulations at C48 resolution. The spatial
distributions predicted from different emission schemes are
evaluated against satellite-based Deep Blue AOD, ground-
based AERONET AOD, and SPARTAN surface PM2.5 dust
measurements.

Figure 5 shows the spatial distributions of annual dust
emission fluxes and dust optical depth predicted from dif-
ferent emission schemes, with Fig. 6 showing the compar-
isons against Deep Blue satellite AOD globally and over ma-
jor dust source regions. Comparison of the Base and Emis
schemes reveals that the latter captures more secondary dust
emission spots, especially over the Sahara, and inland dust
sources in Saudi Arabia. However, the comparison against
Deep Blue AOD over the Sahara is degraded versus the de-
fault scheme (Fig. 6). As suggested by prior studies, soil clay
content is an important factor affecting the threshold friction
velocity (Fécan et al., 1999; Tian et al., 2021; Zender et al.,
2003) and sandblasting efficiency (Zender et al., 2003), and
is often tuned for the optimization of dust emissions (Leung
et al., 2024; Tian et al., 2021). Eliminating the multiplica-
tion of the capped clay content of f ′clay reduces the effects of
the clay content, increasing emissions from the Bodélé De-
pression in Chad and El Djouf across the border of Mau-
ritania and Mali over the Sahara, from the Rub’ al Khali
desert in the inland Saudi Arabi, and Taklamakan desert in
the northwest China (Fig. 5, EmisClay). Correspondingly,

the R2 from the linear regression against Deep Blue AOD
is improved from 0.60 to 0.70 over the Sahara, from 0.68
to 0.77 over the Middle East, and from 0.35 to 0.56 over
Asia (Fig. 6). The other two modifications of halving soil
wetness (EmisClayWet) and setting LAIthr to 0.5 m2 m−2

(EmisClayWetLAIthr) slightly improve the spatial distribu-
tion of dust emissions by reducing the underestimation in
Asia while retaining the agreements in the Sahara and Mid-
dle East (Fig. 6). Using the same dusty region of the Base
(Fig. A3) or EmisClayWetLAIthr (Fig. A4) scheme for the
comparisons of all dust emission schemes versus Deep Blue
AOD confirms similarly slight improvements of regional dust
emissions. Together these refinements exhibit comparable
global performance as the Base simulation versus Deep Blue
AOD with improvements to the relative regional magnitude
of dust across the Sahara, Middle East and Asia as indicated
by more comparable regression slopes (Fig. 6).

Figure 7 shows the evaluation of the Emis∗ (or
EmisClayWetLAIthr) simulation with ground-based observa-
tions from AERONET and SPARTAN. The overestimation of
surface PM2.5 dust against the ground-based measurements
of SPARTAN is reduced from 94 % (Fig. 2) to 55 % (Fig. 7),
reflecting regional improvements of the spatial distributions
especially over the Middle East (Fig. 6). The skill in repre-
senting AOD in the Emis∗ simulation remains comparable to
that in the Base simulation shown in Fig. 2.

4.3 Improving the representation of fine mineral dust

As the size distribution of mineral dust is particularly im-
portant for the performance discrepancy between simulated
AOD over dusty regions and surface PM2.5 dust, we focus on
improving its size-resolved source and sink.
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Figure 5. Annual dust emission flux (left) and simulated dust optical depth (AODDust; right) in the year of 2018 zoomed in over dusty regions
of the Sahara, Middle East, and Asia from different emission schemes as described in Fig. 4. Inset values are the regional arithmetical mean
with 5th and 95th percentiles in the square brackets.

4.3.1 Revisiting the size distribution of emitted mineral
dust

Figure 8a shows different PSDs including the default PSD
used in the GEOS-Chem (GC PSD) based on the brittle frag-
mentation theory with the side crack propagation length λ
of 8 µm (Zhang et al., 2013), the Kok PSD with λ of 12 µm
(Kok, 2011), and the Meng PSD focusing on the optimiza-
tion for coarse to super coarse dust (Meng et al., 2022), in
comparison with the observed PSD from the 2011 Fennec
campaign (Ryder et al., 2013). While all modelled PSDs are
within the wide range of PSD from the Fennec campaign,
the fraction of emitted DST1 from the Kok PSD exhibits
greater consistency with the Fennec observations than the

other two PSDs. The larger discrepancy for the size distribu-
tion with diameter less than ∼ 0.4 µm between the observed
PSD from Fennec and parametrized PSDs is possibly due
to anthropogenic aerosol influence (González-Flórez et al.,
2023). In addition, a recent field study in the Moroccan Sa-
hara (González-Flórez et al., 2023) indicated overall agree-
ment of emitted dust size distributions against the Kok PSD
especially at the fine diameter range. Therefore, we adopt
the Kok PSD with λ of 12 µm for the size distribution of
emitted mineral dust in GEOS-Chem. Figure 8b shows the
spatial distribution from the Emis∗PSD simulation which re-
mains similar to that from the Emis∗ simulation in Fig. 7.
Reduced emissions from DST1 by using the Kok PSD re-
duces the overestimation of surface PM2.5 dust from 55 %
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Figure 6. Comparisons of annual simulated aerosol optical depth (AOD) versus the Deep Blue satellite AOD globally (GL) and over main
dust source regions of the Sahara – SA, Middle East – ME, and Asia (AS) with different emission schemes. Regression statistics including
reduced-major-axis linear regression equation, coefficient of variation (R2), total number of points (N ), normalized mean difference (NMD),
and normalized root-mean-square difference (NRMSD) are in the top left. Note the total number of points varies across different schemes.

to 33 % compared to the ground-based measurements from
SPARTAN (Fig. 8c).

