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Abstract. This study evaluates sea ice simulations from the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
using modern-era satellite measurements of sea ice area, to-
tal freeboard and thickness. Current global climate models
exhibit substantial uncertainties in simulating sea ice, with
significant contributions from both model uncertainty and in-
ternal variability. In our study, simulated Arctic and Southern
Ocean total freeboard and Arctic winter sea ice thickness are
assessed with data from NASA’s Ice, Cloud and land Eleva-
tion Satellite-2 (ICESat-2) mission, providing an additional
constraint beyond traditional passive microwave sea ice area
comparisons used extensively in previous studies. Freeboard
comparisons benefit from accurate observations from satel-
lite laser altimetry but motivate increased focus on bulk sea
ice density estimates across models and observations. The
short observational time period also increases the role of
internal variability. We undertake a plausibility assessment
where we account for both observational uncertainty and in-
ternal variability across our different metrics for both hemi-
spheres. In general, we see more plausible metrics in the Arc-
tic compared to the Southern Ocean, with important differ-
ences when analyzing annual means vs. March and Septem-
ber means. We provide an example of this plausibility assess-
ment by producing constrained estimates of 2015–2035 sea-
sonal sea ice volume, using model subsets constrained using
either area metrics or the combined area, freeboard and thick-
ness metrics, with freeboard and thickness providing impor-
tant additional impacts in terms of the mean seasonal cycle
and spread. Finally, we present regional comparisons and a
composite analysis, with models showing systematic under-
estimation of thicker ice in the Western Arctic and clear dif-
ferences in the simulation of Eastern/Western Arctic sea ice.
Overall, our study provides novel insights into sea ice model
evaluation and emphasizes the potential benefits of integrat-

ing altimetry data from ICESat-2, as well as providing a dis-
cussion on the potential utility of these model constraints and
future research priorities.

1 Introduction

Earth’s polar sea ice cover is undergoing rapid declines in re-
sponse to anthropogenic climate change (IPCC, 2023). Cou-
pled global climate models (GCMs) are commonly used to
simulate past and future sea ice conditions and disentangle
the associated impacts and feedbacks from the rest of the
climate system (Notz & SIMIP Community, 2020; Goosse
et al., 2018; Jahn et al., 2024; Pithan and Mauritsen, 2014;
Smith et al., 2019). Historical GCM outputs are also used
to provide important constraints on sea ice mass, energy
and freshwater budgets (Holland et al., 2006, 2010; Keen
et al., 2021; Massonnet et al., 2018; Meredith et al., 2019;
Zanowski et al., 2021) and can provide training input for
seasonal/sub-seasonal forecasting models (Andersson et al.,
2021). These efforts are often hindered by the large and
poorly constrained uncertainties of the sea ice state in cur-
rent GCMs.

Uncertainty in GCM sea ice conditions arise from the
combined impact of model structural uncertainty and inter-
nal variability, with additional contributions of forcing un-
certainty in future scenario runs. Model uncertainty is typi-
cally estimated based on the spread across available models.
Model uncertainty has numerous causes, including biases in
atmospheric/ocean forcing and errors in model physics (Mas-
sonnet et al., 2018). In GCMs, sea ice has historically been
considered a simple boundary condition that increases the
surface albedo and alters the surface energy balance, rather
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than being a crucial climate component in and of itself. Many
of the models included in Coupled Model Intercomparison
Project 5 (CMIP5) feature only basic parameterizations of
sea ice, with only a few models including significant im-
provements to the underlying sea ice physics schemes in the
newly released CMIP6 suite (Notz & SIMIP Community,
2020, referred to as SIMIP2020). However, improvements in
sea ice simulation in CMIP6 have been suggested, alluding
to improvements in polar atmospheric/ocean forcing and/or
model physics (Notz & SIMIP Community, 2020; Roach et
al., 2020; Davy and Outten, 2020). Internal variability, which
represents the random fluctuations of the climate system,
can provide a significant and irreducible source of additional
sea ice state uncertainty. The significant uncertainty across
CMIP6 sea ice simulations poses important questions about
its potential utility for predicting future sea ice conditions,
e.g., the potential timing of an ice-free Arctic (Jahn et al.,
2024).

There is no agreed upon approach for analyzing multi-
model sea ice ensembles. In the simplest approach of full
model democracy, all models are considered equally plausi-
ble, no exclusion or calibration is employed, and the model
uncertainty remains unchanged. This is often the approach
taken when observations are too unreliable to provide suffi-
cient constraint or if internal variability estimates are unavail-
able. Beyond this, model runs can be excluded or weighted
based on assessments of the combined observational uncer-
tainty and internal variability. The exclusion approach was
adopted in SIMIP2020, whereby models with historical Arc-
tic sea ice area significantly outside a plausible range, cal-
culated from a combination of observational uncertainty and
internal variability, were omitted from the final CMIP6 fu-
ture Arctic sea ice projection analysis. More sophisticated
methods for excluding and/or weighting models based on
comparisons with observations are available, including meth-
ods to recalibrate the models based on their simulated sea
ice response to temperature variability (Bonan et al., 2021),
atmospheric circulation (Topál and Ding, 2023) and green-
house gas forcing (Kim et al., 2023). Similarly, emergent
constraints, an approach that utilizes statistical relationships
between observable quantities and future model diagnos-
tics, have been used to constrain sea ice projections using
a variety of metrics (Massonnet et al., 2018; Thackeray and
Hall, 2019; Wang et al., 2021). These methods all generally
rely on the assumption that model performance is consis-
tent across time periods and depends crucially on the spe-
cific research question posed (Notz, 2015). However, recal-
ibration approaches generally do not update associated state
variables (e.g., impact on the surface energy budget or fresh-
water fluxes from the sea ice to the ocean) and can be more
challenging to implement, motivating continued attention to-
wards optimal exclusion or weighting approaches.

To date, most of the sea ice model exclusion and cali-
bration efforts have utilized observational estimates of sea
ice area or extent from the long-term (> 40 year) passive

microwave record (Lavergne et al., 2019; Parkinson, 2019).
Passive microwave sensors measure the brightness temper-
ature at different frequencies and polarities and use this in-
formation to infer the concentration of sea ice over the ocean
surface, which can then be converted to sea ice areal coverage
(by multiplying by the grid-cell area) and extent (grid cells
with at least 15 % sea ice concentration). The multi-decadal
time period benefits from being long enough to be represen-
tative of long-term climate conditions and reduces the role of
internal variability. It can also be used to assess the sensitivity
of sea ice area to warming or carbon dioxide forcing as an ad-
ditional observational constraint. Sea ice area uncertainty is
often estimated by comparing across different observational
products (Notz & SIMIP Community, 2020) or by assum-
ing fixed values/percentages based on community consensus
(Massonnet et al., 2012). However, sea ice concentration pro-
vides only limited information within the more consolidated
ice pack, where large gradients in thickness/volume manifest
(Petty et al., 2020).

Dedicated polar-focused satellite altimetry missions have
been launched since the early 2000s that can accurately pro-
file sea ice height towards estimates of sea ice freeboard,
thickness and, thus, volume. These include the National
Aeronautics and Space Administration (NASA) Ice, Cloud
and land Elevation Satellite (ICESat) mission (2003–2009,
Zwally et al., 2002; Kwok and Cunningham, 2008), the Eu-
ropean Space Agency (ESA) CryoSat-2 radar altimetry mis-
sion (2010 onwards, Laxon et al., 2013), and, most recently,
NASA’s ICESat-2 laser altimetry mission (2018 onwards,
Neumann et al., 2019; Petty et al., 2020). The altimeters
measure the height of sea ice and open water leads between
ice floes. The open water height estimates are used to gen-
erate an estimate of the local sea surface height. Subtract-
ing the local sea surface height from the sea ice height pro-
vides an estimate of freeboard, the extension of sea ice above
sea level; see the basic schematic in Fig. 1. Laser altime-
ters (e.g., NASA’s ICESat and ICESat-2) provide estimates
of the snow-covered ice surface height (a metric commonly
referred to as total freeboard). In contrast, data from radar al-
timeters (e.g., ESA’s CryoSat-2) are typically used to provide
an estimate of the less distinct ice–snow interface height and
thus an estimate of ice freeboard. The effective radar penetra-
tion depth at the Ku band used in CryoSat-2 is generally con-
sidered to come from the ice–snow interface, although stud-
ies continue to challenge this (Nandan et al., 2017; Willatt et
al., 2011). The satellite laser altimeters benefit from higher
spatial resolution on the ground than radar (footprints of
tens of meters as opposed to hundreds of meters to kilome-
ters). They also profile the upper snow surface, thus provid-
ing a useful constraint on total snow loading. However, radar
is unaffected by clouds, and CryoSat-2 benefits from con-
tinuous data collection and refinement since it launched in
2010. Additional input assumptions regarding snow depth,
snow density and ice density, together with an assumption
of isostasy, are then typically used to convert measured free-
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Figure 1. Schematic showing (a) observations of sea ice total freeboard from laser altimetry towards estimates of sea ice thickness, (b) ad-
vanced physics and ice thickness distribution typical of state-of-the-art sea ice models, and (c) fixed ice thickness/snow parameterization
used in more basic sea ice models. Note that ice freeboard is the extension of sea ice above sea level, while total freeboard is the extension of
the ice and snow layer above freeboard. Sea ice models do not typically simulate freeboard, but this can be estimated based on an assumption
of isostasy.

board (ice or total depending on the sensor) into an estimate
of sea ice thickness for the Arctic, which introduces signif-
icant additional uncertainty to this “observational” estimate
(Giles et al., 2007; Kwok and Cunningham, 2008; Petty et al.,
2020). Constraining the thickness uncertainty remains chal-
lenging due, in part, to the lack of ground-truth data available
for validation. For Antarctic sea ice, limited knowledge of the
more complex snow loading has generally hindered produc-
tion of similar snow and sea ice thickness data production ef-
forts to date, although novel approaches show promise (Fons
et al., 2021; Garnier et al., 2021).

