Articles | Volume 18, issue 19
https://doi.org/10.5194/gmd-18-6717-2025
https://doi.org/10.5194/gmd-18-6717-2025
Methods for assessment of models
 | 
02 Oct 2025
Methods for assessment of models |  | 02 Oct 2025

A close look at using national ground stations for the statistical modeling of NO2

Foeke Boersma and Meng Lu

Related authors

Dimension Expansion-based Spatiotemporal Land Cover Change Detection: A Study Case Using Sentinel-2 Satellite Time Series
Meng Lu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 29–34, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-29-2025,https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-29-2025, 2025
GEOMORPHOLOGICAL MAPPING OF INTERTIDAL AREAS
M. Lu, L. Groeneveld, D. Karssenberg, S. Ji, R. Jentink, E. Paree, and E. Addink
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 75–80, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-75-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-75-2021, 2021

Cited articles

Algaba, E., Fragnelli, V., and Sánchez-Soriano, J.: Handbook of the Shapley value, CRC Press, https://doi.org/10.1201/9781351241410, 2019. a
Ameer, S., Shah, M. A., Khan, A., Song, H., Maple, C., Islam, S. U., and Asghar, M. N.: Comparative analysis of machine learning techniques for predicting air quality in smart cities, IEEE Access, 7, 128325–128338, 2019. a, b
Araki, S., Shima, M., and Yamamoto, K.: Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan, Sci. Total Environ., 634, 1269–1277, 2018. a
Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.-Y., Künzli, N., Schikowski, T., Marcon, A., Nawrot, T., Nador, G., Heinrich, J., de Hoogh, K., de Nazelle, A., Neubauer, G., Schindler, C., Schram-Bijkerk, D., Sugiri, D., Gryparis, A., Katsouyanni, K., and Brunekreef, B.: Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe – The ESCAPE project, Atmos. Environ., 72, 10–23, https://doi.org/10.1016/j.atmosenv.2013.02.037, 2013. a, b, c, d
Boersma, F.: A close look at using national ground stations for the statistical mapping of NO2, GitHub [code], https://github.com/FoekeBoersma/A-close-look-at-using-national-ground-stations-for-the-statistical-mapping-of-NO2 (last access: 23 April 2025), 2025a. a, b, c, d
Download
Short summary
Air pollution harms health and society. Understanding and predicting it is crucial. Various models have been developed to model air pollution. However, the consistency exhibited by a model in different areas is commonly neglected. Our study accounts for this and shows lower accuracy near busy roads but higher accuracy in less populated areas. Considering location characteristics in air pollution predictions is important in comparing statistical models and understanding the health–society–space relationship.
Share