4.3.2 Improving the size-resolved dry and wet
deposition of mineral dust

The default below-cloud (washout) scavenging of dust by
rain and snow in GEOS-Chem is separated for fine (DST1)
and coarse dust (DST2 to DST4) (Wang et al., 2011). How-
ever, washout scavenging coefficients strongly depend on
aerosol size (Wang et al., 2014b). To improve the size-
dependent washout treatment of dust, we update washout
rates by rain and snow for 7 dust size bins by (Wang et al.,
2014b):

3= A(Dd)

(
Pd

fr

)B(Dd)

(9)

where 3 is the washout scavenging coefficient in s−1 by ei-
ther rain or snow; Pd is the precipitation rate in mm h−1

falling form upper layers; fr is the area fraction of precip-
itation within each grid box; A and B are empirical constants
dependent on dust size Dd. Using the same semi-empirical
equations for A and B as Wang et al. (2014b), the updated
values for different dust size bins with different effective
spherical radii are summarized in Table 2.

Figure 9 shows the size-dependent variations of mineral
dust dry and wet deposition. We adopt the effective radii for
7 dust size bins for dry and wet deposition. The dry deposi-
tion velocity can vary by a factor of 4.9 among Bin1 to Bin4
with the minimum near the geometric diameter of 0.5 µm.
The washout scavenging coefficient can vary by a factor of
2.6 among Bin1 to Bin4 with the minimum near the geomet-
ric diameter of 0.4 µm. Given the steep increasing strength

https://doi.org/10.5194/gmd-18-6767-2025 Geosci. Model Dev., 18, 6767–6803, 2025



6778 D. Zhang et al.: Improving annual fine mineral dust representation

Figure 7. Annual simulated aerosol optical depth (AOD) and comparison against ground-based observations from the AERONET over dusty
regions (AODDust/AOD> 0.5) (top); Annual simulated surface PM2.5 dust and comparison against ground-based measurements from the
SPARTAN from the Emis∗ simulation in the year of 2018 (bottom). Filled circles on the maps represent ground-based observations from
SPARTAN and AERONET. Inset values at the bottom right of the maps are arithmetical mean with 5th and 95th percentiles in the square
brackets. Regression statistics including the reduced-major-axis linear regression equation, coefficient of variation (R2), total number of
points (N ), normalized mean difference (NMD), and normalized root-mean-square difference (NRMSD) are listed at the bottom right of the
scatter plots.

Table 2. Values of A and B for washout parametrizations by rain
and snow for different dust size bins.

Diameter (µm) Rain Snow
(T ≥ 268 K) (248 K≤ T < 268 K)

A B A B

Bin1 (0.2–0.36) 4.0× 10−7 0.71 7.3× 10−6 0.57
Bin2 (0.36–0.6) 4.1× 10−7 0.71 1.3× 10−5 0.56
Bin3 (0.6–1.2) 4.8× 10−7 0.72 2.7× 10−5 0.56
Bin4 (1.2–2.0) 8.4× 10−7 0.73 6.0× 10−5 0.55
Bin5 (2.0–3.6) 4.8× 10−5 0.88 4.2× 10−4 0.61
Bin6 (3.6–6.0) 2.2× 10−4 0.87 1.3× 10−3 0.67
Bin7 (6.0–12.0) 3.4× 10−4 0.84 2.4× 10−3 0.73

of emitted dust from Bin1 to Bin4 (Fig. 8), there is need to
explicitly track dust within DST1. We evaluate these devel-
opments by examining their effects on the fractional contri-
butions of fine dust to total dust.

Figure 10 shows the fractional contributions of fine
dust with geometric diameter less than 2 µm to total dust
(AODFineDust/AODDust) from the simulations with a total of
7 dust bins for dry deposition with updated washout scaveng-

ing parametrization and their differences. Due to the dom-
inance of dry deposition over arid dusty regions, the ex-
plicit tracking of fine dust dry deposition slightly reduces
AODFineDust/AODDust over major dust source regions. How-
ever, the anthropogenic contributions to fine dust are cor-
respondingly enhanced over urban and industrial regions,
leading to degraded comparison against SPARTAN measure-
ments (Fig. A5). We thus halve the AFCID emissions to re-
duce the excessive contributions from this uncertain source
(Emis∗PSD7Bins0.5AD). In addition, accounting for the
steep washout scavenging efficiency across DSTbin5 to DST-
bin7 (Fig. 9) with updated washout parametrization would
induce enhanced fractional contributions especially for DST-
bin5 (Fig. A6) and thus relatively reduce fractional contribu-
tions from fine dust with geometric diameter less than 2 µm
to total dust (AODFineDust/AODDust). Figure 11 shows the
overall performance with all revisions from the simulation
of Emis∗PSD7Bins0.5ADWetDep. The reduced-major-axis
linear regression slope is further reduced from 1.68 (Fig. 8)
to 1.59 with comparable values of NMD against SPARTAN
measurements.

