Articles | Volume 18, issue 18
https://doi.org/10.5194/gmd-18-6295-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-6295-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FastCTM (v1.0): Atmospheric chemical transport modelling with a principle-informed neural network for air quality simulations
Huayun Sounding Meteorological Technology Co. Ltd., Beijing 102299, China
Key Laboratory of Intelligent Meteorological Observation Technology, Beijing 100081, China
China Meteorological Administration Xiong'an Atmospheric Boundary Layer Key Laboratory, Xiong'an, 071000, China
Ran Huang
CORRESPONDING AUTHOR
Hangzhou AiMa Technologies, Hangzhou, Zhejiang 311121, P.R. China
Nanjing AiMa Environmental, Nanjing, Jiangsu 210000, P.R. China
Xinlu Wang
Hangzhou AiMa Technologies, Hangzhou, Zhejiang 311121, P.R. China
Weiguo Wang
SAIC, at Environment Modelling Center, NOAA/National Centers for Environmental Prediction, College Park, Maryland 20740, United States
Yongtao Hu
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
Related authors
Baolei Lyu, Ran Huang, Xinlu Wang, Weiguo Wang, and Yongtao Hu
Geosci. Model Dev., 15, 1583–1594, https://doi.org/10.5194/gmd-15-1583-2022, https://doi.org/10.5194/gmd-15-1583-2022, 2022
Short summary
Short summary
Data fusion is used to estimate spatially completed and smooth reanalysis fields from multiple data sources of observations and model simulations. We developed a well-designed deep-learning model framework to embed spatial correlation principles of atmospheric physics and chemical models. The deep-learning model has very high accuracy to predict reanalysis data fields from isolated observation data points. It is also feasible for operational applications due to computational efficiency.
Baolei Lyu, Ran Huang, Xinlu Wang, Weiguo Wang, and Yongtao Hu
Geosci. Model Dev., 15, 1583–1594, https://doi.org/10.5194/gmd-15-1583-2022, https://doi.org/10.5194/gmd-15-1583-2022, 2022
Short summary
Short summary
Data fusion is used to estimate spatially completed and smooth reanalysis fields from multiple data sources of observations and model simulations. We developed a well-designed deep-learning model framework to embed spatial correlation principles of atmospheric physics and chemical models. The deep-learning model has very high accuracy to predict reanalysis data fields from isolated observation data points. It is also feasible for operational applications due to computational efficiency.
Xiang Zhong, Shaw Chen Liu, Run Liu, Xinlu Wang, Jiajia Mo, and Yanzi Li
Atmos. Chem. Phys., 21, 4899–4913, https://doi.org/10.5194/acp-21-4899-2021, https://doi.org/10.5194/acp-21-4899-2021, 2021
Short summary
Short summary
The distributions of linear trends in total cloud cover and precipitation in 1983–2009 are both characterized by a broadening of the major ascending zone of Hadley circulation around the Maritime Continent. The broadening is driven primarily by the moisture–convection–latent-heat feedback cycle under global warming conditions. Contribution by other climate oscillations is secondary. The reduction of total cloud cover in China in 1957–2005 is driven by the same mechanism.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., and Devin, M.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2016.
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017.
Bassett, M. and Seinfeld, J. H.: Atmospheric equilibrium model of sulfate and nitrate aerosols, Atmospheric Environment, 17, 2237–2252, https://doi.org/10.1016/0004-6981(83)90221-4, 1983.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description, Journal of Geophysical Research Atmospheres, 108, 335–346, 2003.
Bühlmann, P. and Yu, B.: Boosting With the L2 Loss, Publications of the American Statistical Association, 98, 324–339, 2003.
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Applied Mechanics Reviews, 59, 51–77, 2006.
Carter, W. P. L.: A detailed mechanism for the gas-phase atmospheric reactions of organic compounds, Atmospheric Environment. Part A, 24, 481–518, https://doi.org/10.1016/0960-1686(90)90005-8, 1990.
Carter, W. P. L. and Atkinson, R.: Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx, International Journal of Chemical Kinetics, 28, 497–530, https://doi.org/10.1002/(SICI)1097-4601(1996)28:7<497::AID-KIN4>3.0.CO;2-Q, 1996.
Cheng, B., Ma, Y., Feng, F., Zhang, Y., Shen, J., Wang, H., Guo, Y., and Cheng, Y.: Influence of weather and air pollution on concentration change of PM2.5 using a generalized additive model and gradient boosting machine, Atmospheric environment, 255, 118437, https://doi.org/10.1016/j.atmosenv.2021.118437, 2021.
National Research Council: Air Quality Management in the United States, The National Academies Press, Washington, DC, https://doi.org/10.17226/10728, 2004.
Cox, R. A.: Chemical Transformation Processes for NoX Species in the Atmosphere, in: Studies in Environmental Science, edited by: Schneider, T. and Grant, L., Elsevier, 249–261, https://doi.org/10.1016/B978-0-444-42127-2.50027-0, 1982.
Davis, J. M. and Swall, J. L.: An examination of the CMAQ simulations of the wet deposition of ammonium from a Bayesian perspective, Atmospheric Environment, 40, 4562–4573, 2006.
Eder, B., Kang, D., Mathur, R., Yu, S., and Schere, K.: An operational evaluation of the Eta–CMAQ air quality forecast model, Atmospheric Environment, 40, 4894–4905, 2006.