Due to concerns around accuracy and uncertainty quan-
tification, combined with their more limited temporal cov-
erage, sea ice thickness data have generally been excluded
from model assessment efforts to date (Notz & SIMIP Com-
munity, 2020; Kay et al., 2022; Roach et al., 2020), despite
the fact that the mean thickness has been demonstrated to
be the crucial factor controlling sea ice variability and trends
(Massonnet et al., 2018). With the recent ICESat-2 period
now extending into its seventh year of successful data col-
lection (at the time of writing) and the improved understand-
ing achieved from the joint operation of both ICESat-2 and
CryoSat-2, we can begin to reconsider the concerns around
accuracy and time period. In addition, comparisons of the
direct observations of total freeboard with model estimates
of this same quantity may offer another path forward for
model assessments, better leveraging the high accuracy of
the ICESat-2 laser altimeter observations. Assessments of to-
tal freeboard avoid a significant component of the thickness
uncertainty that is introduced in the conversion of freeboard
to thickness. Laser altimetry total freeboard estimates also
avoid the uncertainties associated with radar freeboard profil-
ing (e.g., identifying which interface is dominating the radar
return). Total freeboard comparisons are expected to provide
significant value in the Southern Ocean, where snow depth
and sea ice thickness estimates are less reliable. Southern

Ocean sea ice is also thought to be composed of a higher frac-
tion of thinner first-year ice with higher snow depths com-
pared to the Arctic, such that total freeboard could be con-
sidered a better proxy for thickness than in the Arctic (Kurtz
and Markus, 2012; Worby et al., 2008). In addition, total free-
board is utilized in some sea ice model parameterizations,
e.g., atmospheric form drag (Tsamados et al., 2014) and
snow-ice formation (Hunke et al., 2015), providing an addi-
tional motivation to assess its representation in models, espe-
cially as we prepare for the upcoming release of the CMIP7
output. However, total freeboard integrates information from
both ice thickness and snow depth variability concurrently,
meaning changes in freeboard can be linked to changes in the
underlying ice thickness and/or snow depth, and diagnosing
the cause of total freeboard biases is more challenging than
the more direct prognostic variables of area and thickness.
Additionally, freeboard is not a prognostic variable in sea
ice models, and so it is typically calculated within the model
as needed assuming hydrostatic equilibrium from the asso-
ciated ice state variables (see schematic in Fig. 1 and Eq. 2
in Sect. 2.1 below), either in a post-processing step or within
the relevant model parameterization scheme.

Following a request from the Sea Ice Model Intercompar-
ison Project (SIMIP) in the lead-up to CMIP6 (Notz et al.,
2016), several modeling groups provided direct outputs of ice
freeboard, making a comparison effort timely. To our knowl-
edge, we are unaware of any studies that have explored this
new model output. In this paper, we thus undertake a first
attempt at using satellite altimetry observations of total free-
board from NASA’s ICESat-2 mission to evaluate sea ice out-
put from CMIP6. We compare these with evaluations using
the traditional sea ice area and arguably more uncertain (win-
ter Arctic) sea ice thickness metrics derived from satellite
observations in order to demonstrate the advantages and dis-
advantages of these comparisons and look ahead to using this
information to better constrain simulations and projections of
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sea ice across both poles. Producing a longer-term record of
sea ice area, freeboard and thickness through assimilation of
sea ice altimetry data into a consistent reanalysis is a current
focus of the sea ice community, although challenges unique
to sea ice have only recently been assessed (Riedel and An-
derson, 2024; Wieringa et al., 2024; Williams et al., 2023).
We thus focus only on direct ICESat-2 observations in this
study while recognizing the challenges in characterizing in-
ternal variability from this short time period.

2 Data and methods

2.1 CMIP6 sea ice model output

We use sea ice model output from the CMIP6 archive (Eyring
et al., 2016). CMIP6 data are officially hosted through the
Earth System Grid Federation (ESGF), enabling users to
directly download all relevant CMIP6 output made avail-
able by all contributing model centers using the Open-
source Project for a Network Data Access Protocol (OPeN-
DAP) system. We additionally make use of the Pangeo
Analysis-Ready Cloud-Optimized CMIP6 catalog (https://
pangeo-data.github.io/pangeo-cmip6-cloud/, last access: 12
September 2025), which is hosted on both the Amazon Web
Services (AWS) and Google Cloud Project (GCP) cloud
storage services, simplifying the data ingest process (where
we use the NASA-funded AWS-hosted CryoCloud platform,
https://book.cryointhecloud.com (last access: 12 September
2025) and thus the AWS-hosted catalog). Some model out-
puts are missing from the Pangeo cloud catalogs, so we uti-
lize the ESGF/OPeNDAP data where needed to ensure full
model selection. We primarily use data from the SSP2-4.5
future scenario (2015–2100) to ensure full overlap with our
ICESat-2 observational period (2018 to 2024). The Code
Availability section provides links to all code used to retrieve
and analyze these data. We use the monthly mean output
across all models except for AWI-CM-1-1-MR, which pro-
vides only daily data that we average to a monthly timescale).

As our study builds on the initial SIMIP CMIP6
sea ice evaluation studies, which included only models
available in the initial IPCC AR6 analysis time frame
(Notz & SIMIP Community, 2020; Roach et al., 2020), we
briefly explored differences in Arctic sea ice area from the
model runs used in our study compared to the SIMIP2020
study. Overall, our study uses 13 more models compared to
the SIMIP2020 study. Despite the significant difference in
model subsets, differences in the multi-model CMIP6 mean
Arctic sea ice area over the 2015–2035 time period in both
March and September were negligible (see Fig. S1 in the
Supplement).

The grid-cell mean sea ice variables used in our study
include the following (CMIP6 variable names in parenthe-
ses): sea ice area (siconc), sea ice thickness (sithick), sea
ice freeboard (sifb), snow thickness (sisnthick), sea ice mass

Table 1. Model variables used in our study, its denoted symbol if
used in the derivations below, the official CMIP6 variable name and
the units. CMIP6 variables denoted NA are not provided directly
and are either prescribed or calculated in this study.

Variable name Symbol CMIP6 Units
variable

Sea ice area NA siconc m
Sea ice thickness hi sithick m
Sea ice freeboard hfi sifb m
Total freeboard hft NA m
Snow thickness hs sisnthick m
Sea ice mass per unit area Mi simass kg
Sea ice volume per unit area Vi sivol m
Bulk sea ice density ρi NA kg m−3

Bulk snow density ρs NA kg m−3

Seawater density ρω NA kg m−3

(simass) and sea ice volume (sivol), as summarized in Ta-
ble 1. Note that the grid-cell mean ice freeboard variable was
requested from CMIP6 contributing centers by the Sea-Ice
Model Intercomparison Project (SIMIP) consortium at prior-
ity level 2 (Notz et al., 2016) and that only 17 of the mod-
eling centers provided this output for the SSP2-4.5 scenario
runs. A listing of the CMIP6 models and the relevant vari-
able availability is shown in Table 2. For the models that do
not provide ice freeboard output, we can instead estimate this
from the provided variables of ice and snow thickness, esti-
mates of ice and snow density, and an assumption of isostasy.
This method can also be used to check consistency with the
provided ice freeboard output from the models that do pro-
vide that output. Starting with the hydrostatic equilibrium
equation for ice thickness:

hi =
hfiρω+hsρs

(ρω− ρi)
, (1)

where hfi is sea ice freeboard, hs is snow thickness, ρω is
seawater density (1024 kg m−3), ρs is the bulk snow density
and ρi is the bulk ice density. We can rearrange Eq. (1) to
calculate ice freeboard as:

hfi =
hi (ρω− ρi)−hsρs

ρω
. (2)

This ice freeboard can be converted into an estimate of total
freeboard by simply adding snow thickness (sisnthick) as:

hft = hfi+hs. (3)

Snow thickness was listed as a priority level 1 variable in
Notz et al. (2016) and is provided by the 36 models that pro-
vide either the grid-cell sea ice thickness or sea ice volume
and area. For the models that do provide outputs of ice free-
board, we generally assume that this is calculated in post-
processing as in Eq. (2). It is worth noting that differences
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Table 2. CMIP6 sea ice model summary and data variable availability. Models are added only if they provide a relevant SSP2-4.5 output.
Variables are listed only if used in this study. All data output is monthly and available on the native model grid. There are several exceptions:
siconc is daily for AWI-CM-1-1-MR, and data are available only on gr1grids (regridded) for INM-CM4-8, INM-CM5-0 and KIOST-ESM.
The first 17 rows indicate the freeboard output subset. Note that in most cases, the underlying sea ice model has been adapted to ensure
consistency with other model components. Semtner–Hibler refers to the Semtner zero-layer thermodynamics model (Semtner, 1976) and the
Hibler ice dynamics model (Hibler, 1979). Sea ice variables are all grid-cell monthly means and are summarized in Table 1. The final column
describes whether any of the model output was used in the Notz & SIMIP Community (2020) study (S), the Roach et al. (2020) study (R),
both (B) or neither (N). Sea ice model information taken from https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_source_id.html (last
access: 12 September 2025).

CMIP6 model ID Sea ice model Variables S/R/B/N

ACCESS-CM2 CICE5.1.2 siconc, sithick, sifb, sisnthick, simass, sivol B
CESM2 CICE5.1.2 siconc, sithick, sifb, sisnthick, simass, sivol B
CESM2-WACCM CICE5.1.2 siconc, sithick, sifb, sisnthick, simass, sivol B
CIESM CICE4 siconc, sithick, sifb, sisnthick, simass, sivol N
CMCC-CM2-SR5 CICE4.0 siconc, sithick, sifb, sisnthick, simass, sivol N
CMCC-ESM2 CICE4.0 siconc, sithick, sifb, sisnthick, simass, sivol N
CNRM-CM6-1 GELATO6.1 siconc, sithick, sifb, sisnthick, simass, sivol B
CNRM-CM6-1-HR GELATO6.1 siconc, sithick, sifb, sisnthick, sivol B
CNRM-ESM2-1 GELATO6.1 siconc, sithick, sifb, sisnthick, simass, sivol B
HadGEM3-GC31-LL CICE5.1.2 siconc, sithick, sifb, sisnthick, simass, sivol B
IPSL-CM6A-LR LIM3 siconc, sithick, sifb, sisnthick, simass, sivol B
MPI-ESM1-2-HR Semtner-Hibler siconc, sithick, sifb, sisnthick, simass, sivol B
MPI-ESM1-2-LR Semtner-Hibler siconc, sithick, sifb, sisnthick, simass, sivol B
MRI-ESM2.0 MRI.COM4.4 siconc, sithick, sifb, sisnthick, simass, sivol B
NorESM2-LM CICE5.1.2 siconc, sithick, sifb, sisnthick, simass, sivol S
NorESM2-MM CICE5.1.2 siconc, sithick, sifb, sisnthick, simass, sivol N
UKESM1.0-LL CICE5.1.2 siconc, sithick, sifb, sisnthick, simass, sivol B
ACCESS-ESM1-5 CICE4.1 siconc, sithick, sisnthick, sivol B
AWI-CM-1-1-MR FESOM1.4 siconc, sithick, sisnthick, sivol B
BCC-CSM2-MR SIS2 siconc, sithick, sisnthick, sivol B
CAMS-CSM1-0 SIS1.0 siconc, sisnthick, sivol B
CanESM5 LIM2 siconc, sithick, sisnthick B
CanESM5-1 LIM2 siconc, sithick, sisnthick N
EC-Earth3 LIM3 siconc, sithick, sisnthick, sivol B
EC-Earth3-CC LIM3 siconc, sithick, sisnthick, sivol N
EC-Earth3-HR LIM3 siconc, sithick, sivol N
EC-Earth3-Veg LIM3 siconc, sithick, sisnthick, sivol B
EC-Earth3-Veg-LR LIM3 siconc, sithick, sisnthick N
FGOALS-f3-L CICE4.0 siconc, sisnthick, sivol B
FIO-ESM-2-0 CICE4.0 siconc, sisnthick, sivol B
GFDL-CM4 GFDL-SIM4p25 siconc, sithick, sisnthick, sivol B
GFDL-ESM4 GFDL-SIM4p5 siconc, sithick, sisnthick, sivol B
KIOST-ESM GFDL-SIS siconc, sithick, sisnthick N
MIROC6 COCE4.9 siconc, sithick, sisnthick, sivol B
MIROC-ES2H COCO4.9 siconc, sithick, sisnthick N
MIROC-ES2L COCO4.9 siconc, sithick, sisnthick B
NESM3 CICE4.1 siconc, sithick, sisnthick B
TaiESM1 CICE4 siconc, sithick, sisnthick, sivol N
CanESM5-CanOE LIM2 siconc N
FGOALS-g3 CICE4.0 siconc N
INM-CM4-8 INM-ICE1 siconc B
INM-CM5-0 INM-ICE1 siconc B
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could arise both from the calculation of freeboard at sub-
monthly time steps before averaging to monthly and from
using the categories of ice thickness across the ice thickness
distribution (ITD) before averaging across the grid cell (for
the models that simulate an ITD).