Comparisons against other surface dust datasets also
show improved or comparable performance compared to the
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Figure 8. (a) Normalized particle size distribution (PSD) of emitted dust based on default PSD used in GEOS-Chem (GC PSD) (Zhang et
al., 2013), the Kok PSD (Kok, 2011), the Meng PSD (Meng et al., 2022), and the Fennec PSD (Ryder et al., 2013). All PSDs are normalized
for a total volumetric integration of 1 within the diameter range of 0.2 to 12 µm used in GEOS-Chem. The grey shades show the minimum
and maximum PSD curves from the Fennec 2011 campaign. The grey dash-dotted line indicates the corresponding geometric diameter of
1.7 µm for the aerodynamic diameter of 2.5 µm. Filled rectangles indicate size ranges of 4 dust size bins. Percentages adjacent to each PSD
are mass fractions of emitted DST1 over total dust emission flux within diameter range of 0.2 to 12 µm. (b) Simulated annual surface PM2.5
dust from the Emis∗PSD simulation in the year of 2018. Filled circles on the map represent ground-based observations from SPARTAN
and AERONET. Inset values at the bottom right of the maps are arithmetical mean with 5th and 95th percentiles in the square brackets.
(c) Comparison of simulated PM2.5 dust versus observed fine dust from SPARTAN. Regression statistics including the reduced-major-axis
linear regression equation, coefficient of variation (R2), total number of points (N ), normalized mean difference (NMD), and normalized
root-mean-square difference (NRMSD) are listed at the bottom right.

Base simulation. Figure A7 shows the comparison against
ground observations over North America. Using the re-
fined new dust emission scheme with the replacement of
the size distribution from the Kok PSD, explicitly track-
ing submicron bins for dry deposition, and updating the
washout scavenging parametrization contribute to a com-
parable extent to reduce the overestimation over North
America from 43 % of the Base simulation to 15 % of
the Emis∗PSD7Bins0.5ADWetDep simulation. Comparisons
against surface concentrations and total deposition of PM10
dust (Li et al., 2022b) for the Emis∗PSD7Bins0.5ADWetDep
simulation are also comparable with the Base simulation
(Figs. A8 and A9). Consistent with prior studies about the
spatial sensitivity of dust emissions (Leung et al., 2023;
Meng et al., 2021), fine-resolution meteorological fields are
needed to capture dust emission hotspots. If the dust emis-
sions were calculated with C48 meteorological fields, the
global dust distribution would become more concentrated
in the major global source regions with the elimination of

marginal dust sources, and the R2 versus SPARTAN surface
PM2.5 dust would diminish to 0.83 (Fig. A10). Overall com-
parisons for the seasonal mean between the Base and the
Emis∗PSD7Bins0.5ADWetDep simulations confirm largely
reduced overestimation for the surface fine dust against
SPARTAN, while retaining comparable skill for the total
column AOD against AERONET (Figs. A11 to A14). The
reduction of surface overestimation is especially prominent
over dusty seasons in Spring (from 73 % to 48 %) and Sum-
mer (from 138 % to 50 %), while further improvements are
needed for surface overestimation in Fall (from 140 % to
95 %).

Table 3 summarizes the effects of different modifications
on the model performance of total column AOD and surface
fine mineral dust in this study. Strong overestimation of sur-
face PM2.5 dust concentrations exist in the Base simulation
by a factor of 2.4 versus SPARTAN measured dust. Updat-
ing the dust emission scheme with further refinements in the
soil properties reduces the overestimation of surface PM2.5
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Figure 9. Size-resolved dry deposition velocity over desert (left
y-axis) and washout scavenging coefficient by rain (right y-axis).
Dry deposition velocity is calculated with the friction velocity of
0.4 m s−1 and the particle density of 2500 kg m−3 with the de-
fault dry deposition scheme used in the GEOS-Chem. Washout
scavenging coefficient is calculated with the precipitation rate of
0.1 mm h−1 with the updated washout parametrization. Solid lines
indicate theoretical parametrization. Dashed lines indicate the de-
fault discrete treatment. Dotted lines indicate the updated discrete
treatment. Grey dash-dotted line indicates the corresponding geo-
metric diameter of 1.7 µm for the aerodynamic diameter of 2.5 µm.

dust by 39 %. The surface overestimation by 55 % is reduced
to 35 % by updating the size distribution of emitted dust, ex-
plicitly tracking dust with diameter less than 2 µm in 4 bins,
and updating the parametrization of below-cloud scaveng-
ing. The comparisons of simulated AOD versus AERONET
and Deep Blue AOD are comparable for all simulations with
the correlation coefficient of 0.8–0.9, and NMDs from −9 %
to 31 %. The emissions between the Base and Emis∗ sim-
ulations are comparable with the global annual dust emis-
sion of ∼ 2000 Tg yr−1, which is within the range of 1000–
5000 Tg yr−1 from intercomparison projects (Huneeus et al.,
2011; Wu et al., 2020). As the Kok PSD reduces the mass
fraction of fine dust, the total emitted mass is enhanced to
∼ 3000 Tg yr−1 with larger contributions from coarse dust.
The reduction of surface PM2.5 dust overestimation with
these revisions is confirmed if SPARTAN sites are restricted
to those with at least 50 samples as well (Table A3).

5 Conclusions

In summary, we evaluate and improve the annual mineral
dust simulation in the GEOS-Chem model by building upon
recent ground-based measurements from SPARTAN of min-
eral dust in PM2.5 over land, together with total column AOD
from AERONET measurements and from the MODIS and
VIIRS Deep Blue satellite products. We devote attention to

the representation of aerodynamic diameter when comparing
with ground-based PM2.5 measurements, since representa-
tion as geometric diameter in models would introduce a two-
fold bias. We nonetheless find that the standard GEOS-Chem
chemical transport model much better represents columnar
AOD with a slope near unity than surface PM2.5 dust concen-
trations which are overestimated by a factor of two. Compar-
ison of simulated extinction profiles versus the 15-year cli-
matological CALIOP extinction profiles yields overall con-
sistency in the vertical shape (Fig. 3), indicating the impor-
tance of other dominant factors.

