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Abstract. Air pollution leads to various health and soci-
etal issues. Modeling and predicting air pollution over space
have important implications in health studies, urban plan-
ning, and policy-making. Many statistical models have been
developed to understand the relationships between geospa-
tial data and air pollution sources. An important aspect of-
ten neglected is spatial heterogeneity; however, the relation-
ships between geographically distributed variables and air
pollutants commonly vary over space. This study aims to
evaluate and compare various spatial and non-spatial statis-
tical modeling (including machine learning) methods within
different spatial groups. The spatial groups are defined by
traffic- and population-related variables. Models are classi-
fied into local and global models. Local models use air pol-
lution measurements from the Amsterdam area. Global mod-
els use ground station observations in Germany and in the
Netherlands. We found that prediction accuracy differs sub-
stantially in different spatial groups. Predictions for places
near roads with high populations show poor prediction accu-
racy, while prediction accuracy increases in low-population-
density areas for both local and global models. The predic-
tion accuracy is further increased in places far from roads for
global models. Modeling of air pollution in different spatial
groups shows that nonlinear methods can have higher predic-
tion accuracy than linear methods. The spatial prediction pat-
terns of global models show that nonlinear methods generally
are less sensitive to extreme values compared to linear meth-
ods. Additionally, clusters of predicted air pollution differ
between models within cities despite similar prediction accu-
racy. Also, the influence of predictors on NO2 concentrations
varies across different cities. Using the local dataset of our
study and explicitly accounting for spatial autocorrelation
in the universal and ordinary kriging models does not im-

prove accuracy; however, analyzing prediction performance
across spatial groups provides valuable insights. Comparing
local and global prediction patterns reveals that local mod-
els capture regional clusters of high air pollution, which are
not detected by global models. These findings highlight the
fact that solely relying on overall prediction accuracy can be
insufficient and potentially misleading, underscoring the im-
portance of considering spatial variability and model perfor-
mance within different spatial groups.

1 Introduction

Modeling and estimating NO2 concentration levels are es-
sential for a comprehensive understanding of air pollution,
which plays a critical role in urban planning and policy-
making to promote public health. Air pollutants have been
modeled across various spatial scales, from local to global.
These models can be broadly classified into three categories:
statistical models, chemical transport models, and air disper-
sion models. Chemical transport models are typically used
for large-scale air pollution modeling, while air dispersion
models require detailed, spatially resolved emission lists to
capture small-scale variations in pollutants (Beelen et al.,
2013).

In recent years, statistical modeling has gained popular-
ity for high-resolution mapping at different spatial scales,
driven by the increasing availability of predictors (e.g., GIS
variables) and advancements in computational capabilities.
Land use regression (LUR) is the most well-known statis-
tical approach for air pollution modeling, employing linear
regression to capture the spatial variability in traffic-related
air pollution in urban areas. Most LUR models rely on data
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from ground monitoring stations (Hoek et al., 2008; Wang
et al., 2020). Geostatistical methods like kriging can further
account for spatial correlations between observations. How-
ever, several studies have favored the simplicity of LUR, of-
ten concluding that it performs as well as or better than geo-
statistical methods (Hoek et al., 2008; Marshall et al., 2008;
Beelen et al., 2013). Notably, these conclusions are typically
based solely on prediction accuracy, without considering the
models’ ability to quantify uncertainty, offer scientific inter-
pretation, or integrate known physical mechanisms (Lu et al.,
2023). Specifically, many studies neglect the optimal estima-
tion of the covariance function and the specification of priors
in geostatistical modeling.

Although linear regression models are advantageous for
their interpretability and ability to extrapolate, they may not
capture the complex processes of air emission, dispersion,
and deposition (Wang et al., 2020). As a result, data-driven
nonparametric models, commonly referred to as machine
learning methods in air pollution mapping, have become in-
creasingly popular. These models, such as ensemble tree-
based algorithms, are better suited for capturing the non-
linear relationships between pollutants and predictors (We-
ichenthal et al., 2016; Reid et al., 2015; Lu et al., 2020).
For instance, Brokamp et al. (2017) compared land use ran-
dom forest (LURF) models with LUR models to measure el-
emental components of PM2.5 in Cincinnati, Ohio, and found
that LURF models had lower prediction error variance across
all elemental models when cross-validated. Similarly, Kerck-
hoffs et al. (2019) reported that machine learning algorithms,
such as bagging and random forests, explained more variabil-
ity in ultra-fine particle concentrations than multiple-linear-
regression and regularized-regression techniques. Ameer et
al. (2019) advocated for random forest regression as the best
technique for pollution prediction in varying datasets, loca-
tions, and characteristics, as it outperformed decision tree
regression, multilayer perceptron regression, and gradient
boosting regression. Ren et al. (2020) also concluded that
nonlinear machine learning methods achieve higher accu-
racy than linear LUR, emphasizing the importance of care-
ful hyperparameter tuning and robust data splitting and val-
idation to ensure stable, reliable results. Chen et al. (2019)
compared 16 algorithms for predicting annual average fine-
particle (PM2.5) and nitrogen dioxide (NO2) concentrations
across Europe. They found that ensemble-tree-based meth-
ods were particularly effective for PM2.5, while NO2 mod-
els showed similar R2 values across different methods. Im-
portantly, they reported a high correlation between the pre-
dicted values of various models, noting that the most in-
fluential predictors differed substantially between pollutants.
For example, satellite observations and dispersion model es-
timates were key predictors for PM2.5 concentrations, while
NO2 variability was primarily driven by traffic-related vari-
ables. The significant contribution of road traffic to NO2 lev-
els is further supported by Wong et al. (2021), whose model-
ing results implied that nitrogen emissions are influenced by

long-range transport from gasoline-fueled passenger cars in
particular.

In recent years, the use of statistical modeling for air pol-
lution mapping has surged, and models are increasingly ap-
plied to urban and geo-health studies. However, evaluating
these models and maps remains challenging. One challenge
is the scarcity of air pollution measurements. Another is the
neglect of spatial heterogeneity in air pollution mapping. For
example, He et al. (2022) acknowledge spatial heterogene-
ity in measurement stations by demonstrating that the prob-
ability density functions of concentrations (NO, NO2, PM10,
PM2.5) vary across different spatial categories (e.g., urban
traffic, suburban/rural traffic, urban industrial, suburban/ru-
ral industrial, urban background, suburban background, rural
background). However, their study does not model potential
differences in the prediction accuracy across these categories.
Most current statistical approaches assess only overall accu-
racy (Hoek et al., 2008; Chen et al., 2019). Hoek et al. (2008)
reported that LUR models typically explain 60 %–70 % of
the variation in NO2, but this explained variation could be
significantly lower near traffic. Chen et al. (2019) argued that
many air pollution exposure studies fail to account for the
characteristics of monitoring sites when performing cross-
validation, potentially misrepresenting model results. They
suggest evaluating models using pollution data from moni-
toring sites that reflect the application locations (Chen et al.,
2019).