A crucial additional variable in the conversion between
freeboard and thickness is the bulk ice density (ρi): the higher
the ice and snow density, the lower the freeboard. Neither
the bulk ice density nor snow density is provided directly by
any of the CMIP6 groups, as generally it is not considered a
prognostic variable and instead a prescribed constant. How-
ever, for some of the more sophisticated sea ice models, the
effective bulk ice density can be considered a function of the
variable internal temperature and salinity, which vary based
on the internal sea ice physics scheme and need to be cal-
culated during the ice freeboard calculation (e.g., CESM2,
D Bailey, personal communication). To our knowledge, all
CMIP6 sea ice models currently use a constant snow density
of 330 kg m−3 (this was also assumed in the CMIP6 sea ice
freshwater analysis in Zanowski et al. (2021)). Prescribed (or
variable) bulk sea ice densities across CMIP6 were harder to
determine from the available documentation. Alternatively,
there are two ways in which we can infer the bulk ice density.
The first is to infer bulk ice density from provided outputs of
total (grid-cell mean) sea ice mass (Mi) and volume (Vi) from
the 24 models that provide these outputs (listed in Table 2)
as:

ρi =Mi/Vi. (4)

We can also indirectly infer bulk ice density from the
17 models (listed in Table 2) that provide outputs of ice free-
board, ice thickness and snow thickness, together with an es-
timate of snow density and seawater density, through rear-
ranging Eq. (2) in terms of bulk ice density as:

ρi = ρω−
ρωhfi+ ρshs

hi
. (5)

We set the snow density to 330 kg m−3 and the seawater den-
sity to 1024 kg m−3 based on our review of the default op-
tions used across CMIP6 sea ice models.

Model regridding

Model output was regridded to simplify analysis and en-
able spatial comparisons between the model and obser-
vations. We regrid all CMIP6 model data to rectilinear
grids depending on the variable and observational com-
parison. For area, we regrid all data to the EASE 2.0
25 km× 25 km grid used by the concentration products de-
scribed below, while for freeboard and thickness, we use
the North Polar Stereographic 25 km× 25 km grid used by
the ATL20/IS2SITMOGR4 datasets, which are described in
the following sections. We explored various options to op-
timize our regridding approach, utilizing the open-source

Python xESMF package (https://xesmf.readthedocs.io/en/
latest/index.html, last access: 12 September 2025, Zhuang et
al., 2024). We primarily utilized the conservative normed re-
gridding method that preserves areal contributions of the in-
put data within each observational grid cell. To prevent unre-
alistic data interpolation along the coastline, land masks are
specified for both the source and destination grids. For native
model grids, land masks are calculated using the provided
variable sea area percentage (sftof) which, when divided
by 100, gives the fraction of the grid cell covered by ocean
and used in the conservative normed regridding described
above. For the North Polar Stereographic 25 km× 25 km
grid, the NSIDC land mask is used (Meier and Stewart,
2023). For the EASE 2.0 25 km× 25 km grid, land is de-
fined as NaN regions in the sea ice concentration data (this
method is also used for models with no sftof data). We note
that regridding can introduce artificial errors, but we ensured
appropriate methods were used to minimize this, and our in-
vestigations suggest negligible differences at both the grid-
cell and basin scales (see Supplemental Information, Figs. S2
and S3).

2.2 Observational sea ice data

2.2.1 Total freeboard and winter Arctic sea ice
thickness from ICESat-2 altimetry

We use monthly gridded total freeboard data from NASA’s
ICESat-2 ATL20 product (Version 4) disseminated through
the National Snow and Ice Data Center (NSIDC) (https:
//nsidc.org/data/atl20, last access: 12 September 2025, Petty
et al., 2023b). ATL20 is produced using a simple binning
of the along-track freeboard data from the three strong
beams of ICESat-2/ATLAS (ATL10, Kwok et al., 2023) on
a 25 km× 25 km North Polar Stereographic grid. Significant
data gaps can still exist for various reasons (e.g., cloud atten-
uation, lack of open water leads, spacecraft issues). Note that
the underlying along-track ATL10 freeboard product masks
data where the sea ice concentration is less than 50 % and
where data are within 25 km of the nearest coastline. ATL20
data are available for both hemispheres across all months
(November 2018 onwards). While data are available across
the summertime Arctic, these data should be treated with
more caution due to the lack of a reliable melt pond classifi-
cation scheme in the underlying sea ice processing (Tilling et
al., 2020, Kwok et al., 2022). No uncertainty term is included
in the products that account for the potential misclassifica-
tion of leads as melt ponds, but the additional height filter in
ATL10 (where only leads that pass a strict relative height fil-
ter are used to derive the local sea surface height) is expected
to mitigate this issue to some degree.

In addition, we use monthly gridded winter Arctic sea
ice thickness estimates from ICESat-2 (IS2SITMOGR4, Ver-
sion 3), also disseminated through the NSIDC (https://nsidc.
org/data/is2sitmogr4, last access: 12 September 2025, Petty
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et al., 2023c). These data use snow loading estimates from
the NASA Eulerian Snow On Sea Ice Model (NESOSIM,
Petty et al., 2018), now at Version 1.1, a constant bulk ice
density of 916 kg m−3 and the isostasy assumption to de-
rive estimates of sea ice thickness across the Arctic Ocean
between September and April since November 2018 (Petty
et al., 2023c). The upgrade of IS2SITMOGR4 from Ver-
sion 1 to 2 was shown to increase correspondence with ice
thickness estimates derived using a similar snow loading
approach with CryoSat-2 ice freeboard data (Petty et al.,
2023c) and showed good agreement with a product derived
directly from ICESat-2 and CryoSat-2 freeboards (Kacimi
and Kwok, 2022). Due to the lack of NESOSIM snow load-
ing data in summer, these thickness estimates are currently
available only between September and April. To increase
data coverage, including the 88° N Arctic pole hole, and to
increase consistency across the observational comparisons,
we use the linear interpolation/Gaussian smoothing variables
from IS2SITMOGR4 as described in Petty et al. (2023c) for
the winter Arctic sea ice freeboard/thickness data and apply
this method additionally to the Southern Ocean total ATL20
freeboard data. Differences between the raw vs. interpolat-
ed/smoothed annual mean ATL20 total freeboards are pro-
vided in the Supplementary Information (Fig. S4). We an-
alyze annual means from all months of the year, particu-
larly the months of September and March to capture the
peaks and troughs of the seasonal cycle across both hemi-
spheres. For the Arctic thickness data, the annual mean con-
sists only of the January–April and September–December
“winter” months, while for total freeboard, we use all months
of the year. These data are shown in Figs. 2 and 3.

2.2.2 Bulk ice density estimates

The above ICESat-2 thickness retrievals follow the approach
of several other studies in assuming a fixed bulk ice den-
sity, in this case 916 kg m−3 – the density of pure ice. In
reality, sea ice is a complex mixture of pure ice and brine,
which increase bulk ice density, but also air pockets that
lower bulk density, with their relative contributions varying
with the evolving ice state. Various other sea ice remote sens-
ing studies have thus utilized a lower density for multi-year
ice (882 kg m−3) based on the analysis of airborne Sever ex-
pedition in situ data prior to the 1990s by Alexandrov et
al. (2010). However, these bulk ice densities have been chal-
lenged in recent studies, using values inferred from multi-
sensor airborne profiles (J22, Jutila et al., 2022) and multi-
sensor satellite methods (Shi et al., 2023) and from in situ
data collected during the Multidisciplinary drifting Observa-
tory for the Study of Arctic Climate (MOSAiC) campaign
(Salganik et al., 2025; Zhou et al., 2024), all of which gener-
ally show higher densities, linked to the younger ice state and
issues with previous ice density measurement approaches.

The IS2SITMOGR4 v3 dataset also includes bulk ice den-
sity estimates calculated using the J22 empirical bulk ice

density parameterization, an exponential function of the local
ice freeboard derived from coincident laser scanning, snow
radar and electromagnetic induction sounding data (calcu-
lated using the total freeboard minus snow depth in the
ICESat-2 processing). We use these to provide an alternative,
and seasonally variable, bulk ice density estimate to com-
pare with the model results and provide added context to
both the model and remote-sensing-based estimates. These
J22 densities are expected to be higher than the pure ice den-
sity approximation of 916 kg m−3, especially for first-year
ice regimes. The J22 parameterization has not been validated
across different regions and seasons of the Arctic, so we con-
sider these highly experimental and use them here with cau-
tion.

2.2.3 Sea ice area from satellite passive microwave

We use sea ice concentration estimates from the European
Organisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT) Ocean and Sea Ice Satellite Application
Facility (OSI SAF), specifically OSI-450-a, which is the third
major version of the OSI SAF Global Sea Ice Concentra-
tion Climate Data Record (OSI SAF, 2022a), and OSI-430-
a, which is an operational extension of this product with a
latency of 16 days, currently for the period 2021 onwards
(OSI SAF, 2022b). We use the monthly mean concentra-
tion estimates from both datasets across the period Novem-
ber 2018 to April 2024 (the ICESat-2 study period). The
data are posted on a 25 km× 25 km Equal-Area Scalable
Earth (EASE) 2.0 grid, meaning all grid cells have a fixed
area of 625 km2, which we multiply by the grid-cell con-
centrations to derive sea ice area, before averaging across
basins. As in the total freeboard/thickness data, we take an-
nual means (all months of the year) and September and
March means across the 2018 to 2024 period.