We develop the mineral dust representation in GEOS-
Chem with attention to its sources, size distribution, and
sinks. We implement a new dust emission scheme based on
Leung et al. (2023) with further refinements to the clay con-
tent and wetness in the topsoil layer, threshold leaf area in-
dex, and reducing dust emissions over snow and vegetation
covered land surfaces. The NMD versus surface measure-
ments is reduced by 39 % while the simulated AOD better
represents the spatial distribution of Deep Blue AOD over
dusty regions. To further improve the fine dust representa-
tion in GEOS-Chem, we revisit the size distribution of emit-
ted dust and find that the Kok particle size distribution (PSD;
Kok, 2011) better represents the mass fraction of fine dust
measured during the Fennec field campaign over Northern
Africa than does the default PSD despite the uncertainties
from the Fennec observations. The implementation of the
Kok PSD into GEOS-Chem reduces the surface overestima-
tion of PM2.5 dust by 22 %. We also enable explicit tracking
of mineral dust with geometric diameter less than 2 µm in 4
size bins for emission, transport, and deposition with updated
parametrization for below-cloud scavenging, which further
reduces the overestimation of surface PM2.5 dust concentra-
tions to within 35 %.

Despite these advances, challenges remain in mineral
dust development and evaluation. The performance of AOD
against satellite and AERONET observations over dusty re-
gions may still be affected by other aerosol components
which may benefit from further evaluations and devel-
opments. Although the simulations are only for a single
year, we average the multi-year observational data from the
CALIOP extinction profile and SPARTAN measured surface
dust concentrations for long-term representativeness. This
approach benefits from the weak interannual variability of
annual mean mineral dust concentrations (Li et al., 2017;
Song et al., 2021). Nonetheless, additional observational data
will enable further evaluation of the performance of min-
eral dust simulations. In addition, knowledge gaps remain
for mechanistic representation of mineral dust emissions. We
call for further developments on the parametrization of dust
emissions, particularly for the uncertainties in global and re-
gional dust emission strength and further constraints on the
effects of soil wetness on the threshold friction velocity. Fu-
ture examination of daily variability would also be valuable
for short-term predictability.
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Figure 10. Fractional contributions of fine dust with geometric diameter less than 2 µm to total dust column abundance
(AODFineDust/AODDust) from the (a) Emis∗PSD7Bins0.5ADWetDep, (b) Emis∗PSD7Bins0.5AD, (c) Emis∗PSD and their absolute dif-
ferences. Inset values at the bottom right are arithmetical mean with 5th and 95th percentiles in the square brackets.

Table 3. Effects of different modifications on the model performance of simulated annual surface PM2.5 dust versus SPARTAN, and simulated
annual aerosol optical depth (AOD) versus AERONET AOD and Deep Blue satellite AOD in terms of the correlation coefficient (r), the
reduced-major-axis linear regression slope, and the normalized mean difference (NMD), with associated annual dust optical depth (AODDust)
and total dust emissions in the year of 2018.

Simulation Simulated surface PM2.5 Simulated AOD versus AODDust Emissions
dust versus SPARTAN AERONET AOD Deep Blue AOD (unitless) (Tg yr−1)

r slope NMD (%) r slope NMD (%) r slope NMD (%)

Base 0.96 2.42 93.8 0.84 1.02 17.7 0.87 0.92 −8.7 0.025 2025
Emis∗

Emis 0.96 1.96 65.8 0.85 1.10 26.2 0.87 1.00 6.6 0.028 2128
EmisClay 0.95 1.85 34.3 0.86 1.05 23.7 0.88 1.01 0.2 0.025 1954
EmisClayWet 0.95 2.03 63.3 0.87 1.11 30.7 0.89 1.00 7.2 0.029 2376
EmisClayWetLAIthr 0.95 1.98 54.9 0.85 1.05 28.9 0.88 1.00 5.6 0.028 2262

Emis∗PSD 0.95 1.68 32.7 0.83 1.12 29.7 0.89 1.00 4.3 0.026 3069
Emis∗PSD7Bins0.5AD 0.95 1.63 40.6 0.85 1.12 28.3 0.89 1.00 3.2 0.026 2952
Emis∗PSD7Bins0.5ADWetDep 0.95 1.59 35.3 0.83 1.11 28.7 0.89 1.00 3.6 0.026 2943
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Figure 11. Annual simulated aerosol optical depth (AOD) and comparison against ground-based observations from AERONET over dusty re-
gions (AODDust/AOD> 0.5) (top); Annual simulated surface PM2.5 dust and comparison against ground-based measurements from SPAR-
TAN from the Emis∗PSD7Bins0.5ADWetDep simulation in the year of 2018 (bottom). Filled circles on the maps represent ground-based
observations from SPARTAN and AERONET. Inset values at the bottom right of the maps are arithmetical mean with 5th and 95th per-
centiles in the square brackets. Regression statistics including the reduced-major-axis linear regression equation, R2, total number of points
(N ), normalized mean difference (NMD), and normalized root-mean-square difference (NRMSD) are listed at the bottom right of the scatter
plots.

These investigations indicate the importance of size type
reconciliation in models versus measurements, the spatial
distribution of dust emissions, the size distribution of emit-
ted dust, and the explicit tracking of fine dust bins for more
accurate simulation of fine dust abundance from the surface
to the column.