Finally, a consistent and coherent method for quantifying
uncertainty in air pollution mapping is still lacking. As noted
by Shaddick et al. (2020), uncertainty in air pollutant mea-
surements is rarely discussed. This lack of evaluation can
lead to overlooked biases, in particular because nonparamet-
ric machine learning methods often lack extrapolation capa-
bilities. When prediction areas differ significantly from the
training data in their societal and environmental characteris-
tics, this can result in highly biased estimates that are rarely
examined in many studies (Shaddick et al., 2020).

Given the growing number of modeling and prediction
techniques and the risk of misrepresenting spatial patterns
due to data heterogeneity, this study seeks to answer the fol-
lowing research questions:

1. To what extent can statistical models predict NO2
concentrations using high-quality, high-temporal-
resolution ground station measurements?

2. How do the performance and spatial accuracy of these
models vary?

This study focuses on the Netherlands and Germany and
uses two datasets: the official national ground station mea-
surements from both countries (referred to as the global
dataset) (OpenAQ, 2017; EEA, 2021) and the more dense
long-term measurements collected by Palmes tubes in Am-
sterdam from the Amsterdam area (referred to as the lo-
cal dataset) (Gemeente Amsterdam, 2022). Palmes tubes are
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passive samplers used in the routine monitoring network
that measure NO2 on street lanterns and building facades
in Amsterdam. The global dataset includes 482 measure-
ment stations covering 398 000 km2 (0.0012 pointskm−2),
while the local dataset contains 132 stations across 196 km2

(0.591 pointskm−2). The study aims to compare and under-
stand model behaviors and prediction patterns across (1) the
two datasets, (2) different spatial groups classified by prox-
imity to traffic and population density, and (3) various statis-
tical models to evaluate the added value of nonlinear machine
learning models and geostatistical approaches.

2 Methodology

2.1 Data

The global and local datasets include the annual mean NO2
concentrations (measured in µgm−3) for the year 2017 (Ope-
nAQ, 2017; EEA, 2021). Figure 1 presents the distribution
of NO2 concentrations at the global and local measurement
stations. The terms “global” and “local” were chosen to re-
flect the relative scale of the datasets, with “global” repre-
senting a broader, cross-national dataset and “local” focus-
ing specifically on Amsterdam. While the “global” dataset
includes only two neighboring countries, this terminology
emphasizes its wider scope compared to the local dataset.
The global dataset comprises ground station measurements
from Germany and the Netherlands, while the local dataset
includes the Palmes data in the Amsterdam region.

The spatial distribution of NO2 measurement stations is
provided in the Supplement (Figs. S1 and S2). Urban ar-
eas generally have a higher density of measurement stations.
This study focuses on the differences between global and lo-
cal models, particularly in Amsterdam, while also consider-
ing the city’s less densely populated areas to examine the
urban impact on predicted NO2 concentrations in the local
models.

To evaluate whether prediction quality varies across areas
with different characteristics of spatial patterns (e.g., high
vs. low road density), the global and local datasets are di-
vided into three spatial groups based on population density
and traffic-oriented variables. Population data for 2015 from
the Global Human Settlement Layer are used (JRC, 2015),
and road length information is sourced from OpenStreetMap
(2019). Descriptive statistics for the variables used to define
the spatial groups are presented in Table 1.

The three spatial groups are defined as follows:

1. Urban. Areas within 100 m of road class 1 (highways)
or 2 (primary roads) and with a population density in
the highest 25 % or areas where both road class 3 (local
roads) values and population density are in the highest
25 %.

2. Suburban. Areas within 100 m of road class 1 or 2 with
a population density in the lowest 75 % or areas where
road class 3 values are in the highest 25 % and popula-
tion density is in the lowest 75 %.

3. Rural. Areas further than 100 m from road class 1 or
2 or areas where road class 3 values are in the lowest
75 %.

This classification resulted in 85 observations being la-
beled as “urban”, 138 as “suburban”, and 259 as “rural”,
totaling 482 observations in the global dataset. Given the
smaller sample size of the local dataset, the threshold for
defining “urban” was adjusted from the 75th percentile to the
50th percentile, which had a converging effect on the rela-
tive group sizes. Moreover, the increase in samples classified
as “urban” is desirable, as this group exhibits relatively high
heterogeneity. The local dataset consists of 56 observations
classified as “urban”, 46 as “suburban”, and 30 as “rural.”

Although this adjustment introduces some inconsistency
between the global and local definitions of “urban”, it ad-
dresses the challenge of unequal distributions of instances
across groups in the local dataset, which could introduce bias
into the statistical learning models. The threshold adjustment
represents an initial step toward mitigating such effects by
ensuring a more balanced representation of spatial charac-
teristics within the local model. Figures S3 and S4 show the
spatial distribution of observations among these groups for
both datasets, while Figs. S5 and S6 show the measured NO2
concentrations per station.

Spatial predictors

We utilized a set of variables derived from Lu et al. (2020),
including data on industrial areas, road lengths, population
density, Earth night lights, wind speed, temperature, eleva-
tion, TROPOMI level 3 NO2, and global radiation. A com-
plete list of these variables is available in the Supplement
(Table S1). Precipitation data were sourced from weather
stations (National Centers for Environmental Information,
2017) and interpolated using ordinary kriging to cover the
NO2 measurement stations. Kriging parameters are detailed
in the Supplement (Sect. S2.4, “Parameters”).

Building density was obtained from the World Settlement
Layer 2015 dataset available on Figshare (Marconcini et al.,
2020). In line with previous studies (Beelen et al., 2013;
Kheirbek et al., 2014), we considered various buffer sizes
(100, 500, 1000 m) around measurement stations to account
for spatial proximity effects, especially in densely populated
urban areas. Normalized difference vegetation index (NDVI)
values were obtained from NASA (NASA, 2017).

Traffic volume data were sourced from the Nationaal Dat-
aportaal Wegverkeer (NDW) in the Netherlands (Rijkswa-
terstaat, 2017) and from the Bundesanstalt für Strassenwe-
sen (BAST) in Germany (Bundesanstalt für Strassenwesen,
2017). These data, generated by automatic counting stations,
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Figure 1. Distribution of NO2 concentrations in the global (yellow) and local (blue) datasets.

Table 1. Descriptive statistics of variables determining the spatial groups for the local and global datasets. The statistics are derived from the
station measurement locations. The distances in the “variable” column represent different buffer radii around measurement stations.

Variable Dataset Mean Min 25 % 75 % Max

Road class 1, 100 m Local 2154.787 0 0 3001.109 12 950.676
(total length of highways [m]) Global 12.295 0 0 0 982.912

Road class 2, 100 m Local 4018.626 0 2367.599 5348.419 9596.102
(total length of primary roads [m]) Global 68.943 0 0 0 735.144

Road class 3, 100 m Local 25 838.098 6483.437 18 085.396 33 039.556 50 712.625
(total length of local roads [m]) Global 272.059 0 29.281 406.097 1088.154

Population 1000 m Local 111 157.013 20 097.258 106 347.117 128 723.570 137 546.047
Global 6154.486 0 2204.520 9036.756 20 300.887

are expressed as average hourly traffic in 2017, with buffer
sizes of 25, 50, 100, 400, and 800 m. The formula for cal-
culating average hourly traffic is provided in the Supplement
(Eq. S1).