2.2.4 Observational uncertainties

An important consideration when using observations to eval-
uate climate models is the observational uncertainty. How-
ever, the characterization of uncertainties within sea ice re-
mote sensing products generally focuses on grid-scale un-
certainties, estimated primarily using theoretical assessments
(e.g., propagation of uncertainties, Giles et al., 2007) or com-
parisons with the ground truth/imagery (Kern et al., 2022).
These uncertainties are generally considered random/uncor-
related at the typical grid scales they are disseminated at
(∼ 10–100 km) and thus theoretically reduce to zero when
averaging at basin scales. Product or algorithm differences
that drive regional-scale (∼ 100–10 000 km) systematic un-
certainties are rarely accounted for. As such, the approach
often used in sea ice climate model diagnostics to estimate
observational uncertainty is to calculate differences in hemi-
spheric mean sea ice area/extent across available products
or algorithms (Notz & SIMIP Community, 2020; Roach et
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Figure 2. (a–c) Total freeboard from ICESat-2 ATL20 v4, and (g–i) sea ice concentration from OSI SAF (bottom) for annual, March and
September means in the 2018 to 2024 ICESat-2 period. The sea ice thickness annual mean includes only data between September and April
due to data availability. Hatching in the top two rows indicates grid cells not included in the “perennial ice” mask, as data are missing from
at least one year in the 2018 to 2024 period. Freeboard and thickness data are the interpolated/smoothed variables.

Figure 3. Same as in Fig. 2 but for the (a–c) Southern Ocean total freeboard and (d–f) sea ice concentration.
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al., 2020). For sea ice concentration, multiple well estab-
lished sea ice concentration/area products exist (e.g., Boot-
strap: Comiso et al., 1997, NASA Team: Cavalieri et al.,
1996, and OSI SAF: Lavergne et al., 2019), which enables
such an approach, although this still has its limitations due to
the limited (typically three-product) sample size and the fact
that NASA Team data have a well reported low concentration
bias, especially in summer (Kern et al., 2019, 2022). Recent
efforts in other domains have explored the creation of obser-
vational ensembles to better sample the full product spread
(Lenssen et al., 2024); however, to our knowledge, no such
effort has been undertaken for any of the sea ice metrics used
here.

For this study, we instead estimate the basin-scale un-
certainty through an evaluation of published values in
SIMIP2020 and Roach et al. (2020). We use both a “high”
and “low” uncertainty estimate to explore the impact of
the observational uncertainty estimate on our model as-
sessments considering the challenge of prescribing observa-
tional uncertainty from these limited product “ensembles”.
For the passive microwave area, we use the assumption that
a 0.5 million km2 basin-mean sea ice area uncertainty rep-
resents a best-case “low” uncertainty, while 1 million km2

represents a less optimistic “high” uncertainty. Uncertainty
quantification is more challenging for the ICESat-2 total free-
boards due to the lack of alternative freeboard products avail-
able to assess the product spread. We instead provide “high”
and “low” uncertainty estimates based on a review of the rel-
evant literature. The primary validation of ICESat-2 sea ice
height and freeboard with coincident airborne altimetry data
from NASA’s Operation IceBridge shows very high accura-
cies in the sea ice heights and total freeboard errors (10 km
along-track means) of less than a few centimeters depending
on the methodology used, generally indicative that ICESat-2
was likely to satisfy the mission objectives of < 3 cm free-
board uncertainty at those scales (Kwok et al., 2019). No
summer Arctic or Antarctic validation analyses have been
completed to date. The summer Arctic is expected to pose
more challenges due to the presence of melt ponds but bene-
fits from more openings in the ice cover, reducing the need to
interpolate sea surface heights over large distances. In addi-
tion, an analysis of monthly mean sea surface height differ-
ences between coincident ICESat-2 and CryoSat-2 showed
overall mean differences of less than 1 cm (Bagnardi et al.,
2021). For our analysis, we proceed with the assumption that
a 1.5 cm basin-mean total freeboard uncertainty represents a
best-case “low” uncertainty, while 3 cm represents a less op-
timistic “high” uncertainty.

Winter ICESat-2 Arctic sea ice thickness uncertainty
quantification is a less direct measurement than using the
total freeboard, so the relative uncertainty increases signifi-
cantly through the introduction of additional input assump-
tions related to snow loading and bulk ice density. Inter-
comparisons of ICESat-2 and CryoSat-2 winter Arctic sea
ice thickness have been undertaken, showing mean differ-

Table 3. Hemispheric monthly mean observational uncertainty es-
timates applied in our study.

Variable Low High
uncertainty uncertainty

estimate estimate

Sea ice area (million km2) 0.5 1.0
Total freeboard (cm) 1.5 3.0
Winter Arctic sea ice thickness (cm) 15 30

ences in the mean monthly winter Arctic ice thickness of
∼ 10–30 cm between ICESat-2 and the various CryoSat-2
thickness estimates, similar to the comparisons with inde-
pendent ice draft estimates obtained from upward-looking
sonar in the Beaufort Sea (Petty et al., 2023c). Compar-
isons of monthly winter Arctic mean thickness estimates
between ICESat-2 and the Alfred Wegener Institute (AWI)
CryoSat-2/SMOS product have also been presented in re-
cent NOAA Arctic report cards (Meier et al., 2023, 2024),
showing similar basin-scale monthly mean differences. For
our analysis, we proceed with the assumption that a 15 cm
basin-mean winter Arctic sea ice thickness uncertainty rep-
resents a best-case “low” uncertainty, while 30 cm represents
a less optimistic “high” uncertainty estimate. These uncer-
tainty choices are summarized in Table 3.

2.2.5 Ancillary data

We use an Arctic Ocean region mask (Meier and Stew-
art, 2023) to analyze ICESat-2 data within an Inner Arctic
Ocean domain that includes the Central Arctic, Beaufort Sea,
Chukchi Sea, East Siberian Sea, Laptev Sea and Kara Sea, as
in Petty et al. (2023c, Fig. 5). Focusing on the Inner Arc-
tic avoids challenges of interpretation in the more marginal
seas of the Arctic and mitigates issues with more uncertain
marginal ice representation in the thickness observations, es-
pecially related to snow loading. We refer to these results
as “Arctic Ocean” throughout. We do not apply any regional
masking to the Southern Ocean analysis. In addition, region
masking is applied only to the ICESat-2 total freeboard and
thickness data, as the concentration data are considered more
reliable in the marginal zones. We discuss the impact of this
regional masking in the discussion.

2.3 Methods

2.3.1 Perennial ice masking

Our initial evaluations highlighted the challenge of model-
observation assessments related to contrasts in total free-
board and thickness data coverage, especially as the ICESat-
2 observations employ various filters, e.g., the 50 % con-
centration and 25 km coastal filter to improve data qual-
ity, and data drop-out due to environmental factors such as
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clouds. Spurious model performance was also observed in
the more marginal seas and in the comparisons of models
with vastly underestimated ice cover in certain seasons. To
enhance confidence in our ICESat-2 comparisons, we thus
employ a “perennial coverage” masking to both the freeboard
and thickness observations from ICESat-2 as follows:

– For the gridded freeboard/thickness observational data,
calculate the fractional grid-cell coverage over time for
each month across the 2018 to 2024 time period. Arctic
data for the area within the Inner Arctic Ocean region
described above are used.

– Flag grid cells as “perennial” if they include data every
year across our study period.

– Set all monthly model grid-cell freeboards and thick-
nesses to zero (instead of NaN) across valid regridded
ocean/sea ice grid cells.

– For every month, mask all model grid cells (set to NaN)
outside the perennial mask for the relevant metric.

– Calculate grid cells of the monthly, hemisphere mean
quantities for the observations and the models.

– Compute annual means by averaging the monthly
perennial means for each year.

– For the spatial comparisons, compare only data across
the “perennial” grid cells.

The impact of this perennial masking is that our annual
freeboard/thickness results are likely to be skewed high, as
the observations do not include regions of low-concentration
(< 50 %) ice. Clouds/data gaps are generally more likely in
the more marginal seas also. The freeboard/thickness anal-
ysis is thus more of an assessment of ice conditions where
we have consistent ICESat-2 data coverage. The assessment
of simulated sea ice coverage is addressed more comprehen-
sively with the passive microwave sea ice concentration/area
data, which provide full coverage data across both hemi-
spheres.

2.3.2 Internal variability and plausibility estimates

A climate model is not expected to exactly match the time pe-
riod of our own reality due to the impact of internal variabil-
ity. To characterize internal variability, we calculate, for each
model, the standard deviation of the given metric of interest
(e.g., total freeboard) averaged over the given region and the
time window of interest (e.g., annual mean or a given month
for the 2018 to 2024 ICESat-2 period) across all available
ensemble members. As in SIMIP2020, we apply the Bessel
correction to estimate an unbiased population standard de-
viation from a sample, accounting for the variable ensemble
size across CMIP6. To explore the sensitivity to ensemble
size and our chosen time period, especially for models with

low (or no) ensemble size, we also calculate 6-year running
means within a larger time window (starting years of 2015
through 2024, ensuring we analyze only the SSP2-4.5 runs
where the ensembles are consistent). We choose this window
size as a balance between the benefits of increased sampling
and the cost of increasing the likelihood of trend contamina-
tion. We additionally calculate a CMIP6 mean internal vari-
ability for each given metric by taking the mean internal vari-
ability across all models for those with at least five members.
We follow SIMIP2020 and define a plausible range as:

P =±2
√(
σ 2

int+ σ
2
obs
)
, (6)

where σint is the internal variability and σobs is the observa-
tional uncertainty. The factor 2 effectively provides a 95 %
plausibility window based on the observational uncertainty
and internal variability. In addition, following earlier CMIP
analyses (Olonscheck and Notz, 2017; Santer et al., 2008),
we calculate a model plausibility index as:

φ = (µmod+µobs)
/√(

σ 2
int+ σ

2
obs
)
, (7)

where µmod and µobs are the mean model and observational
quantities of interest. A plausibility index of 0 indicates per-
fect agreement between the model and observation, with
higher values in either direction, based on the direction of
the model bias, indicating worse agreement and lower plau-
sibility. We use this plausibility index to compare plausibility
across metrics.