Appendix A: Additional details about dust emission
parametrizations, SPARTAN dust, and complementary
figures

A1 A global dust equation

We follow a global dust equation for the calculation of sur-
face PM2.5 dust concentrations from SPARTAN (Liu et al.,
2022):

Dust= [1.89Al× (1+MAL)+ 2.14Si+ 1.40Ca

+1.36Fe+ 1.67Ti]×CF (A1)

where 1.89, 2.14, 1.40, 1.36, and 1.67 are the mass con-
version ratios for corresponding mineral oxides; MAL
is the mineral-to-aluminum mass ratio of (K2O+MgO+

Na2O)/Al2O3; CF is a correction factor (CF) to account for
other missing compounds.

A2 Horizontal saltation flux in standard version of
GEOS-Chem

The default horizontal saltation flux Qs in GEOS-Chem is
based on the parametrization of White (1979):

Qs = Cz
ρa

g
u3
∗s

(
1−

u∗ft

u∗s

)(
1+

u∗ft

u∗s

)2

for u∗s > u∗ft (A2)

where Cz = 2.61 is the saltation constant; ρa is the air den-
sity in kg m−3; g = 9.81 m s−2 is the gravitational accelera-
tion; the drag partitioning effects are ignored by default and
thus u∗s = u∗, where u∗ is calculated from the wind speed at
10 m u10 m based on the logarithmic wind profile within the
boundary layer under adiabatic conditions (Marticorena and
Bergametti, 1995):

u∗ =
ku10 m

ln(z0/z0a)
(A3)

where k = 0.4 is the von Kármán constant; u10 m is the
wind speed at 10 m; z0 = 10 m is the reference height; z0a =
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10−4 m is the surface roughness height. The wet fluid thresh-
old friction velocity of u∗ft is the minimum surface friction
velocity required to initiate the saltation from the bare soil
(Fécan et al., 1999):

u∗ft = u∗ft0 · fm (A4)

where u∗ft0 is the dry fluid threshold friction velocity follow-
ing Iversen and White (1982):

u∗ft0 =



0.129 K√
1.928Re0.092−1

,

0.03< Re< 10

0.12K[1− 0.0858e−0.0617(Re−10)],

Re≥ 10

(A5)

where:

K =

√√√√ρpgDp

ρa

(
1+

0.006
ρpgD2.5

p

)
(A6)

; ; ;LETEX−DUMMY ; ; ;Re= 1331D1.56
p + 0.38 (A7)

WhereDp = 75 µm is the diameter of soil particle which cor-
responds to the minimum dry fluid threshold velocity of u∗ft0
(Iversen and White, 1982).

The enhancement factor fm ≥ 1 is a function of soil wet-
ness (Fécan et al., 1999):

fm =

{
1, w ≤ wt√

1+ 1.21[100(w−wt)]0.68, w > wt
(A8)

where w is the gravimetric soil moisture (kg kg−1) in the
shallowest soil layer; wt is the threshold gravimetric water
content above which u∗ft increases with soil wetness (Fécan
et al., 1999):

wt = 0.01a
(

17fclay+ 14f 2
clay

)
(A9)

where a is a tuning factor which is taken as 1/fclay = 5 by
default.

A3 Additional details about the new dust emission
scheme

The variables used in the calculation for the total dust emis-
sion flux Fd (Eq. 6) can be categorized into meteorological
fields including η, ρa, and u∗, land surface properties includ-
ing fbare, f ′clay, Feff, and u∗it, intrinsic soil erodibility prop-
erties including u∗st, Cd , and κ , and a global tuning factor of
Ctune.

Intermittency effects due to the fluctuation of instanta-
neous soil friction velocity ũs are reflected in the intermit-
tency factor of η, which is denoted by the temporal fraction
of active dust emission ranging from 0 to 1 within a transport

time step. The parametrization of η is based on Comola et al.
(2019):

η = 1−Pft+α (Pft−Pit) (A10)

where Pft and Pit are the cumulative probability of instan-
taneous friction velocity larger than a wet fluid threshold,
and an impact threshold, respectively; α is the fraction of ũs
crossing a wet fluid threshold over the total fraction crossing
a wet fluid threshold and an impact threshold.

The calculation of η is based on velocity at the saltation
height of zsal = 0.1 m. Thus the surface friction velocity of
u∗s, and threshold velocities of u∗ft and u∗it are first calcu-
lated at the saltation height based on (Marticorena and Berga-
metti, 1995):

uX (sal)=
u∗X

k
ln
(
zsal

z0a

)
(A11)

where the subscript X can be ft, it or s, z0a = 10−4 m, and
k = 0.386 is the von Kármán constant.

Assuming a normal distribution of instantaneous soil fric-
tion velocity ũs ∼N(us,σ

2
ũs
), a standard deviation of instan-

taneous friction velocity σũs is a central parameter to calcu-
late the fraction of active dust emissions within a time step
for transportation. σũs is calculated based on the similarity
theory (Panofsky et al., 1977):

σũs = u∗s

(
12− 0.5

zi

L

)1/3
(A12)

where zi is the planetary boundary layer height, and L is the
Monin-bukhov length calculated by (Panofsky et al., 1977):

L=−
ρacpT u

3
∗

k gH
(A13)

where cp = 1005 J kg−1 K−1 is the specific hear capacity of
air under constant pressure; T is surface air temperature; u∗
in m s−1 is the original surface friction velocity without the
drag partitioning correction; g = 9.81 m s−2 is the gravita-
tional acceleration; H is the sensible heat flux from turbu-
lence in W m−2.