2.2 Modeling NO2 globally and locally

2.2.1 Ensemble trees

The global models use two types of statistical learning meth-
ods. The first group consists of ensemble-tree-based ap-
proaches, including the random forest and extreme gradi-
ent boosting (XGBoost). Hyperparameters are tuned based
on cross-validation error. For the random forest model, the
number of estimators is set to 1000, with a minimum sam-
ple split of 10, minimum samples per leaf of 5, maximum
features per tree of 4, and a maximum depth of 10. The

XGBoost model uses 10 000 estimators, with a reg_alpha of
2, reg_lambda of 0, max_depth of 5, and a learning rate of
0.0005 (see also Figs. S7 and S8). Additionally, the gamma
for the XGBoost model is set to 5. Further details can be
found in the Supplement (Sect. S1.1, “Parameters”, and Eq.
S2; Boersma, 2025a). Additionally, the light gradient boost-
ing (LightGBM) model was tested but did not yield signifi-
cantly different results compared to XGBoost. The results of
LightGBM analyses are shown in Figs. S9–S12.

2.2.2 Multiple linear regression

Key variables identified by the random forest model are
used as predictors in multiple linear regression (MLR). The
least absolute shrinkage and selection operator (LASSO) and
ridge regularizations are employed to prevent overfitting.
LASSO differs from ridge in that it uses the sum of the ab-
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solute values of the coefficients as a penalty, allowing some
coefficients to be exactly zero and thus enabling feature se-
lection (Ren et al., 2020). The alpha for both the LASSO
and ridge models is tuned to 0.1 and is optimized using the
lowest mean absolute error (MAE), root-mean-square error
(RMSE), and highest R2. The search grid ranges from 0.1 to
1 in increments of 0.1. Detailed parameters and mathemati-
cal formulations for linear regression, error terms, ridge re-
gression, and LASSO regression are given in the Supplement
(Sect. S1.2, “Parameters”, and Eq. S3; Boersma, 2025a).

2.2.3 Mixed-effects model and kriging

The performance of the random forest, XGBoost (Table S2),
LASSO, and ridge models (Table S3) are unsatisfactory
for the local dataset. Spatial modeling approaches including
mixed-effects modeling and kriging are applied.

Mixed-effects models were able to capture hierarchical or
grouped structures. In our study, the fixed effects correspond
to the most influential predictors, such as population den-
sity, road length, and other traffic-related variables, which
are assumed to have consistent effects across the entire study
region. The random effects capture the spatial trends spe-
cific to different geographic regions, such as urban, suburban,
and rural areas. For instance, local topography, vegetation,
or specific traffic patterns in a region can create unique spa-
tial trends. These spatial groups represent the variations in
NO2 concentrations due to local environmental factors and
are modeled as random effects, allowing the model to ac-
count for spatial autocorrelation within regions.

This modeling approach is suitable because the spatial dis-
tribution of pollutants such as NO2 is not random and tends to
show clusters or gradients in traffic, land use, and population
density. By modeling the spatial context as random effects,
we capture these spatial dependencies and potentially im-
prove the accuracy of predictions in different areas (Mullen
and Birkeland, 2008; Lee et al., 2020).

Kriging is essentially a form of Gaussian process regres-
sion, developed and applied in geosciences with a focus on
spatial prediction. It typically uses spatial coordinates as co-
variates and places a strong emphasis on variogram modeling
to capture spatial dependence. The residuals of a linear re-
gression model are treated as realizations of a spatial stochas-
tic process, and their covariance is modeled to make pre-
dictions. Kriging is particularly suitable for estimating NO2
concentrations, as NO2 tends to vary smoothly over space.

In this study, ordinary and universal kriging are applied.
Ordinary kriging assumes that the mean of the variable pre-
dicted is constant but unknown. It assumes stationarity with-
out trend removal. Universal kriging assumes that the vari-
able being predicted has a deterministic trend (e.g., linear or
polynomial). The automap package in R (Hiemstra et al.,
2009) is used to initialize the covariance parameters and to
perform the kriging interpolation. Two separate models are
created, one that incorporates the spatial groups (urban, sub-

urban, rural) and one that does not. These models help to
compare the effect of modeling spatial correlation on the pre-
diction accuracy (Idir et al., 2021; Khan et al., 2023).

In total, 10 models are fit and compared: 4 using the global
dataset and 6 using the local dataset, enabling a comprehen-
sive evaluation of model performance across different geo-
graphical scales. The equations for kriging and the linear
model are provided in the Supplement under the “Parame-
ters” (S2.1–S2.3) and “Equations” (S4 and S5) sections.

2.3 Feature selection

Feature selection for global models is initially based on
Shapley values (Shapley, 1953). While the variance inflation
factor (VIF) is effective at detecting multicollinearity, it does
not consider feature importance or interactions. The VIF re-
sults are available in Tables S4 and S5. Feature selection aims
to remove irrelevant or highly correlated predictors that could
generate unstable estimates and affect model interpretation
(Araki et al., 2018).

Shapley values are calculated for each feature (i.e., pre-
dictor) based on its contribution φj to the prediction of
NO2 concentration levels compared to the average predic-
tion across the dataset (Shapley, 1953). The contribution of a
feature is determined by comparing the difference in the re-
sponse variable when the feature is present vs. when it is ab-
sent (i.e., marginal contribution) (Algaba et al., 2019; Shap-
ley, 1953). The formula for calculating Shapley values can
be found in the Supplement (Eq. S6).

In this study, feature selection is guided by the out-of-
sample performance in a random sampling validation re-
peated 10 times, where Shapley values are calculated for
each iteration of the random forest models. Predictors are
ranked based on the median Shapley value across all iter-
ations. The relative positions of each predictor using the
median-based approach are illustrated in Figs. S13 and S14,
with the Shapley ranking of a single run shown in Fig. 2.
The most influential predictors for the global models in-
clude nightlight intensity (450 and 3150 m buffers), popu-
lation density (1000 and 3000 m buffers), road class (class 2
within 25 m and class 3 within 300 and 3000 m buffers), the
annual mean NO2 column density of 2018 measured by the
TROPOMI instrument on board Sentinel-5p (trop mean fil-
ter 2018), building density in the 100 m buffer, NDVI, and
traffic buffers (25 and 50 m buffers). Descriptive statistics of
the most influential predictors for the global models are in
Table 2.