2.3.3 Spatial assessments

For our freeboard and thickness spatial comparisons, we cal-
culate the mean absolute error (MAE) by comparing the
perennial grid-cell means between the observations and mod-
els. For area, we choose the sum absolute error (SAE) to ex-
press the results in units more consistent with the total area
metric. We then additionally estimate spatial internal vari-
ability, following the same approach as above, but at the grid-
cell level, following the approach of Schaller et al. (2011)
for regional precipitation assessments. The regional estimate
of internal variability is used to provide context to our re-
gional bias assessments. However, the ability of models to
accurately represent the regional manifestation of sea ice in-
ternal variability is unclear at best, so we provide this anal-
ysis with caution and do not use the spatial comparisons to
assess model plausibility explicitly. We use only the peren-
nial masked data in this analysis to increase confidence in
our comparisons. Due to the short time period and increas-
ing/uncertain role of internal variability in the spatial assess-
ments, we do not assess pattern correlation, as in other re-
gional assessments (Watts et al., 2021). We instead provide
a composite regional bias analysis to provide further insights
into typical spatial sea ice bias patterns simulated by CMIP6
models.
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3 Results

3.1 Bulk ice density and total freeboard analysis

We first assess bulk ice density and total freeboard across
the 17-model subset that provides direct outputs of ice free-
board. As discussed in Sect. 2.1, a key variable in the con-
version between ice thickness and freeboard is the bulk ice
density, which we estimate using the two methods described
in Sect. 2.1.: Method 1 using the provided variables of free-
board, snow depth and ice thickness and a prescribed snow
density of 330 kg m−3, and Method 2 using the sea ice mass
and volume outputs. Our initial analysis produced notably
high bulk ice densities close to that of pure seawater in the
ACCESS-CM2 model (see Fig. S5), especially in the Arc-
tic (Method 1/Method 2: 1005/940 kg m−3 for the Arctic and
955/975 kg m−3 for the Southern Ocean, both with signifi-
cant seasonal variability). We were unable to ascertain the
cause of these anomalously high densities and thus dropped
this model from the rest of our freeboard subset analysis. We
suspect an underlying error in how freeboard was calculated
in post-processing, as other key metrics did not display such
anomalous behavior.

In Fig. 4, we show estimates of bulk ice density (mean and
seasonal variability) for the reduced 16-model subset across
both the Arctic Ocean and Southern Ocean over our ICESat-
2 study period of 2018–2024. The Method 2 (simass/sivol,
Eq. 4) results all show no seasonality and fixed values of
900 kg m−3 (MRI-ESM2-0), 910 kg m−3 (MPI and CNRM
models) and 916 kg m−3 (the remaining models). Note that
CNRM-CM6-1-HR did not provide the needed output (Ta-
ble 2), but we expect it to feature the same density as the
other CNRM models. For Method 1 (ice freeboard/hydro-
static, Eq. 5), several models show no seasonal variability, as
ice density is simply fixed (no variable internal temperature
or salinity) in their model setup, and these values are gener-
ally consistent with the Method 2 results. However, several
Method 1 model estimates produce significant ice density
seasonality, which we expect is due to inclusion of a vari-
able internal ice temperature and a salinity physics scheme
in the more advanced sea ice models. Interestingly, the bulk
ice densities in the seasonally variable Method 1 models
are notably higher or lower than the Method 2 results and
the pure ice density value. More specifically, the CNRM
models produced densities of 898± 8 kg m−3 (Arctic) and
883±8 kg m−3 (Southern Ocean), whereas the MRI-ESM 2.0
model produced densities of ∼ 891± 2 kg m−3 (both hemi-
spheres, minimal seasonal variability), all consistently lower
than the Method 2 results and the pure ice/average bulk ice
densities across both hemispheres. In contrast, the CESM2
models produced densities of ∼ 925± 3 kg m−3 (both hemi-
spheres), and the NorESM2 models produced densities of
∼ 925± 3 kg m−3 (Arctic) and ∼ 922± 3 kg m−3 (Southern
Ocean), consistently higher than the respective Method 2
results and the pure ice/average bulk ice densities. Cen-

ters with multiple model configurations (CNRM, NorESM2
and CESM2) produced bulk ice densities largely consistent
across their respective configurations, as expected. At least
one modeling group (CESM2) confirmed there are effec-
tively two bulk ice densities in the model, with the Method 1
density reflecting the internal ice physics and the density
used in the freeboard calculation and the Method 2 densi-
ties based on fixed salinity/temperature, used in atmospheric
coupling assumptions (David Bailey, personal communica-
tion, 2025). We expect that similar discrepancies may be the
cause of the differences observed across the other models.

Also shown in Fig. 4 is the bulk ice density inferred
from the J22 empirical density parameterization applied to
ICESat-2 data for the Arctic only (September to April data
only due to thickness data availability), showing mean Arc-
tic bulk ice densities of∼ 931±3 kg m−3. These densities are
notably higher than the other estimates, although within the
seasonal range of the CESM2/NorESM2 model Method 1 re-
sults and similar to values for bulk density quoted in recent
studies (see discussion in Sect. 2.2.2). A more detailed as-
sessment/validation of the bulk ice density estimates is con-
sidered beyond the scope of this study considering the signif-
icant scale differences between GCMs and field studies. De-
spite the lack of consensus in methodology, the multi-model
annual mean from both methods across the 16-model sub-
set is 912–914 kg m−3, close to the pure ice bulk ice density
assumption (dashed line, discussed in Sect. 2.2).

Next, we briefly explore the impact of differences in bulk
ice density on estimates of total freeboard. In Fig. 5, we show
estimates of total freeboard from the 17-model subset from
both the direct total freeboard output (grid-cell mean snow
thickness added to the ice freeboard output) and with total
freeboard calculated as in Eqs. (2) and (3) using our own pre-
scribed estimate of bulk ice density (916 kg m−3). We also
show observational estimates of total freeboard from ATL20
(using the interpolated/smoothed and perennial analysis) for
reference; a more detailed plausible range assessment is pro-
vided in the following sections. The results in Fig. 5 show
multi-model annual mean total freeboards slightly lower than
ATL20 (22 cm vs. 27 cm annual means, respectively), with
negligible differences using the prescribed/fixed ice density
method compared to the direct output method (differences
of < 1–2 cm). Note that the ACCESS-CM2 model shows a
significant increase in freeboard when using the prescribed
ice density method, bringing those freeboards into much bet-
ter agreement with ATL20, further suggesting issues with the
underlying density/freeboard calculation. The MRI-ESM 2.0
model shows the biggest difference in total freeboard from
the two methods in the 17-model subset (∼ 3 cm difference),
with our prescribed density reducing the total freeboard esti-
mate, as this was the model with the lowest estimated bulk
ice density (∼ 890–895 kg m−3). The strength of the sea-
sonal cycle (the interannual variability contribution to the to-
tal monthly variability across this period is low; not shown)
appears broadly consistent between the models and ATL20
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Figure 4. Derived mean (a) Arctic Ocean and (b) Southern Ocean bulk sea ice density in the 16-model CMIP6 subset (models with available
freeboard, snow and ice thickness data, not including ACCESS-CM2). Circles indicate the annual mean for each model, and horizontal lines
show the standard deviation across months (a proxy for the seasonality). A 50 % SIC masking is applied before spatial averaging. The dashed
vertical black line shows the 916 kg m−3 “pure ice” bulk ice density assumption used in the IS2SITMOGR4 dataset. Also shown is the J22
ice density from IS2SITMOGR4, averaged between September and April 2018 to 2024.

Figure 5. Comparison of the mean (a) Arctic Ocean and (b) Southern Ocean total freeboard in the 17-model CMIP6 freeboard subset from
the ensemble mean total freeboard output (circles), derived total freeboard assuming a fixed density of 916 kg m−3 (triangles), and total
freeboard observations from ATL20 v4 (processed as discussed in Sects. 2 and 3) (red) for the ICESat-2 study period (November 2018-11 to
April 2024). Horizontal lines show the seasonal variability (monthly standard deviation).
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for the Arctic Ocean results (standard deviation of∼ 6 cm for
the multi-model mean and ATL20); however, in the South-
ern Ocean, the ATL20 monthly total freeboard variability
is noticeably lower (∼ 3 cm) compared to the multi-model
mean (∼ 6 cm for the multi-model mean). The prescribed
vs. variable bulk ice density freeboard estimates do not pro-
duce a significant difference in the strength of the freeboard
seasonal cycle. A more detailed plausibility assessment ac-
counting for observational uncertainty and internal variabil-
ity is provided in the following sections. Overall, this bulk
ice density and total freeboard analysis suggests the use of a
fixed bulk ice density to calculate and analyze total freeboard
across the wider 36-model subset that provides the necessary
outputs of sea ice thickness and snow depth (Table 2), in-
troduces only small additional uncertainty (< 1–2 cm), and
ensures consistency in the density approximation used be-
tween models and observational freeboard estimates. We dis-
cuss the implications of this approach and suggestions for the
wider community in the later discussion.

3.2 Plausibility assessments

Next, we explore the plausibility of the full CMIP6 suite,
utilizing total freeboard metrics in addition to sea ice area
across both hemispheres and winter Arctic sea ice thickness.
We undertake this analysis for annual means and the two
months that broadly represent the seasonal sea ice maximum
and minimum months (September and March), with sea ice
thickness data only included between September and April
in the annual means due to data availability, as discussed in
Sect. 2.2. To assess the plausibility of model output, we need
to consider both the internal variability and observational un-
certainty of our chosen metrics, which were discussed in de-
tail in Sect. 2. Our estimates of Arctic Ocean mean total free-
board internal variability for the March, September and an-
nual time periods for the 13 models with at least five ensem-
ble members are shown in Fig. 6.

Our results show a significant spread in internal variabil-
ity estimates across the different models, despite the appli-
cation of the Bessel correction to account for sample size,
with values ranging from ∼ 1 to 6 cm depending on the
CMIP6 model and time period of interest analyzed. A similar
spread was noted in previous studies (Notz & SIMIP Com-
munity, 2020; Roach et al., 2020). While the inter-model in-
ternal variability spread is high, the differences are largely
consistent across the three seasonal time periods. Using the
wider time window to increase sampling (2015 to 2029,
10 rolling 6-year time means) provided a moderate impact
on the internal variability estimates, with ∼ 1 cm higher val-
ues on average for the annual, March and September CMIP6
mean internal variability estimates. At the individual model
level, impact was highly variable, with some models show-
ing no significant change, most models showing a moder-
ate increase and UKESM1-0-LL especially showing a sig-
nificant increase. Our multi-model mean estimates of Arc-

tic Ocean total freeboard internal variability using the 2015–
2029 window are ∼ 2.5 cm (annual), 2.2 cm (March) and
3.6 cm (September). Similar multi-model internal variability
differences were found across our other metrics and hemi-
spheres, with the multi-model means for all metrics and time
periods summarized in Table 4. For the plausible range anal-
ysis below, we proceed with using the multi-model mean in-
ternal variability estimates in Table 4 applied to all models.
We include a discussion of this assumption in our summary
section below.

In Fig. 7, we show comparisons of the annual mean Arctic
Ocean total freeboard estimated from the 36-model CMIP6
subset (see Table 2), calculated using our prescribed bulk ice
density (916 kg m−3) with observational estimates of total
freeboard from ATL20 for our ICESat-2 study period (2018
to 2024). The analysis shows the ensemble mean for each
model with a plausibility window for each model calculated
following Sect. 2.3.1 based on both the high and low ob-
servational uncertainty estimates (Table 3) and multi-model
mean estimates of internal variability (Table 4). The mod-
els are ranked in order of the ensemble mean differences be-
tween the model and observation for the given metric. Over-
all, the multi-model CMIP6 mean Arctic Ocean total free-
board (26 cm) is similar to ATL20 (27 cm) but with a large
multi-model ensemble spread (∼ 7 cm). In general, there are
more models that are considered plausible (24), compared to
implausible (12), at the 2σ , 95 % confidence level. The use
of a high uncertainty estimate (3 cm instead of 1.5 cm) im-
pacts the potential plausibility of 4 of the mid-lower-ranked
models.