Given that a normal distribution is assumed, cumulative
probabilities of Pft and Pit can be calculated by Pft = 0.5[1+
erf(uft−us√

2σũs
)], and Pit = 0.5[1+ erf(uit−us√

2σũs
)]. α is the number

of crossing rate of ũs across the wet fluid threshold Cft over
the total number of crossing rate of ũs across the wet fluid
threshold Cft and the impact threshold Cit (Comola et al.,
2019):

α =
Cft

Cft+Cit
(A14)

The crossing fraction of α is approximated by α ≈[
exp

(
u2

ft−u
2
it−2us(uft−uit)

2σ 2
ũs

)
+ 1

]−1

as suggested by Comola et

al. (2019).
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The soil surface friction velocity of u∗s is calculated
by (Leung et al., 2023; Marticorena and Bergametti, 1995;
Webb et al., 2020):

u∗s = u∗Feff (A15)

where u∗ is the surface friction velocity taken directly from
the parent meteorological fields; Feff is the drag partitioning
effects due to the presence of non-erodible elements includ-
ing rocks and vegetation.

Drag partitioning effects are calculated following Leung et
al. (2023):

Feff =
(
Arf

3
eff,r+Avf

3
eff,v

)1/3
(A16)

whereAr is the fraction of barren and sparsely vegetated land
cover approximated byAerod;Av is the fraction of short vege-
tation land cover taken from the MCD12C1 Version 6.1 land
cover product; feff,r is the drag partitioning effects due to
rocks (Marticorena and Bergametti, 1995):

feff,r = 1−
ln
(
z0a
z0s

)
ln
[
b1

(
X
z0s

)b2
] (A17)

where z0a is the aeolian roughness length which the surface
roughness of overlaying nonerodable elements and was taken
as the minimum of monthly mean gridded aeolian roughness
length (Prigent et al., 2005); z0s =

Dp
15 is the smooth rough-

ness length which quantifies the roughness of a bed of fine
soil particles in the absence of roughness elements (Pierre et
al., 2014b); b1 = 0.7, b2 = 0.8, and X = 10 m are empirical
constants (Leung et al., 2023). feff,v is the drag partitioning
effects due to vegetation (Pierre et al., 2014a):

feff,v =
K + f0c

K + c
(A18)

where f0 = 0.32 and c = 4.8 are empirical constants (Okin,
2008); K is calculated by π

2

(
1

LAI/LAIthr
− 1

)
(Leung et al.,

2023; Okin, 2008).
The wet fluid threshold velocity u∗ft is calculated using

Eq. (A4), except the dry fluid threshold velocity u∗ft0 is cal-
culated by (Shao and Lu, 2000):

u∗ft0 =

√
A
(
ρpgDp+ γ /Dp

)
/ρa (A19)

where A= 0.0123 and γ = 1.65× 10−4 kg s−2 are empiri-
cal constants (Darmenova et al., 2009; Leung et al., 2023);
Dp = 127± 47 µm is the median diameter of soil particle
as evaluated from various field measurements in Leung et
al. (2023).

Once the saltation is initialized, the threshold velocity re-
quired to maintain the saltation diminishes, which is defined
as the dynamic or impact threshold friction velocity u∗it in
m s−1 (Martin and Kok, 2018):

u∗it = Bitu∗ft0 (A20)

where Bit = 0.82. A prior study suggested that the impact
threshold primarily governed the saltation flux (Martin and
Kok, 2018) and thus u∗it is adopted as the governing thresh-
old in Eq. (14).

The standardized wet fluid threshold friction velocity u∗st
was proposed and argued as a central factor to characterize
soil aridity by a prior study (Kok et al., 2014):

u∗st = u∗ft
√
ρa/ρa0 (A21)

where ρa0 = 1.225 kg m−3 is the standard surface air density.
The fragmentation exponent of κ quantifies the sensitivity

of Fd to u∗s and is capped at 3 to prevent excessive sensitivity
of the model to wind speeds according to (Kok et al., 2014;
Leung et al., 2024):

κ = Cκ
(u∗st− u∗st0)

u∗st0
(A22)

where Cκ = 2.7± 1.0 and u∗st0 = 0.16 m s−1 are constants.
The time-varying soil erodibility coefficient is a function

of u∗st only (Kok et al., 2014):

Cd = Cd0 exp
(
−Ce

u∗st− u∗st0

u∗st0

)
(A23)

where Cd0 = (4.4± 0.5)× 10−5 and Ce = 2.0± 0.3 are em-
pirical constants.
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Table A1. The mean and standard deviation (σ ) of surface PM2.5 dust measured from 25 SPARTAN sites with at least 10 samples in 5 years
from 2019 to 2023 globally. Sites are sorted by the mean surface PM2.5 dust concentrations.

Site # of Sampling Sampling seasons Start date for Mean σ

samples days∗ MAIA sites (µg m−3) (µg m−3)