A random forest algorithm is applied iteratively to deter-
mine the optimal number of predictors, starting with the 2
most influential predictors and extending to the 30 most in-
fluential features. The RMSE and R2 metrics are used to
evaluate the optimal number of predictors. The number of
predictor variables and their corresponding evaluation scores
(R2, RMSE) are shown in Fig. 3. In particular, prediction
accuracy improves significantly when considering at least
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Table 2. Descriptive statistics for global predictors. bldden100 = built area within a 100 m buffer, NDVI = normalized difference vegetation
index, nightlight_3150 = nightlight in a 3150 m buffer, nightlight_450 = nightlight in a 450 m buffer, population_1000 = population in a 1 km
grid, population_3000 = population in a 3 km grid, road_class_2_25 = total length of primary roads in a 25 m buffer, road_class_3_300 =
total length of local roads in a 300 m buffer, road_class_3_3000 = total length of local roads in a 3000 m buffer, trafbuf25 = traffic count in a
25 m buffer, trafbuf50 = traffic count in a 50 m buffer, trop_mean_filt_2018 = TROPOMI 2018 mean vertical column density. Note that the
NDVI has a scale factor of 0.0001.

Variable Unit 25th 50th 75th Mean Median Max Min

bldden100 % 0.4 0.88 0.99 0.68 0.88 1 0
NDVI (scaled) – 2285.75 3153.5 4199.25 3331.37 3153.5 7775 747
nightlight_3150 Wcm−2 sr−1 2.9 8.2 16.51 11.04 8.2 101 0
nightlight_450 Wcm−2 sr−1 4.62 14.01 22.4 15.34 14.01 84.32 0
population_1000 count 2204.52 5945.54 9036.76 6154.49 5945.54 20 300.89 0
population_3000 count 11 452.7 33 821.94 61 824.05 41 489.44 33 821.94 165 271.38 0
road_class_2_25 m 0 0 0 14.57 0 164.93 0
road_class_3_300 m 930.85 2447.69 3403.39 2314.03 2447.69 7239.33 0
road_class_3_3000 m 70 823.23 134 524.3 193 091.82 136 692.07 134 524.3 444 277.31 0
trafbuf25 count 0 0 0 128.7 0 5112.96 0
trafbuf50 count 0 0 0 146.89 0 5112.96 0
trop_mean_filt_2018 molcm−2 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

∗ The values for trop mean filt 2018 are very small, on the order of 10−5.

Figure 2. Variable importance ranked by Shapley values in a single
run using the global dataset.

12 predictors, but the improvement is marginal beyond this
number.

Due to the random forest model’s poor performance across
all local station measurements (Figs. S15–S17) and per spa-
tial group (Table S2), the random forest algorithm is deemed
unsuitable for identifying the number of variables for the lo-
cal models. Instead, the best-subset regression is used for
variable selection in local models. This approach tests all
possible combinations of predictor variables (Kassambara,
2018), with a maximum of 30 predictors considered. The sta-
tistical criteria include adjusted R2; Mallows criterion p –
with p referring to the number of predictors in the regression
model; and Bayesian information criteria (BIC) scores. As a
result, nine features are identified for the local models. The
most influential predictors for the local models include night-
light intensity (450 and 4950 m buffer), population density
(3000 m buffer), road class (class 1 within a 5000 m buffer,
class 2 within 1000 and 5000 m buffers, class 3 within 100
and 300 m buffers), and the traffic buffer (50 m buffer). De-
scriptive statistics of the most influential predictors for the
local models are in Table 3.

2.4 Model comparison

In global modeling, comparisons are made among tree-based
models, random forest and XGBoost, and linear models,
with LASSO and ridge penalization (the models are also
called LASSO and ridge). For local modeling, we com-
pare linear models, mixed-effect models, and kriging mod-
els. Each model is evaluated based on the standard matrix of
R2, RMSE, and MAE (Rybarczyk and Zalakeviciute, 2018;
Ameer et al., 2019; Chang et al., 2020). For model evalu-
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Figure 3. Out-of-sample performance in a random sampling validation repeated 10 times: the number of features and model performance
based on the global dataset. The metrics shown include R2 (a) and RMSE (b).

Table 3. Descriptive statistics for local predictors. nightlight_450 = nightlight in a 450 m buffer, nightlight_4950 = nightlight in a 4950 m
buffer, population_3000 = population in a 3 km grid, road_class_1_5000 = total length of highway in a 5000 m buffer, road_class_2_1000 =
total length of primary roads in a 1000 m buffer, road_class_2_5000 = total length of primary roads in a 5000 m buffer, road_class_3_100 =
total length of local roads 100 m buffer, road_class_3_300 = total length of local roads in a 300 m buffer, trafbuf50 = traffic count in a 50 m
buffer.

Variable Unit 25th 50th 75th Mean Median Max Min

nightlight_450 Wcm−2 sr−1 31.24 38.97 50.3 42.03 38.97 98.39 3.96
nightlight_4950 Wcm−2 sr−1 28.82 32.91 33.99 30.15 32.91 35.97 5.11
population_3000 count 106 347.12 121 186.11 128 723.57 111 157.01 121 186.11 137 546.05 20 097.26
road_class_1_5000 m 83 586.9 88 910.18 96 428.33 88 821.13 88 910.18 137 238.88 24 270.47
road_class_2_1000 m 2367.6 4032.19 5348.42 4018.63 4032.19 9596.1 0
road_class_2_5000 m 54 638.17 61 129.2 64 151.61 58 553.23 61 129.2 71 428.22 24 435.52
road_class_3_100 m 182.82 359.38 548.96 374.29 359.38 1057.03 0
road_class_3_300 m 1774.06 2574.59 3433.76 2713.63 2574.59 6283.23 0
trafbuf50 count 0 0 132.67 294.66 0 3976.16 0

ation, leave-one-out cross-validation (LOOCV) is employed
for local models, while a random 90/10 training–testing split
is used for global models. Additionally, the prediction pat-
terns of the local and global models are analyzed. To bench-
mark the model performance, a mobile NO2 map of the study
area (Kerckhoffs et al., 2019; Yuan et al., 2023) is used for
comparison. This map provides detailed spatial information
collected by two Google Street View cars that continuously
measured NO2 at a frequency of 1 Hz in Amsterdam from
25 May 2019 to 15 March 2020 (stopped due to the COVID-
19 lockdown policy). We acknowledge that the temporal res-
olution of these benchmark data differs from the coarser tem-
poral scales used in our models. The data used in Kerckhoffs
et al. (2019) are over specific, limited time periods, while
our models address predictions over broader temporal spans.
Despite this temporal inconsistency, the detailed spatial gran-
ularity of the annual map from Kerckhoffs et al. (2019) pro-

vides valuable insights and remains an appropriate standard
for assessing spatial prediction quality.