Also shown in Fig. 7 is the mean absolute error (MAE)
in the grid-cell annual mean total freeboard for each model
vs. ATL20, which captures the regional differences in the
time-mean total freeboard between the models and obser-
vations. Regional-scale comparisons of climate model out-
puts are challenging and require deeper consideration of in-
ternal variability and model expectations, so we use ensem-
ble mean spatial comparisons for added context of poten-
tial offsetting biases rather than as a plausibility constraint.
The results show a multi-model MAE of ∼ 8 cm compared
to the < 1 cm spatial-mean multi-model mean difference,
highlighting the significant role of off-setting regional dif-
ferences. The non-monotonic increase in MAE down the
hemisphere-mean difference ranked models alludes to the
challenges of hemisphere-scale mean comparisons, although
the lowest-ranked models still generally show higher MAE
compared to the higher-ranked models, alluding to consis-
tent hemisphere-scale biases in those models. We provide a
more detailed plausibility assessment of regional biases in
Sect. 3.3.

In Fig. 8, we show the same annual mean total freeboard
plausibility analysis but for the Southern Ocean. In this case,
the 37-model mean Southern Ocean total freeboard (16 cm)
is significantly lower than ATL20 observations (26 cm) and
exhibits a more significant multi-model ensemble spread (∼
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Figure 6. Estimates of internal variability (1 ensemble standard deviation, with Bessel correction) of Arctic Ocean total freeboard from
ATL20 v4 (processed as discussed in Sects. 2 and 3) for the (a) annual, (b) March and (c) September periods for the 6-year mean over
the ICESat-2 study period 2018–2024 (black lines) and running means across the longer 2015–2029 period (red crosses) for all the CMIP6
models with at least five ensemble members. Multi-model CMIP6 mean values are shown on the right.

Table 4. CMIP6 mean internal variability estimates (1 standard deviation) calculated across ensemble members and 10 rolling 6-year means
over the period 2015–2029 for the different metrics of interest across the CMIP6 multi-model subset with at least five ensemble members.
Note that we do not analyze Southern Ocean sea ice thickness in this study and that the Arctic annual mean thickness estimate does not
include data between May and August (based on IS2SITMOGR4 data availability). Total freeboard CMIP6 mean values are shown in Fig. 6.

Metric Hemisphere Annual March September

Sea ice area (106 km2) Arctic Ocean/Southern Ocean 0.38/0.31 0.35/0.17 0.54/0.45
Total freeboard (cm) Arctic Ocean/Southern Ocean 2.4/1.0 2.3/3.3 3.6/1.1
Sea ice thickness (m) Arctic Ocean 0.16/X 0.15/X 0.29/X
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Figure 7. (a) Comparisons of annual mean (2018 to 2024) Arctic Ocean total freeboard estimates from the 37-model CMIP6 subset (ensemble
means, using a fixed ice density) and observations from ICESat-2 ATL20 v4 (processed as discussed in Sects. 2 and 3). Horizontal lines on
each model show the plausibility window based on internal variability and both the low (bars) and high (whiskers) observational uncertainty
estimates. The red circle and vertical red line shows the ATL20 observational mean. ES: ensemble spread. (b) Mean absolute error (MAE)
of the spatial differences across the 25 km× 25 km grid cells.

Figure 8. Same as in Fig. 7 but for the Southern Ocean.

9 cm). In general, there are more model estimates of Southern
Ocean total freeboard that are considered implausible (29),
compared to plausible (7) at the 2σ , 95 % confidence level.
The use of the high observational uncertainty estimates re-
sults in only three more models being considered plausible
at this confidence level. This result was widely expected con-
sidering the strong sea ice biases reported in earlier Southern

Ocean CMIP6 analyses (Roach et al., 2020). The Southern
Ocean total freeboard MAEs are also higher than the Arc-
tic (∼ 14 cm multi-model mean). The strong overall negative
bias across most of the CMIP6 models still appears to dom-
inate the MAE contribution but is again explored more in
Sect. 3.3.
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Figure 9. Plausibility assessment of the full 40-model CMIP6 suite for the individual model ensemble means and the multi-model CMIP6
mean (top row) across all metrics, time periods and hemispheres. The plausibility index (φ) is calculated as in Eq. (7) using the 2015–2029
internal variability estimates and observational uncertainties listed in Table 3 (low uncertainty for the Arctic, high for the Southern Ocean).
Models are sorted by the average φ across all values shown, with the four models missing freeboard/thickness output included at the bottom
and the CMIP6 mean included at the top. Lower values are considered more plausible. Values of φ greater than 3 are outlined in black.

Figures showing the same plausibility analysis for both
hemispheres across all other metrics and selected months
(September and March) are provided in the Supplement
(Figs. S6 to S18). We instead summarize results from all
15 combinations of metrics, time periods and hemispheres
into a single analysis to more efficiently assess CMIP6 model
performance. For this analysis, we use the plausibility index
described in Sect. 2.3.1. that represents the plausibility of a
given model’s ensemble mean for the given metric consider-
ing internal variability, observational uncertainty and the di-
rection of the overall model observation bias. For the South-
ern Ocean analysis, we use the “high” observational uncer-
tainty estimate due to added observational complexities dis-
cussed earlier and noted in our comparisons and to ensure
more models can be included in a constrained subset analy-
sis.

This plausibility index analysis is shown in Fig. 9, with
models ranked by the mean plausibility index averaged
across all 15 different assessment combinations (columns in
Fig. 9). We also highlight the models and metrics where the
plausibility index is>±3, which is equivalent to a 99 % con-
fidence level that we can consider those models implausi-
ble based on our chosen criteria. Four of the models do not
provide freeboard/thickness output and are thus included at
the bottom of the figure. The CMIP6 model ensemble mean
results show some of the best plausibility scores, including
plausibility indices< 2 for all Arctic Ocean metrics. This
analysis provides further evidence that the common approach
of utilizing multi-model means for sea-ice-related projec-
tions can provide significant benefits in reducing model bi-
ases compared to analyzing any individual model. The results
generally show better performance in the Arctic Ocean rela-
tive to the Southern Ocean, consistent with the results from
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prior foundational CMIP6 analyses (Notz & SIMIP Commu-
nity, 2020; Roach et al., 2020). We also observe more im-
plausible results in September compared to the March and
annual mean results. This seasonal dependence of plausibil-
ity is especially strong for total freeboard but also notable for
thickness and area, though to a lesser extent. For the South-
ern Ocean results, we generally observe higher plausibility
indices (less plausible) across both area and total freeboard
variables as expected. Only one model, ACCESS-ESM1-5,
produces a plausibility index< 3 for all 15 of our chosen
metrics.

Several models show plausible results for all metrics ex-
cept one, most frequently the March Southern Ocean total
freeboard, and all four of these models show similar negative
plausibility indices (−3.1 to −3.5), indicating a slight neg-
ative model freeboard bias in austral summer. It is also in-
teresting to note that the March Southern Ocean area results
(around the Antarctic sea ice minimum) are typically con-
sidered more plausible than the September and annual mean
results, but this pattern generally reverses for freeboard. This
result is driven partly by the low sea ice coverage in Southern
Ocean sea ice in March limiting the magnitude of the bias
and also our estimates of internal variability, especially for
area – the lower the internal variability, the lower the plau-
sibility threshold. This analysis raises important questions
about the ability of current climate models to reasonably con-
strain more seasonal internal variability estimates, especially
for low sea ice months when non-linear/non-Gaussian vari-
ability is likely. We discuss these concerns more in Sect. 4.

Overall, this combined plausibility analysis provides what
we consider a useful framework for evaluating sea ice model
output using a series of metrics and relevant observations.
Caution should be used in applying such plausibility results,
however, as the results are sensitive to choices regarding in-
ternal variability and observational uncertainty, as well as
our chosen metrics. Model plausibility and constraint assess-
ments depend ultimately on the overall goal. In the following
section, we provide an example of CMIP6 model constraints
based on this plausibility analysis, focusing on constraining
modern-era CMIP6 sea ice simulations.

3.2.1 Impacts of model plausibility constraints

In Fig. 10, we show the impact of plausibility constraints
on CMIP6 estimates of the seasonal cycle in sea ice vol-
ume across both the Arctic and Southern Ocean. The same
plot but for the individual metrics of sea ice area, total free-
board and thickness is shown in the Supplementary Infor-
mation (Fig. S19). The constrained model subset is gener-
ated independently for each hemisphere, with the assump-
tion being that a model that performs well in one hemisphere
should not be used to judge performance in the other hemi-
sphere due to differences in priorities and model develop-
ment efforts. We produce the constrained subsets in this ex-
ample using just the annual mean plausibility indices and re-

Figure 10. Seasonal CMIP6 ensemble mean sea ice volume (lines
and circles) and ensemble spread (shading, 1 standard deviation)
from the unconstrained 36-model subset (black), the annual area
constrained subset (blue), and the subset constrained with all con-
sidered annual variables, including area and freeboard for both
hemispheres and sea ice thickness for the Arctic only (red).

quire a model to have a plausibility index< 3 for all available
variables (area, total freeboard and thickness for the Arctic;
area and freeboard for the Southern Ocean). We repeat this
analysis for just the area metric, then for area, freeboard and
thickness (thickness for the Arctic only) to assess the relative
benefits of ICESat-2 data in this example constraint analysis.
The goal is to explore how our plausibility constraints im-
pact the CMIP6 multi-model mean and spread, and we focus
here on the longer 2015 to 2035 time period. For the Arctic
Ocean, this results in an area constrained subset of 31 mod-
els and an area, freeboard and thickness constrained subset
of 27 models. For the Southern Ocean, this results in an area
constrained subset of 21 models and an area and freeboard
constrained subset of 14 models. We do not include the four
models that provide only area (see Table 2) in either subset.

For the Arctic, the area constrained volume seasonal cy-
cle shows a similar inter-model spread (shading in Fig. 10)
and a slight increase in sea ice volume (∼ 1× 103 km3)
across all months. When constraining also with freeboard
and thickness, the inter-model spread reduces considerably
(by ∼ 50 %), and the volume across all months becomes
slightly lower (∼ 0–1×103 km3) than even the unconstrained
volumes, especially in summer. For the Southern Ocean, the
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area constrained volume seasonal cycle shows a reduced
inter-model spread (again by ∼ 50 %) and a more signif-
icant increase in sea ice volume across all months (∼ 1–
4×103 km3), especially in austral winter. When constraining
also with freeboard, the inter-model spread shows a small
extra reduction in some months, and the volume shows a
slight additional increase compared to the area constrained
results (0–1× 103 km3). Constraining models also with the
March and September Arctic Ocean plausibility results (< 3,
not shown) results in bigger changes in the shape of the
inter-model seasonal cycle and closer alignment with the ob-
served seasonal cycles (shown in Fig. S19), including an in-
crease in Arctic total freeboard in early fall, but at the cost of
lower model ensemble size and the significant risk of overfit-
ting. For the Southern Ocean, only three models (ACCESS-
ESM1.5, AWI-CM-1-1-MR and MRI-ESM2-0) pass all sea-
sonal Southern Ocean metrics, which was not deemed suffi-
cient to determine a constrained model subset.