Abu Dhabi 113 1012 MAM, JJA, SON, DJF – 13.4 6.7
Ilorin 47 411 MAM, JJA, SON, DJF – 11.2 15.6
Kanpur 15 135 MAM, JJA, SON, DJF – 8.2 7.3
Dhaka 49 170 MAM, JJA, SON – 6.8 3.5
Addis Ababa 117 234 MAM, JJA, SON, DJF 07 Dec 2022 4.9 1.6
Beijing 83 424 MAM, JJA, SON, DJF 30 Aug 2022 4.2 2.0
Rehovot 181 571 MAM, JJA, SON, DJF 05 Nov 2021 4.2 4.0
Haifa 142 284 MAM, JJA, SON, DJF 16 Feb 2022 3.3 3.4
Seoul 83 744 MAM, JJA, SON, DJF – 2.5 1.5
Fajardo 52 453 MAM, JJA, SON, DJF – 2.3 2.3
Bujumbura 19 171 MAM, JJA, SON, DJF – 2.0 1.2
Kaohsiung 122 244 MAM, JJA, SON, DJF 20 Aug 2022 1.9 0.8
Ulsan 77 682 MAM, JJA, SON, DJF – 1.9 1.3
Pretoria 223 450 JJA, SON 15 Apr 2021 1.7 0.6
Bandung 28 249 MAM, JJA, SON, DJF – 1.7 0.5
Singapore 13 117 JJA, SON, DJF – 1.3 0.4
Johannesburg 166 331 MAM, JJA, SON, DJF 07 Apr 2022 1.3 0.3
Mexico City 49 425 MAM, JJA, SON, DJF – 1.3 0.5
Taipei 211 421 MAM, JJA, SON, DJF 27 Jan 2022 1.1 0.9
Pasadena 242 484 MAM, JJA, SON, DJF 09 Nov 2021 0.8 0.3
Lethbridge 13 121 MAM, JJA, SON, DJF – 0.7 0.3
Melbourne 34 307 MAM, JJA – 0.6 0.8
Downsview 18 144 MAM, JJA, SON, DJF – 0.5 0.2
Sherbrooke 83 687 MAM, JJA, DJF – 0.4 0.2
Halifax 116 801 MAM, JJA, SON, DJF – 0.3 0.1

∗ The number of days when SPARTAN sampling occurred for a part of the day according to either the standard 9 d protocol or the MAIA
protocol.

Table A2. The values of a global tuning factor Ctune used for different simulations.

Simulation Ctune

Emis∗

Emis 2.358× 10−2

EmisClay 2.569× 10−3

EmisClayWet 2.146× 10−3

EmisClayWetLAIthr 2.170× 10−3

Emis∗PSD 2.945× 10−3

Emis∗PSD7Bins0.5AD 2.892× 10−3

Emis∗PSD7Bins0.5ADWetDep 2.832× 10−3
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Table A3. Effects of different modifications on the model performance of simulated annual surface PM2.5 dust versus SPARTAN over
sites with > 50 samples in terms of the correlation coefficient (r), the reduced-major-axis linear regression slope, and the normalized mean
difference (NMD).

Simulation Simulated surface PM2.5
dust versus SPARTAN

r slope NMD (%)

Base 0.96 2.71 115.8
Emis∗

Emis 0.97 2.24 87.1
EmisClay 0.97 2.01 45.7
EmisClayWet 0.97 2.30 89.8
EmisClayWetLAIthr 0.97 2.23 78.7

Emis∗PSD 0.97 1.90 53.1
Emis∗PSD7Bins0.5AD 0.96 1.85 64.6
Emis∗PSD7Bins0.5ADWetDep 0.97 1.80 58.2

Table A4. Computational demand of 4-bin and 7-bin dust simulations.

Type Number of physical cores (CPUs)∗ Throughput (d d−1)

4 dust bins
108

78.9
7 dust bins 74.2

∗ Calculated on Intel® Xeon® Gold 6154 with the clock speed of 3.00 GHz.

Figure A1. Same as Fig. 3 but for the absolute extinction vertical profile.
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Figure A2. Annual aerosol optical depth (AOD) from the Deep Blue satellite retrieval and comparison against ground-based observations
from AERONET in the year of 2018. Filled circles on the map represent ground-based observations from AERONET. Inset values at the
bottom right of the map are arithmetical mean with 5th and 95th percentiles in the square brackets. Regression statistics including the
reduced-major-axis linear regression equation, coefficient of variation (R2), total number of points (N ), normalized mean difference (NMD),
and normalized root-mean-square difference (NRMSD) are listed at the top left of the scatter plot.

Figure A3. Same as Fig. 6 but over the same dust source regions for the Base scheme for all dust emission scheme comparisons versus Deep
Blue AOD.
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Figure A4. Same as Fig. 6 but over the same dust source regions for the EmisClayWetLAIthr scheme for all dust emission scheme compar-
isons versus Deep Blue AOD.