Table 4 provides an overview of the global and local mod-
els, along with selected predictors and evaluation methods.
The global models are applied to areas with varying demo-
graphic characteristics, including two large cities with pop-
ulations exceeding 700 000 (Amsterdam and Hamburg), a
mid-sized city with around 350 000 inhabitants (Utrecht),
and a small city with approximately 70 000 inhabitants
(Bayreuth). The resolution of the analysis is 100 m, with
raster files of the most important predictors resampled and
converted into 100 m grid cells for these regions using spa-
tial extraction methods. The influential predictor information
(for global models, see Tables 2 and 4; for local models, see
Tables 3 and 4) is recalculated at a 100 m resolution for the
extent of the aforementioned regions. The 100 m by 100 m
grid cells containing predictor information are used to pre-
dict NO2 values for the respective 100 m grids based on the
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trained local and global models (Lu et al., 2020, 2023). The
100 m grid resolution is consistently applied in the predic-
tions for both local and global models. Local model predic-
tions are applied exclusively to Amsterdam. Table 5 summa-
rizes the complexity of the models and how spatial compo-
nents are accounted for.

Evaluations of the different linear and nonlinear models
were carried out using repeated random sampling validation
(i.e., Monte Carlo cross-validation) performed 20 times. In
each iteration, 90 % of the data was used for training and the
remaining 10 % for testing. For testing model performance
on spatial groups, 30 testing samples were used every time
(Boersma, 2025a). This approach allowed us to evaluate the
variance and median statistics for each model in terms of R2,
MAE, and RMSE (Fig. 4). The repeated sampling provided
stable estimates.

3 Results

3.1 Global models

When comparing out-of-sample performance via 20-fold re-
peated random sampling validation, the linear models (i.e.,
LASSO and ridge) exhibited performance similar to that of
the nonlinear models, particularly in terms of R2. Among
the models, the random forest consistently outperformed the
others, with the highest median R2, lowest RMSE, and low-
est MAE. The robustness of the random forest model is fur-
ther emphasized by its minimal standard deviation in R2 and
MAE (Fig. 4).

3.1.1 Accounting for spatial information

We further investigated the influence of spatial heterogene-
ity by comparing model performance across different spa-
tial groups using the global dataset. Descriptive statistics for
NO2 concentrations in each spatial group reveal distinct dif-
ferences (Table 6).

Table 7 details the performance metrics (R2, RMSE,
MAE) for each spatial group. Nonlinear models outper-
formed linear ones in suburban and rural areas, while perfor-
mance was less distinguishable in urban areas, likely due to
the smaller sample size. Ensemble-tree-based methods, such
as the random forest, showed lower accuracy in urban areas,
possibly due to the limited and heterogeneous nature of the
data in this group.

3.1.2 Spatial prediction patterns

Figure 5 presents the spatial predictions of NO2 concentra-
tions across the Amsterdam area for each model. Panels (a)
and (b) depict the predictions from nonlinear models, while
panels (c) and (d) illustrate the results from linear models.
Generally, linear models exhibit a higher tendency to over-

fit, as their prediction maps are more influenced by extreme
values (i.e., concentrations below 15 or above 50 µgm−3)
compared to the nonlinear techniques. Interestingly, the lin-
ear models identify a significant NO2 hotspot in the south-
western part of the study area, which is not captured by the
nonlinear models. Across all models, however, elevated NO2
is consistently observed along major roads and in some urban
areas, such as Haarlem (see Fig. S18).

Figure 6 shows the spatial patterns of predicted NO2
concentrations for Hamburg (a, b), Utrecht (c, d), and
Bayreuth (e, f) using the random forest and ridge regression
models. Predictions from other models (XGBoost, LASSO,
LightGBM) for these cities, including both zoomed-in and
zoomed-out views, are provided in Figs. S19–S30.

Comparing the prediction maps of these cities reveals no-
ticeable differences in spatial patterns. A key finding is that
in Hamburg, the highest air pollution levels are concentrated
around major roads, while in Utrecht, the urban center ex-
hibits the highest NO2 concentrations. This correlation be-
tween major roads and elevated air pollution in Hamburg can
be reasonably explained by the city’s high traffic congestion,
as it ranks 69th among the most congested cities globally
(Tomtom, 2021). Interestingly, there are also spatial differ-
ences in the predicted NO2 concentrations along highways
between the random forest and ridge models. For instance,
in Hamburg, the ridge model predicts high NO2 levels along
highways in the southeastern and western parts of the city,
whereas the random forest model provides a more nuanced
spatial identification of these areas. The random forest pre-
dictions highlight more pronounced air pollution along roads
in the central and northern parts of Hamburg compared to the
ridge model.

Furthermore, the magnitude of high pollution levels re-
lated to major roads is significantly greater in Hamburg than
in Utrecht and Bayreuth. Nevertheless, the relationship be-
tween the presence of roads and higher air pollution levels
is evident in both Utrecht and Bayreuth, particularly in the
predictions from the ridge model. In Utrecht, the urban cen-
ter is more prominently identified as a high NO2 concentra-
tion area compared to in Hamburg and Bayreuth. Addition-
ally, the ridge model for Utrecht shows more clusters of ele-
vated NO2 levels in the periphery, whereas the random forest
model predicts a more scattered distribution of NO2 concen-
trations in the urban center, similar to the pattern observed in
the Amsterdam area.

Bayreuth, on the other hand, is characterized by moder-
ate NO2 pollution, with very low NO2 concentrations (<
15 µgm−3) in the rural areas surrounding the city. However,
some clusters of higher NO2 levels exceeding the 15 µgm−3

benchmark are observed in the vicinity of other villages, sug-
gesting a relationship between population or building den-
sity and air pollution (see also Figs. S25–S27). Figure S31
provides the distribution of predicted NO2 concentrations for
each global model and location.
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Table 4. Global and local models defined by selected predictors, the models evaluated, and how the models are evaluated.

Model Selected predictors Models evaluated Evaluation

Global model population_3000 Random forest Cross-validation over the entire area
road_class_3_3000 XGBoost Cross-validation over different land types
trafbuf25 LASSO Compared with the final map of Kerck-

hoffs et al. (2019)
population_1000 Ridge
nightlight_450
nightlight_3150
trafbuf50
road_class_3_300
bldden100
ndvi
road_class_2_25
trop_mean_filt_2019

Local model nightlight_4950 Linear model Cross-validation over the entire area
nightlight_450 Linear model separated into spatial

groups
Cross-validation over different land types

road_class_3_100 Mixed-effects model Compared with the final map of Kerck-
hoffs et al. (2019)

trafbuf50 Ordinary kriging
road_class_3_300 Universal kriging
road_class_2_1000 Universal kriging separated into different

spatial groups
road_class_2_5000
population_3000
road_class_1_5000

Figure 4. Out-of-sample performance evaluated using random sampling validation repeated 20 times. The metrics shown are R2 (a),
RMSE (b), and MAE (c). Upper and lower quartiles indicate variability. RF = random forest, XGB = XGBoost.