Overall, this basic analysis highlights the significant addi-
tional impact of constraining CMIP6 output with ICESat-2
freeboard and thickness estimates compared to sea ice area.

3.3 Regional plausibility assessments

We primarily explored hemisphere-mean comparisons in the
preceding sections, but larger differences can be observed
when analyzing model differences at more regional scales.
Comparing models and observations at the grid-cell level can
be misleading, as fully coupled climate model runs are not
intended to perfectly capture our current reality but instead
simulate expected climatic conditions within, ideally, a rea-
sonable range of expected internal variability. To explore the
ideas of regional plausibility, we follow the approach of other
studies (e.g., Schaller et al., 2011) and attempt to character-
ize internal variability at the grid scale, towards a regional
plausibility assessment as described in Sect. 2.3.3. As we as-
sume the observational uncertainties in the hemisphere-mean
analysis were driven primarily by biases or systematic error
in the observations, we apply these same error estimates at
each grid cell as a first-order uncertainty approximation. In
reality, we expect a more complex regional combination of
different error contributions.

Figure 11 shows maps of the annual Arctic Ocean total
freeboard difference between the 36-model CMIP6 subset
and ATL20. The areas with hatching indicate regions that
are considered implausible based on the regional plausibil-
ity index. The regional internal variability estimate calcu-
lated from the CMIP6-mean ensemble spread from models
with at least five ensemble members is shown also (2 stan-
dard deviations), showing a mean value of ∼ 4–8 cm across
the Arctic, with some small increases along the coast/ice
edge. Note again that the 3 cm total freeboard uncertainty
is added to this internal variability to produce the regional
plausibility threshold. The models are ranked by the over-
all MAE and help visualize the regional contributions to

the overall bias and regions of implausibility. In the better-
performing models, specific regions appear with some con-
sistency across the models, including a few models with
negative freeboard anomalies in the thicker Central Arctic
regime along the Greenland/Canadian Arctic coast, as well
as the Chukchi Sea, and some models with positive anoma-
lies north of Greenland and the Beaufort Sea. Many of these
regions represent key dynamical features of the Arctic sea
ice cover, e.g., the Beaufort Gyre (Petty et al., 2016) and the
Wandel Sea (Schweiger et al., 2021), and allude to deficien-
cies in atmospheric dynamics (e.g., wind forcing).

For the lower-performing models, the regions of implausi-
ble bias extend further across the Arctic and allude to broader
thermodynamic drivers of the biases. A full thermodynam-
ic/dynamic accounting for the regional differences is consid-
ered beyond the scope of this study but could form the basis
of future model development evaluation methods. Difference
maps of the remaining Arctic Ocean metrics are shown in
the Supplementary Information (Figs. S20–S31). In general,
the sea ice area biases are more prevalent in the marginal
seas, especially in March, as expected, while the regional
distribution of biases and implausibility in thickness align
closely with these total freeboard results, further highlight-
ing the potential for total freeboard to provide useful regional
diagnostics as a proxy for thickness biases. Similar regional
bias patterns in CMIP6 models were observed in Watts et
al. (2021), which included comparisons to CryoSat-2 and the
earlier ICESat mission.

We next use regional composites, grouping the models
based on the biases measured within the Eastern and/or West-
ern Arctic (denoted by the dashed line in Fig. 11 from 60° E
to 120° W), to highlight the predominant regional manifes-
tations in freeboard and thickness biases seen in our spatial
difference maps. Figure 12 shows composite maps and differ-
ence plots based on different combinations of the direction of
the total Eastern Arctic (East) vs. Western Arctic (West) bias
for both freeboard and thickness (annual means). Note that
for this annual mean Arctic Ocean total freeboard compari-
son, there were no models that showed a −East and +West
bias.

For freeboard, nine models feature a +East and -West
bias, 11 models feature a +East and +West bias, and
17 models feature a−East and−West bias. The+East and -
West bias models show generally consistent freeboard across
the Arctic and thus fail to capture the strong gradient from
the Western Arctic to the East, while the other model com-
posites show a clear West to East freeboard gradient but with
freeboards that are either too high or too low on average. For
the−East and−West models, the models show better agree-
ment with observations in the Beaufort Sea region on average
but with no clear agreement across the models, again sugges-
tive of unique dynamical challenges for models in this region.
The sea ice thickness (September through April) bias com-
posites show virtually identical spatial composite difference
patterns and model agreement relative to the freeboard re-
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Figure 11. Total freeboard difference of the 2018 to 2024 annual mean for each CMIP6 model (ensemble mean) relative to ATL20 v4
(processed as discussed in Sects. 2 and 3). Areas with hatching indicate regions that are considered implausible based on the regional
plausibility index analysis. Models are shown in order of lowest (top left by row) to highest mean absolute error (MAE). The dashed line
(50° E and 130° W meridians) is used for the eastern and western sector analysis. Note that only model grid cells within our Inner Arctic
Ocean domain and that are “perennially ice-covered” in ATL20 v4 are included here. The final panel shows our estimate of CMIP6 mean
regional internal variability (2 standard deviations, Sect. 2.3.3).

sults, with only small differences in the distribution of mod-
els across the three composites. Composite maps for both
September and March are provided in the Supplementary In-
formation (Figs. S32 and S33), which show similar regional
patterns and model composites, with reduced coverage and
more models showing a −East and −West bias in Septem-
ber.

In Fig. 13, we show the annual mean total freeboard dif-
ference analysis for the Southern Ocean. The mean internal
variability is similar to the Arctic (∼ 4–8 cm), with the high-

est values in the western Weddell Sea, where the ice is gener-
ally thickest in the models. As shown in our basin-scale anal-
yses, the Southern Ocean results exhibit larger overall biases
compared to the Arctic. However, Southern Ocean sea ice is
also generally considered more regionally variable, with sig-
nificant regional differences in climate driven by its unique
geography (where the sea ice pack surrounds the continent
of Antarctica and covers three different ocean basins) pro-
viding further motivation for such regional assessments. As
in the Arctic analysis, there are strong differences across the
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Figure 12. (a–d) Annual multi-model CMIP6 ensemble mean total freeboard for all models (a) and then composites based on their East/West
bias pattern (b–d). (e–h) Top row minus the ATL20 v4 annual mean total freeboards (processed as in Sects. 2 and 3). (i)–(p) show the same
but for September to April Arctic sea ice thickness from CMIP6 and differences with IS2SITMOGR4 v3 thickness data. Stippling indicates
where at least 80 % of the models in the respective composite agree with the sign of the difference.

models where the freeboard biases manifest but also some
evidence of problem areas, including the Weddell Sea and
other shelf sea regions. It is also interesting to note the sig-
nificant number of models that show an overall negative bias
relative to the observations everywhere except the Ross Sea,
a region of thin ice and strong wind-driven polynya activity.

We also observe more consistent negative model biases
along the ice edge in the Southern Ocean analysis. These
“biases” should be treated with more caution, as wave con-
tamination along the ice edge is a known issue with ATL20
(data are masked below 50 % concentration to try and mit-
igate this) and is expected to impact the Southern Ocean
more than the Arctic due to stronger wave activity (Horvat
et al., 2020). In addition, significant implausible negative bi-
ases are observed around the Antarctic coastline in several
models, which should be a source of future model develop-

ment focus. In an additional analysis (not shown), we con-
firmed this was present across the native model grids and not
introduced in our regridding step. In Fig. 14, we repeat the
composite analysis, but as there was no clear longitudinal de-
pendence on the biases, we simply group the models based
on the overall direction of the mean bias. For the seven mod-
els with positive bias, there is general agreement on the re-
gional pattern of the bias within the ice pack; however, the
negative differences around the coast and the ice edge appear
more model-specific. The 30 models with negative bias are
consistently negative except for the Ross Sea and the eastern
Weddell Sea. These again suggest issues with the underlying
dynamics and the response to large-scale circulation or the
simulated internal variability not fully capturing the regional
patterns that would alter the plausibility of the observed bi-
ases. September and March composite maps are also shown
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Figure 13. Same as in Fig. 11 but for the Southern Ocean.

in the Supplementary Information (Figs. S34 and S35), with
the September results showing similar regional distributions,
while the limited ice cover in March significantly reduces the
value of the regional analysis.

4 Discussion

Sea ice bulk density has long been a source of uncertainty in
remote sensing efforts and has arguably not been an explicit
focus of global sea ice modeling efforts to date. However, as-
sessments of freeboard and the introduction of variable den-
sity schemes provide motivation to increase documentation
and focus on the underling sea ice density assumptions or
parameterization schemes used. More direct outputs of free-
board and assessments of these outputs instead of our own
derived freeboards could additionally help mitigate the un-
certainty introduced by our own density choices. Recent ob-

servational analyses have also alluded to significant increases
in bulk ice density compared to historical estimates, linked
especially to the thinner and younger Arctic sea ice pack, but
also potential issues with prior data collection campaigns and
interpretation (Jutila et al., 2022; Salganik et al., 2025; Shi et
al., 2023; Zhou et al., 2024). This trend could continue as the
Arctic (and perhaps Southern Ocean) ice pack continues to
thin and lose older ice, so models with variable and realistic
density parameterizations (based on prognostic internal tem-
perature and salinity) calibrated to current-day observations
are encouraged.

Uncertainty quantification in remotely sensed sea ice prod-
ucts continues to be a challenge. We provide one basic ap-
proach (high vs. low fixed uncertainty estimates based on
a literature review) and hope that more community engage-
ment and consensus can be undertaken in the near future.
Uncertainty quantification needs to include a full accounting
of possible error sources, including sampling/representation
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Figure 14. Same as in Fig. 11 but for the Southern Ocean freeboard. No regional bias composite is shown – only composites where basin-
averaged differences from ATL20 v4 are either positive or negative.

errors. The ongoing ESA-funded Sea Ice-thickness prod-
uct iNter-comparison eXerciSe (SIN’XS) initiative (https://
sinxs.noveltis.fr, last access: 12 September 2025) aims to in-
crease community focus on this issue. In addition, ensemble-
based methods would provide a more robust framework for
assessing observational uncertainty and provide important
insights into the regional uncertainty estimates. Increased de-
velopment and uncertainty estimates of the freeboard and
thickness products in more marginal ice regimes are urgently
needed, especially in the Southern Ocean, where some of the
model biases were more questionable. Sea ice reanalysis sys-
tems or fusion with other sensors is urgently needed.

