Articles | Volume 18, issue 18
https://doi.org/10.5194/gmd-18-6313-2025
https://doi.org/10.5194/gmd-18-6313-2025
Methods for assessment of models
 | 
25 Sep 2025
Methods for assessment of models |  | 25 Sep 2025

Constraining CMIP6 sea ice simulations with ICESat-2

Alek Petty, Christopher Cardinale, and Madison Smith

Related authors

Investigating the impact of reanalysis snow input on an observationally calibrated snow-on-sea-ice reconstruction
Alex Cabaj, Paul J. Kushner, and Alek A. Petty
The Cryosphere, 19, 3033–3064, https://doi.org/10.5194/tc-19-3033-2025,https://doi.org/10.5194/tc-19-3033-2025, 2025
Short summary
On the Statistical Relationship between Sea Ice Freeboard and C-Band Microwave Backscatter – A Study with Sentinel-1 and Operation IceBridge
Siqi Liu, Shiming Xu, Wenkai Guo, Yanfei Fan, Lu Zhou, Jack Landy, Malin Johansson, Weixin Zhu, and Alek Petty
EGUsphere, https://doi.org/10.5194/egusphere-2025-1069,https://doi.org/10.5194/egusphere-2025-1069, 2025
Short summary
Estimation of the state and parameters in ice sheet model using an ensemble Kalman filter and Observing System Simulation Experiments
Youngmin Choi, Alek Petty, Denis Felikson, and Jonathan Poterjoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-301,https://doi.org/10.5194/egusphere-2025-301, 2025
Short summary
Anticipating CRISTAL: An exploration of multi-frequency satellite altimeter snow depth estimates over Arctic sea ice, 2018–2023
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904,https://doi.org/10.5194/egusphere-2024-2904, 2024
Short summary
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024,https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary

Cited articles

Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010. 
Bagnardi, M., Kurtz, N. T., Petty, A. A., and Kwok, R.: Sea Surface Height Anomalies of the Arctic Ocean From ICESat-2: A First Examination and Comparisons With CryoSat-2, Geophys. Res. Lett., 48, e2021GL093155, https://doi.org/10.1029/2021GL093155, 2021. 
Bonan, D. B., Schneider, T., Eisenman, I., and Wills, R. C. J.: Constraining the Date of a Seasonally Ice-Free Arctic Using a Simple Model, Geophys. Res. Lett., 48, e2021GL094309, https://doi.org/10.1029/2021GL094309, 2021. 
Download
Short summary
We use total freeboard data from NASA’s Ice, Cloud and land Elevation Satellite-2 (ICESat-2) across both hemispheres and estimates of winter Arctic sea ice thickness to evaluate climate model simulations of sea ice, providing constraints beyond the traditional sea ice area metric. ICESat-2 provides accurate freeboard data, but its short observational record requires careful consideration of natural variability.
Share