3.2 Local models

The performance of the local models was assessed using the
R2, RMSE, and MAE metrics. Table 8 summarizes the per-
formance of the linear model, mixed-effects model, ordinary
kriging model, and universal kriging model, all evaluated us-
ing leave-one-out cross-validation. Among these, the ordi-
nary kriging model exhibits the poorest performance. Fig-

ure 7 illustrates the spatial prediction patterns for each model.
Notably, the universal kriging model outperforms the ordi-
nary kriging model significantly. However, note that with the
ordinary kriging model, we could see the smoothed spatial
patterns of the air pollution measurements. The simple lin-
ear model surpasses the universal kriging method in terms
of prediction accuracy. Incorporating spatial groups as ran-
dom effects in the mixed-effects model leads to a higher R2
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Table 5. Features of the global and local models regarding model complexity and how the spatial component is considered.

Model Model complexity Accounting for the spatial component

Linear regression No regularization Classifying between land types and fitting a model to
each class.

LASSO L2 regularization Not explicitly

Ridge L1 regularization Not explicitly

Mixed-effect No regularization Classifying between land types and including the
classes as a random variable.

Kriging No regularization Covariance matrix based on Euclidean distance
(second-order stationarity) and fitting a model to each
land group.

Random forest Controlled by hyperparameters: number of trees,
minimum number of samples for splitting, minimum
number of samples per leaf, maximum features per
tree, maximum depth, and bootstrapping

Not explicitly

XGBoost Controlled by hyperparameters: number of estima-
tors, L1 and L2 norms, learning rate, and maximum
depth

Not explicitly

Table 6. Descriptive statistics of NO2 concentrations for each spatial group (in µgm−3).

Group Count Mean SD Min 25 % 50 % 75 % Max

Urban 85 38.865 13.065 15.768 28.172 38.076 47.923 78.882
Suburban 138 27.601 9.769 7.872 19.876 26.876 34.407 56.706
Rural 259 16.653 8.341 2.122 10.331 15.892 22.518 48.887

Table 7. Model performance per spatial group (Monte Carlo CV, number of iterations = 20, and 30 samples used for testing per iteration).
RMSE and MAE are represented as NO2 (in µgm−3).

Urban Suburban Rural

Models R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Nonlinear RF Mean 0.270 10.991 8.955 0.378 7.345 5.426 0.718 4.147 2.990
SD 0.104 1.249 0.955 0.185 1.293 0.744 0.103 0.968 0.525

XGB Mean 0.212 11.356 9.165 0.410 7.159 5.292 0.739 3.986 2.745
SD 0.160 1.172 0.907 0.174 1.283 0.713 0.116 1.181 0.533

Linear Ridge Mean 0.290 10.754 8.921 0.274 7.891 6.117 0.612 4.919 3.743
SD 0.163 1.070 0.969 0.206 1.071 0.676 0.122 1.164 0.677

LASSO Mean 0.263 10.946 9.003 0.255 7.996 6.171 0.613 4.911 3.749
SD 0.178 1.167 1.049 0.212 1.107 0.675 0.119 1.152 0.678

and lower RMSE and MAE, indicating the importance of ac-
counting for spatial heterogeneity.

Table 9 provides model performance metrics for each spa-
tial group, again using leave-one-out cross-validation. Con-
sistent with the global model results, local models trained on
urban observations tend to perform poorly. This poor perfor-

mance is likely caused by an imbalance between the rela-
tively small number of samples and the relatively high het-
erogeneity. This imbalance may hinder the models’ ability
to capture the variability within urban areas, contributing to
their poorer performance in this group. Interestingly, prox-
imity to roads does not necessarily correlate with model per-
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Table 8. Model performance using leave-one-out cross-validation.

R2 RMSE (µgm−3) MAE (µgm−3)

Ordinary kriging 0.072 8.542 7.052
Linear model 0.307 7.412 5.955
Mixed-effects model 0.326 7.315 5.808
Universal kriging (model + kriged residuals) 0.277 7.749 6.097

Figure 5. Spatial patterns of predicted NO2 (100 m), measured in µgm−3, nonlinear global models for Amsterdam. (a) Random forest and
(b) XGBoost. The linear models are (c) LASSO and (d) ridge. The area is 30km × 30km.

formance, as the suburban group exhibits a higher R2 than
the rural group. Unlike global models, which perform best
in rural areas, local models perform best in suburban areas.
This difference may arise because observations in rural areas
within the local dataset are more similar to those in urban

and suburban areas than in the global dataset due to a more
uniform distribution of predictor values.
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Figure 6. Spatial patterns of predicted NO2 (100 m), measured in µgm−3, per global model for Hamburg (area: 30km × 30km), Utrecht
(area: 25km×25km), and Bayreuth (area: 10km×10km) – (a) random forest (Hamburg), (b) ridge (Hamburg), (c) random forest (Utrecht),
(d) ridge (Utrecht), (e) random forest (Bayreuth), and (f) ridge (Bayreuth).

3.3 Spatial prediction patterns

Figure 7 displays the predicted NO2 patterns based on the
local dataset. The prediction map for the linear model (panel
a) is quite similar to those for the mixed-effects (panel c)
and universal kriging (panel e) models, with all identifying
a high-NO2-concentration cluster in the northwestern part
of Amsterdam. Further analysis suggests that this cluster is
likely influenced by the predictor “road class 2 5000” (i.e.,
the number of primary roads within each 5000 m buffer), as
this predictor exhibits a similar cluster in the same location
(see Figs. S32–S41).

The two models that account for spatial groups before the
modeling process (mixed-effects and universal kriging) dis-
play comparable patterns, where the influence of roads is ev-
ident through either the predictors themselves or the spatial
groupings (see also Fig. S42). The relatively low NO2 values
along roads in the outer Amsterdam area can be attributed
to the spatial grouping. High standard deviations in predictor
values within a specific spatial group can affect that group’s
NO2 predictions, potentially leading to overestimation or un-
derestimation in certain areas.

The high NO2 values along roads are primarily associated
with the suburban spatial group, where the observations are
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Figure 7. Spatial patterns of predicted NO2 (µgm−3) at a 100 m resolution based on the local dataset – (a) linear model, (b) linear model
separating for spatial groups, (c) mixed-effects model, (d) ordinary kriging, (e) universal kriging, and (f) universal kriging separating for
spatial groups.

Table 9. Model performance per spatial group (CV = leave-one-out cross-validation). RMSE and MAE are in µgm−3.

Urban Suburban Rural

Models R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Ordinary kriging 0.072 8.257 6.772 0.223 8.558 6.575 0.072 9.029 8.303
Linear model 0.140 7.890 6.360 0.509 6.800 5.301 0.147 7.390 6.202
Mixed-effects model 0.141 7.874 6.316 0.524 6.505 5.298 0.115 7.404 5.644
Universal kriging 0.161 8.068 6.270 0.487 6.938 5.174 0.037 7.190 8.299
(model + kriged residuals)

located within 100 m of the roads. Compared to the rural
group, the data distribution for each predictor in the subur-
ban group is substantially different, leading to distinct learn-
ing patterns that explain the relatively high prediction values
along roads (see Figs. S43–S51). In some instances, negative
predicted values are observed, albeit rarely. These may re-

sult from discrepancies in feature characteristics between the
training and testing datasets.