The current time period of ICESat-2 freeboard and thick-
ness data (2018 to 2024 at the time of writing) is short and not
representative of typical climate timescales used in model as-
sessment efforts. The short period increases the contribution
of internal variability and the challenge of quantifying in-
ternal variability across our chosen metrics, especially from
models with lower ensemble member counts and significant
model biases. Our utilized method demonstrates a potential
approach in the absence of longer time series (an increased
window around our current time period), with the benefit of
limiting trend contamination. More years of observational
data can both increase confidence in our internal variability
estimates and reduce its contribution to overall uncertainty,
with important implications for our plausibility assessments.
We hope future work towards integration of sea ice altime-
try data from NASA’s ICESat (2003 to 2008) and ESA’s
CryoSat-2 (2010 to present) mission, together with advances
in sea ice reanalyses, will provide important benefits here.
Longer records will also enable assessments of thickness and
volume trends, especially for the Arctic, where we have more

confidence in the snow loading inputs. Regardless of the time
period, different models can produce very different internal
variability estimates, which provides a further challenge and
source of uncertainty we need to consider more in future
work. Utilizing independent large ensembles for constrain-
ing internal variability independent of the CMIP6 suite is an
alternative approach worth exploring. The ability of models
to accurately capture regional internal variability is question-
able, which prevents us from more confidently prescribing
implausible regional biases in the models.

The summer assessments were more challenging to de-
cipher due to the bigger role of coverage issues and differ-
ences between the models and observations. We employed a
“perennial” ice masking approach to mitigate coverage issues
and improve the robustness of those comparisons, but com-
paring biases of global climate models in these small regions
poses additional questions, e.g., how much should we expect
climate models to simulate these more fractional ice packs?
Other studies have mitigated this to some degree by focus-
ing more on the strength of the seasonal cycle (Massonnet
et al., 2012), which could be worth considering. Similarly,
understanding seasonal snow evolution and biases and how
they relate to our seasonal biases in freeboard and thickness
would provide a logical next phase of this study.

Our regional analysis provided new insights into how to-
tal freeboard can be used to diagnose regional sea ice biases
in models, with our east–west composite analysis provid-
ing a simple framework for assessing and grouping models.
Increased focus on regional sea ice internal variability esti-
mates in large ensembles should be explored to enhance con-
fidence in the regional plausibility results. East–West Arc-
tic Ocean sea ice thickness anomalies have been discussed
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in previous studies, with links to large-scale atmospheric
dynamics including the North Atlantic Oscillation (NAO)
(Zhang et al., 2000), which could help diagnose the cause of
regional biases across models. Understanding the underlying
drivers of bias was considered beyond the scope of this study.
The Southern Ocean reanalysis results were more mixed and
not as clearly divisible by region or longitude. More sophisti-
cated machine learning tools, e.g., principal component anal-
ysis or self-organizing maps, could provide more insight into
the dominant regional sea ice bias patterns in the Southern
Ocean.

Model calibration efforts depend crucially on the research
question posed. Our study focused on plausibility method-
ologies and the potential benefits of ICESat-2 sea ice altime-
try data for evaluating global climate model outputs of sea
ice, with a brief demonstration of the impact on constraining
seasonal cycles in sea ice volume across both hemispheres.
We used the hemisphere-mean plausibility scores in a sim-
ple exclusion subset approach, but weighting based on these
scores is an alternative option. Additional work could explore
the resultant impact of our constrained/plausible subset on
associated metrics including surface atmosphere–ice–ocean
fluxes and sea ice freshwater fluxes within and out of the po-
lar regions, building on previous CMIP6 studies (Keen et al.,
2021; Zanowski et al., 2021). In addition, we hope that these
shorter-time-period mean observational data constraints can
provide added benefits when combined with more commonly
used plausibility metrics (e.g., sea ice sensitivity to tempera-
ture over the multi-decadal time period) and/or recalibration
approaches (e.g., Bonan et al., 2021) to provide better con-
strained longer-term CMIP6 sea ice predictions across met-
rics. Again, this is something we hope to explore in future
work with the community.

Finally, assessments of forced sea ice–ocean models, re-
gional models or sea ice/ocean reanalyses could benefit
from similar freeboard/thickness diagnostics presented in
this study. The increased emphasis on accuracy and agree-
ment with observations would mitigate internal variability
considerations and increase focus on the observational uncer-
tainty estimates and associated issues, including representa-
tion error. We chose to focus here on fully coupled climate
models to explore the various additional issues introduced by
the coupled model systems, e.g., the benefit of a large spread
in model configurations and outputs, and the challenge of in-
ternal variability attribution and contribution. Models with
sea ice embedded in the ocean (instead of the levitating as-
sumptions typical of GCMs) may have additional motivation
to assess and constrain freeboard.

5 Conclusions

This study provided a comprehensive evaluation of sea
ice simulations from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) using ICESat-2 altimetry observa-

tions, in addition to sea ice area from passive microwave,
introducing new insights into model plausibility and con-
straints. Freeboard comparisons benefit from accurate obser-
vations by satellite laser altimetry and motivate increased fo-
cus on bulk sea ice density. The short record increases the
challenge in internal variability assessments, which gener-
ally contributed more than our observational uncertainty es-
timates to our plausibility metrics. While CMIP6 Arctic sea
ice simulations showed reasonable agreement with ICESat-2
freeboard and thickness data, especially for the multi-model
mean, more significant biases were present in the Southern
Ocean CMIP6 models, as was largely expected from previ-
ous studies. We adopted a similar plausibility approach at
the grid scale to highlight the regional manifestation of these
model biases and potential regions of implausibility across
the models. An east–west composite approach highlighted
the consistent model agreement in the types of regional bi-
ases observed, often linked to key dynamical features of the
ice cover. The regional Southern Ocean analysis was more
mixed and could benefit from additional analysis to find con-
sistent patterns of agreement/plausibility.

We demonstrated an example of our plausibility con-
straints on the seasonal cycles in both Arctic and Southern
Ocean sea ice volume, with the freeboard and thickness data
providing crucial additional impacts over the standard area
constraints in terms of the mean monthly values and inter-
model spread, highlighting the role ICESat-2 data can play
in CMIP6 model evaluation and constraint.

Future research should prioritize improved uncertainty
quantification and expanded assessments of associated met-
rics in the constrained analysis. More years of data from
ICESat-2 and leveraging altimetry data from prior and on-
going satellite missions, e.g., NASA’s original ICESat mis-
sion and ESA’s CryoSat-2, could increase the utility of the
freeboard and thickness constraints presented here. The study
also emphasizes the importance of addressing challenges in
regional sea ice dynamics, which could form the basis of fu-
ture model development assessments. With the upcoming re-
lease of CMIP7, we suggest that these new assessment con-
cepts can be utilized in tandem with more traditional assess-
ment methods to better constrain current and future variabil-
ity in sea ice and their associated climate impacts.

Code availability. We provide a Jupyter Notebook on
GitHub under the MIT license (https://github.com/
cjcardinale/CMIP6-ICESat2-SeaIce-Petty-2025, last ac-
cess: 12 September 2025) and archived on Zenodo
(https://doi.org/10.5281/zenodo.15849468, Cardinale and Petty,
2025) that showcases the primary aspects of our analysis workflow:
code to access our wrangled/regridded CMIP6 data and observa-
tions from AWS S3, code to estimate internal variability and model
plausibility indices, and code to produce key figures shown in the
paper.

https://doi.org/10.5194/gmd-18-6313-2025 Geosci. Model Dev., 18, 6313–6340, 2025

https://github.com/cjcardinale/CMIP6-ICESat2-SeaIce-Petty-2025
https://github.com/cjcardinale/CMIP6-ICESat2-SeaIce-Petty-2025
https://doi.org/10.5281/zenodo.15849468


6336 A. Petty et al.: Constraining CMIP6 sea ice simulations with ICESat-2

Data availability. CMIP6 data in the cloud can be accessed us-
ing the intake.open_esm_datastore( ) function from the intake-esm
Python package, available on GitHub under an Apache-2 license
(https://github.com/intake/intake-esm (currently at v2025.2.3),
last access: 12 September 2025) and archived on Zenodo
(https://doi.org/10.5281/zenodo.14816755, Banihirwe et al., 2025).
The following JSON files served as our data catalogs:

– Sea ice freeboard data: https://storage.googleapis.com/cmip6/
cmip6-pgf-ingestion-test/catalog/catalog.json (last access:
12 September 2025)

– All other CMIP6 variables: https://cmip6-pds.s3.amazonaws.
com/pangeo-cmip6.json (last access: 12 September 2025)

We used both the intake-esgf and esgf-pyclient packages, which
provide a Python interface for searching and accessing datasets
from ESGF, including CMIP6 data hosted on-prem. The intake-
esgf package is available on GitHub under a BSD-3-Clause license
(https://github.com/esgf2-us/intake-esgf (currently at v2025.6.6),
last access: 12 September 2025) and archived on Zenodo (Col-
lier et al., 2025). The esgf-pyclient package is available on
GitHub under a BSD-3-Clause license (https://github.com/ESGF/
esgf-pyclient (currently at v0.3.1), last access: 12 September 2025).
Both packages allow users to query ESGF metadata, filter search
results and retrieve URLs for downloading netCDF files. We ac-
cessed the CMIP6 data through the Lawrence Livermore National
Laboratory (LLNL) ESGF node and the following URL: https:
//esgf-node.llnl.gov/esg-search (last access: 12 September 2025).
Data can then be loaded via OPeNDAP and the Xarray Python Li-
brary.

We use both final (OSI-450-a, up to 2020,
https://doi.org/10.15770/EUM_SAF_OSI_0013, OSI SAF,
2022a) and interim (OSI-430-a, 2021 onwards,
https://doi.org/10.15770/EUM_SAF_OSI_0014, OSI SAF,
2022b) OSI SAF sea ice concentration data, which can be accessed
from the THREDDS Data Server hosted by the Norwegian Mete-
orological Institute and loaded via OPeNDAP with the following
example URLs:

– OSI-450-a: https://thredds.met.no/thredds/catalog/osisaf/met.
no/reprocessed/ice/conc_450a_files/monthly/catalog.html
(OSI SAF, 2022a)

– OSI-430-a: https://thredds.met.no/thredds/catalog/osisaf/
met.no/reprocessed/ice/conc_cra_files/monthly/catalog.html
(OSI SAF, 2022b)

ATL20 total freeboard data (we use Version 4 in this
study) are hosted officially through the NSIDC at
https://doi.org/10.5067/ATLAS/ATL20.004 (Petty et al., 2023a).

ICESat-2 IS2SITMOGR4 sea ice thickness data (we use Ver-
sion 3 in this study) are hosted officially through the NSIDC at
https://doi.org/10.5067/ZCSU8Y5U1BQW (Petty et al., 2023b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-6313-2025-supplement.
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