Figure A5. Differences of the fractional contributions of fine dust with geometric diameter less than 2 µm to total dust column abundance
(AODFineDust/AODDust) between the Emis∗PSD7Bins and Emis∗PSD simulations (left); Comparison between simulated PM2.5 dust against
SPARTAN measurements from the Emis∗PSD7Bins simulation with color coded by the differences of AODFineDust/AODDust between the
Emis∗PSD7Bins and Emis∗PSD simulations over SPARTAN sites. Open circles in the map indicate SPARTAN sites. Inset values at the
bottom right of the map are arithmetical mean with 5th and 95th percentiles in the square brackets. Regression statistics including the
reduced-major-axis linear regression equation, coefficient of variation (R2), total number of points (N ), normalized mean difference (NMD),
and normalized root-mean-square difference (NRMSD) are listed at the bottom right of the scatter plot.
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Figure A6. Fractional contributions of DSTbin5 to total dust column abundance (AODDSTbin5/AODDust) from the
(a) Emis∗PSD7Bins0.5ADWetDep, (b) Emis∗PSD7Bins0.5AD, (c) Emis∗PSD and their absolute differences. Inset values at the
bottom right are arithmetical mean with 5th and 95th percentiles in the square brackets.
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Figure A7. Comparisons of simulated annual surface PM2.5 dust against ground-based observations in the year of 2018 over North America
from the Base (top), Emis∗PSD (second), Emis∗PSD7Bins0.5AD (third), and Emis∗PSD7Bins0.5ADWetDep (bottom) simulations. Filled
circles represent ground-based observations of surface PM2.5 dust concentrations. Inset values at the bottom left are arithmetical mean with
5th and 95th percentiles in the square brackets. Regression statistics including the reduced-major axis linear regression equation, coefficient
of variation (R2), total number of points (N ), normalized mean difference (NMD), and normalized root-mean-square difference (NRMSD)
are listed at the top left of right panels.
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Figure A8. Annual simulated surface PM10 dust concentrations in the year of 2018 from the simulations of (a) Base, (b) Emis∗,
(c) Emis∗PSD, and (d) Emis∗PSD7Bins0.5ADWetDep. Filled circles represent ground-based observations of surface PM10 dust concen-
trations. Inset values at the bottom right are arithmetical mean with 5th and 95th percentiles in the square brackets. Dash lines in the scatter
plots indicate variations within a factor of 5. Regression statistics including the reduced-major-axis linear regression equation, coefficient of
variation (R2), total number of points (N ), normalized mean difference (NMD), and normalized root-mean-square difference (NRMSD) are
listed at the top left of right panels.
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Figure A9. Annual simulated total deposition of PM10 dust within the troposphere in the year of 2018 from the simulations of (a) Base,
(b) Emis∗, (c) Emis∗PSD, and (d) Emis∗PSD7Bins0.5ADWetDep. Filled circles represent ground-based observations of surface PM10 dust
deposition. Inset values at the bottom right are arithmetical mean with 5th and 95th percentiles in the square brackets. Dash lines in the scatter
plots indicate variations within a factor of 5. Regression statistics including the reduced-major-axis linear regression equation, coefficient of
variation (R2), total number of points (N ), normalized mean difference (NMD), and normalized root-mean-square difference (NRMSD) are
listed at the top left of right panels.
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Figure A10. Annual simulated aerosol optical depth (AOD) and comparison against ground-based observations from AERONET over
dusty regions (AODDust/AOD> 0.5) (top); Annual simulated surface PM2.5 dust and comparison against ground-based measurements
from SPARTAN from the Emis∗PSD7Bins0.5ADWetDep simulation with the dust emissions calculated at C48 resolution in the year of 2018
(bottom). Filled circles on the maps represent ground-based observations from SPARTAN and AERONET. Inset values at the bottom right of
the maps are arithmetical mean with 5th and 95th percentiles in the square brackets. Regression statistics including the reduced-major-axis
linear regression equation, coefficient of variation (R2), total number of points (N ), normalized mean difference (NMD), and normalized
root-mean-square difference (NRMSD) are listed at the top left of the scatter plots.
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Figure A11. Simulated seasonal mean (March, April, and May or MAM) aerosol optical depth (AOD; a, c) and surface PM2.5 dust (b,
d) from the Base and Emis∗PSD7Bins0.5ADWetDep simulations. Filled circles on the maps represent ground-based observations from
SPARTAN and AERONET. Inset values at the bottom right of the maps are arithmetical mean with 5th and 95th percentiles in the square
brackets. Comparisons of simulated AOD versus AERONET AOD over dusty sites (AODDust/AOD> 0.5), and simulated surface PM2.5
dust versus SPARTAN observations are shown in the right panels. Regression statistics including the reduced-major-axis linear regression
equation, coefficient of variation (R2), total number of points (N ), normalized mean difference (NMD), and normalized root-mean-square
difference (NRMSD) are listed at the bottom right of the scatter plots.
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Figure A12. Same as Fig. A11 but for the seasonal mean of June, July, and August (JJA).
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Figure A13. Same as Fig. A11 but for the seasonal mean of September, October, and November (SON).
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Figure A14. Same as Fig. A11 but for the seasonal mean of December, January, and February (DJF).
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Code availability. The standard GEOS-Chem in its high-
performance configuration version 14.4.1 can be downloaded
at https://doi.org/10.5281/zenodo.12584305 (The International
GEOS-Chem User Community, 2024). The model source code, an
example run directory, and the calculation scripts for the hourly
dust emission fluxes for the revised simulation can be downloaded
at https://doi.org/10.5281/zenodo.14510793 (Zhang, 2024).

Data availability. The surface PM2.5 dust measurements with the
attenuation correction from SPARTAN used in this study are pub-
licly available at https://www.spartan-network.org/data (last ac-
cess: 18 March 2025). The PM10 dust and total deposition of
dust are available at https://doi.org/10.5281/zenodo.6989502 (Li
et al., 2022a). The processed meteorological fields from GEOS-
FP are available at http://geoschemdata.wustl.edu/ExtData/GEOS_
0.25x0.3125/GEOS_FP/ (last access: 4 February 2025) with the
soil porosity downloaded from the constant land-surface parame-
ter of MERRA2 M2C0NXLND collection (https://disc.gsfc.nasa.
gov/datasets?project=MERRA-2, last access: 4 February 2025).
The land cover dataset can be downloaded at https://lpdaac.usgs.
gov/products/mcd12c1v061/ (last access: 4 February 2025). The
monthly mean leaf area index at 0.5 degree can be downloaded at
http://globalchange.bnu.edu.cn/research/laiv6 (last access: 4 Febru-
ary 2025). The satellite-derived aeolian roughness data are available
upon contacting Catherine Prigent. The GSDE soil dataset can be
downloaded at http://globalchange.bnu.edu.cn/research/soilw (last
access: 4 February 2025).
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