Comparing local prediction patterns to global prediction
patterns reveals that the local models identify a cluster of
high air pollution in the northwestern part of Amsterdam
that the global models do not detect. This discrepancy could
be due to differences in the spatial distribution of NO2 val-
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ues between the local and global datasets, leading to distinct
learning patterns in the respective models (Fig. 1). Moreover,
Figs. 5 and 7 underscore the challenge of comparing spatial
variations between global and local models, given their dif-
fering algorithms. Local models, with their focus on specific
spatial groupings and detailed predictors, capture regional
clusters that global models may overlook or underrepresent
due to their broader scope.

3.3.1 Model comparison

Figure 8 shows the correlation in predicted NO2 values for
the local and global models, as well as the mobile NO2
map from Kerckhoffs et al. (2019) (referred to as the open-
NO2 dataset), which was used as a benchmark (Fig. S53).
To improve the clarity of the correlations between the mod-
els and the open-NO2 dataset, we addressed some extreme
prediction values. These outliers were removed to prevent
them from skewing the analysis and to provide a more accu-
rate representation of the correlations. We selected a manual
threshold of 85 as the upper bound based on the maximum
value observed across the 10 models (excluding the 2 where
outlier detection was applied first). The lower bound was set
to 0. The correlation matrix with these extreme predictions
removed (including LightGBM results) is shown in Fig. S54.
The global models are highly correlated, with the LASSO
model being the least correlated with other global models.
The correlations between the ordinary kriging model and
other models are low, which is expected, as the covariance
function has a small length scale. Although the assumption of
second-order stationarity is likely violated in ordinary krig-
ing due to the strong influence of local traffic on NO2 concen-
trations, the method remains applicable. It still provides the
best linear unbiased prediction (BLUP) based on Euclidean
distances between spatial coordinates. When comparing the
models with the open-NO2 dataset, some local models show
more similarity than global models do. This is reasonable, as
the local model dataset is also from Amsterdam. Table 10
shows the residuals per global and local model. The XG-
Boost model emerged as the most accurate among the global
models, with the lowest mean residual (1.36), indicating that
it closely matched the open-NO2 values. The LASSO model
also demonstrated higher residuals compared to XGBoost
and ridge, suggesting less consistency in its predictions. In
contrast, local models exhibited greater variability in residu-
als. The mixed-effects model and universal kriging had rela-
tively moderate mean residuals (2.51 and 1.83, respectively),
while the linear spatial group and universal kriging spatial
group models had significantly higher standard deviations,
indicating more extreme residuals. Ordinary kriging retained
the highest mean residual (4.71), reinforcing the trend that lo-
cal models generally had greater prediction errors compared
to global models. A spatial comparison of the predicted NO2
concentration values between the open-NO2 dataset and the
global and local models is shown in Figs. S55–S59 and S60–

S65, respectively. A spatial comparison of the global and lo-
cal model predictions with the measurement station data can
be found in Figs. S66–S85 and S86–S91, respectively.

4 Discussion

Several studies have applied statistical modeling to ground
station measurements and geospatial predictors for NO2
mapping, but the impact of spatial heterogeneity, as well as
a thorough analysis of the prediction patterns in different ar-
eas using different models, has often been under-stressed. In
this study, we address this gap by comparing spatial and non-
spatial models across different spatial scales. Below, we dis-
cuss the key findings and provide our perspectives.

4.1 Relationship between predictors and other
pollutants

For both global and local datasets, traffic and population den-
sity emerge as the most influential predictors, aligning with
the findings of Beelen et al. (2013), which emphasize the im-
portance of these variables for improving prediction accu-
racy. The strong influence of traffic on NO2 concentrations
also supports the conclusions of Lu et al. (2020) and Chen et
al. (2019). However, since the pollutant sources vary (Chen et
al., 2019), the modeling results for NO2 may not be directly
applicable to other pollutants.

4.2 Accounting for spatial groups

Without accounting for the spatial groups, the differences
in terms of the accuracy assessment matrices between lin-
ear and nonlinear techniques are minimal. The random for-
est model generally performs with the highest R2 and lowest
MAE, and the R2 of the ridge model is higher than that of
the XGBoost model. When accounting for spatial groups, the
differences in model performance between linear and non-
linear techniques become more pronounced, with nonlinear
models generally outperforming linear models, particularly
in rural areas where data are more homogeneous.

A limitation of the data is the fact that the most heteroge-
neous group (urban) is the least represented in terms of the
number of data points, at least for the global dataset. In urban
areas, the more heterogeneous nature of the data reduces the
performance gap between linear and nonlinear techniques,
with both performing poorly. This poor prediction accuracy
in urban areas is concerning, as the impact of air pollution is
often more severe in these regions due to proximity to traffic-
heavy roads and industrial areas (He et al., 2022). Although
spatial grouping improves predictive reliability, it can lead to
counterintuitive patterns, such as lower predicted NO2 con-
centrations along roads compared to in the surrounding ru-
ral areas. In the local dataset, the threshold for defining “ur-
ban” areas was adjusted from the upper 75 % (0.75) to the
median (0.5). This adjustment was necessary due to the lim-
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Figure 8. Comparing model predictions whereby the numbers equal the Pearson correlation coefficient. RF: random forest, XGB: XGBoost,
LR: linear regression, LRsp: linear regression accounting for spatial groups, MEM: mixed-effects model, UK: universal kriging, UKsp:
universal kriging accounting for spatial groups, OK: ordinary kriging, no2: mobile NO2 map from Kerckhoffs et al. (2021).

Table 10. The summary statistics of the differences between model predictions and the mobile-measurement-derived NO2 map from Kerck-
hoffs et al. (2021).

Model Type Mean Median SD Min Max

Random forest Global 1.65 3.44 8.94 −54.72 19.83
LASSO Global 1.85 3.19 9.27 −54.65 24.75
Ridge Global 1.75 3.16 9.35 −54.53 24.47
XGBoost Global 1.36 3.02 9.41 −58.24 23.18
Linear Local 1.87 3.56 8.61 −55.16 28.17
Linear spatial groups Local 2.25 3.09 15.22 −58.21 384.63
Mixed-effects model Local 2.51 4.10 8.54 −53.75 26.70
Universal kriging Local 1.83 3.46 8.30 −54.58 29.08
Universal kriging spatial groups Local 1.99 2.76 14.56 −56.75 369.05
Ordinary kriging Local 4.71 6.64 9.57 −57.21 30.71

ited sample size, which required a broader definition to en-
sure sufficient data coverage for urban areas. However, this
change also resulted in a less stringent definition of “urban,”
potentially including areas with lower population densities.
While this adjustment expands the number of training sam-

ples available for the most heterogeneous group (urban), it
introduces a limitation by diluting the urban group and affect-
ing the comparability of results. This trade-off underscores
the challenges of balancing data representation with statisti-
cal robustness in spatial analyses.
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4.3 Influence of cross-validation techniques

The cross-validation (CV) strategy plays a crucial role in
model performance and generalizability. In this study, we
opted for a random 90/10 training–testing split repeated 20
times to ensure model stability while maintaining sufficient
training data. For testing on spatial groups, we further lim-
ited the testing samples to 30 to account for spatial variability
and avoid data imbalance. This approach allows us to evalu-
ate model performance across different spatial settings while
mitigating the risk of overfitting.

However, the random split employed in this approach can
lead to biased performance estimates, particularly with small
datasets. Some points may be used multiple times, while oth-
ers might not be used at all, which can skew results. To ad-
dress this issue, alternative strategies like the 5-fold CV are
often employed, as they provide a good balance between bias
and variance. In the 5-fold CV, the dataset is divided into five
partitions, ensuring that each point is used for validation ex-
actly once. This method can be particularly useful when the
dataset is small, as it ensures more comprehensive utilization
of the data.

In our study, we chose to use the Monte Carlo CV be-
cause it provides a robust measure of uncertainty, particularly
for relatively small datasets. The Monte Carlo CV works
well when data are limited, as it generates multiple datasets
through resampling, allowing us to estimate variability and
model performance more effectively. The Monte Carlo CV
aims to reduce bias by randomly drawing training points for
each iteration, thus providing a more reliable estimate of
model accuracy. Although increasing the number of itera-
tions and reducing the testing set size could further reduce
bias, leaving more data points in the testing set offers addi-
tional information about the model’s performance.

Alternative techniques, such as the 5-fold CV, remain pop-
ular because they offer a straightforward balance between
training and validation data. Nonetheless, the Monte Carlo
CV may provide better estimates of uncertainty, especially
in cases with limited data, which could make it preferable
for heterogeneous spatial datasets. Although increasing the
number of iterations may improve predictive reliability, the
trade-off between computational efficiency and statistical ro-
bustness must be carefully considered.

Meyer and Pebesma (2021, 2022) criticized the imprudent
use of global-scale models, in particular highlighting the is-
sue that model performance cannot be validated in regions
without observational data. They advocate for the use of spa-
tial cross-validation to address this limitation. After careful
consideration, we opted for the Monte Carlo CV to mitigate
the bias introduced by spatial cross-validation (Wadoux et
al., 2021; Lu et al., 2023). We would like to emphasize that
the core issue in cross-validation for spatial modeling lies in
the inclusion of spatial coordinates or distances as predic-
tors. From this perspective, it is evident that sampling should
be random in the predictor space. Therefore, we argue that

cross-validation in spatially correlated data is not fundamen-
tally different from standard cross-validation, provided that
the predictor space sampling is handled appropriately.

4.4 Global and local predictions

In comparing global and local models, each approach has dis-
tinct strengths and limitations. Local models, tailored to spe-
cific spatial groupings and incorporating detailed predictors,
excel at capturing regional clusters and nuances. These mod-
els can identify patterns and variations that broader, global
models might miss or represent inadequately. On the other
hand, global models are designed to capture overarching
trends across larger areas but often overlook the finer local
details crucial for accurate predictions in specific regions.

The findings of Yuan et al. (2023) support this distinc-
tion, highlighting the fact that integrating large-scale station-
ary measurements with local mobile data improves model-
ing performance in urban areas by accounting for finer spa-
tial variations. Their study underscores the limitations of
global models, which, while providing a broad overview,
may fail to capture the detailed local variations necessary for
precise predictions. By combining global and local data, a
more accurate and nuanced depiction of air pollution can be
achieved, particularly in complex urban environments where
local details are critical.

4.5 Spatial variation in feature importance

The influence of specific predictors on NO2 concentrations
can vary significantly between cities. For example, building
density and population are more significant contributors to
air pollution in Utrecht, whereas traffic has a greater impact
on high NO2 concentrations in Hamburg. Applying global
models with the same predictors across different cities may
conceal this finding and yield suboptimal results. It is there-
fore important to consider the spatial heterogeneity and at the
same time ensure a consistent uncertainty assessment. How-
ever, the current number of official ground stations may not
be sufficient to characterize the spatial heterogeneity and en-
sure a detailed and reliable prediction.

4.6 Further perspectives on model improvement

The limited number of observations in the local dataset
poses challenges for fitting complex models. Transforming
the original data could potentially avoid predictions falling
outside the plausible range (e.g., below 0 µgm−3). However,
in this study, a transformation was not applied for the fol-
lowing reason. Although airborne pollutant concentrations
are often positively skewed (Maranzano et al., 2020), Lu et
al. (2023) found that optimal modeling results were obtained
without transforming the data and by using a Gaussian like-
lihood – even when other distributions, such as gamma, bet-
ter reflected the data’s skewed distribution. Moreover, while
the LASSO and ridge models perform well with the global

Geosci. Model Dev., 18, 6717–6735, 2025 https://doi.org/10.5194/gmd-18-6717-2025



F. Boersma and M. Lu: A close look at using national ground stations for the statistical modeling of NO2 6733

dataset, their predictions were less satisfactory with the local
dataset. In this study, traffic volumes were a significant fea-
ture, yet no distinction was made between different types of
traffic (e.g., cars, buses, trucks), vehicle types (e.g., electric,
diesel), or engine types, all of which are known to influence
air pollution (Wong et al., 2021). For example, distinguishing
between vehicle types could reveal that certain roads, such as
those leading to or from the port of Hamburg, have a higher
proportion of trucks, which might explain localized clusters
of high NO2 concentrations.

5 Conclusions

In this study, we investigate the spatial heterogeneity of
NO2 modeling by comparing various linear and nonlinear
statistical models at different scales (local vs. global). One
of the key findings of this study is that the model perfor-
mance matrix varies trivially with models of different levels
of complexity but significantly when considering spatial het-
erogeneity and modeling in various population, traffic, and
urban settings. The nonlinear techniques have better predic-
tions in rural and suburban areas compared to the linear mod-
els. Global model prediction accuracy is considerably higher
in rural, homogeneous areas, the influence of which leads
to high overall performance without accounting for spatial
groups. Methods preferred in global modeling could be un-
favorable in local modeling. The relatively few NO2 obser-
vations and potentially lower quality of the local (Palmes)
dataset compared to the official ground station measurement
are important reasons for the unsatisfactory performance of
nonlinear models. Using the local dataset, we also found that
explicitly accounting for spatial autocorrelation in the univer-
sal and ordinary kriging models does not improve accuracy;
however, analyzing predictions across spatial groups pro-
vides valuable insights. Also, different modeling techniques
lead to different NO2 clusters in the prediction map despite
the similar performance matrices that they received. Last but
importantly, our results suggest that focusing solely on over-
all prediction accuracy can lead to overconfidence and to an
underestimation of the further efforts required in statistical
air pollution mapping.
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