Efstathiou, C. I., Adams, E., Coats, C. J., Zelt, R., Reed, M., McGee, J., Foley, K. M., Sidi, F. I., Wong, D. C., Fine, S., and Arunachalam, S.: Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community, Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, 2024.
Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., and Wang, J.: Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation, Atmospheric Environment, 107, 118–128, https://doi.org/10.1016/j.atmosenv.2015.02.030, 2015.
Flaum, J. B., Rao, S. T., and Zurbenko, I. G.: Moderating the Influence of Meteorological Conditions on Ambient Ozone Concentrations, Journal of the Air & Waste Management Association, 46, 35–46, 1996.
Gentry, B. M., Robinson, A. L., and Adams, P. J.: EASIUR-HR: a model to evaluate exposure inequality caused by ground-level sources of primary fine particulate matter, Environmental Science & Technology, 57, 3817–3824, 2023.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., and Zeng, L.: Elucidating severe urban haze formation in China, Proceedings of the National Academy of Sciences, 111, 17373–17378, 2014.
Hakami, A., Odman, M. T., and Russell, A. G.: High-Order, Direct Sensitivity Analysis of Multidimensional Air Quality Models, Environmental Science & Technology, 37, 2442–2452, https://doi.org/10.1021/es020677h, 2003.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, IEEE, https://doi.org/10.1109/CVPR.2016.90, 2016.
Hu, Y.: Configurations for running 12 km resolution WRF-CMAQ simulations in China (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5152621, 2021.
Huang, L., Liu, S., Yang, Z., Xing, J., Zhang, J., Bian, J., Li, S., Sahu, S. K., Wang, S., and Liu, T.-Y.: Exploring deep learning for air pollutant emission estimation, Geosci. Model Dev., 14, 4641–4654, https://doi.org/10.5194/gmd-14-4641-2021, 2021.
Huang, R., Wang, X., Wang, C., Du, Y., Yan, B., Zhang, W., Luo, B., Zhang, W., and Hu, Y.: Future Year Air Quality Attainment Prediction Method Based on Design-Value and Relative Response Factor: A Case Study Focusing on Implementation Planning of the 14th Five-Year Plan in Sichuan Province, Acta Scientiarum Naturalium Universitatis Pekinensis, 58, 553–564, 2022.
Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva, J., and Saynisch-Wagner, J.: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science, Nature Machine Intelligence, 3, 667–674, https://doi.org/10.1038/s42256-021-00374-3, 2021.
Janhäll, S.: Review on urban vegetation and particle air pollution–Deposition and dispersion, Atmospheric Environment, 105, 130–137, 2015.
Jiang, Z., Cheng, H., Zhang, P., and Kang, T.: Influence of urban morphological parameters on the distribution and diffusion of air pollutants: A case study in China, Journal of Environmental Sciences, 105, 163–172, 2021.
Kelp, M. M., Jacob, D. J., Lin, H., and Sulprizio, M. P.: An online-learned neural network chemical solver for stable long-term global simulations of atmospheric chemistry, Journal of Advances in Modeling Earth Systems, 14, e2021MS002926, https://doi.org/10.1029/2021MS002926, 2022.
Kingma, D. and Ba, J.: Adam: A Method for Stochastic Optimization, Computer Science, https://doi.org/10.48550/arXiv.1412.6980, 2014.
Lang, J.: A Monitoring and Modeling Study to Investigate Regional Transport and Characteristics of PM2.5 Pollution, Aerosol & Air Quality Research, 13, 943–956, 2013.
Leal, A. M., Kulik, D. A., Smith, W. R., and Saar, M. O.: An overview of computational methods for chemical equilibrium and kinetic calculations for geochemical and reactive transport modeling, Pure and Applied Chemistry, 89, 597–643, 2017.
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015.
Li, J., Dai, Y., Zhu, Y., Tang, X., Wang, S., Xing, J., Zhao, B., Fan, S., Long, S., and Fang, T.: Improvements of response surface modeling with self-adaptive machine learning method for PM2.5 and O3 predictions, Journal of Environmental Management, 303, 114210, https://doi.org/10.1016/j.jenvman.2021.114210, 2022.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact on air quality, National Science Review, 4, 810–833, 2017.
Liao, Q., Zhu, M., Wu, L., Pan, X., Tang, X., and Wang, Z.: Deep Learning for Air Quality Forecasts: a Review, Current Pollution Reports, 6, 399–409, https://doi.org/10.1007/s40726-020-00159-z, 2020.
Liu, X.-H., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D., Jang, C., Wang, W.-X., and Hao, J.-M.: Understanding of regional air pollution over China using CMAQ, Part II. Process analysis and sensitivity of ozone and particulate matter to precursor emissions, Atmospheric Environment, 44, 3719–3727, https://doi.org/10.1016/j.atmosenv.2010.03.036, 2010.
Liu, Y. and Tang, G.: Contradictory response of ozone and particulate matter concentrations to boundary layer meteorology, Environmental Pollution, 343, 123209, https://doi.org/10.1016/j.envpol.2023.123209, 2024.
Liu, Z.-S., Clusius, P., and Boy, M.: Neural network emulator for atmospheric chemical ODE, Neural Networks, 184, 107106, https://doi.org/10.1016/j.neunet.2024.107106, 2025.
Lv, B., Cai, J., Xu, B., and Bai, Y.: Understanding the Rising Phase of the PM2.5 Concentration Evolution in Large China Cities, Scientific Reports, 7, 46456, https://doi.org/10.1038/srep46456, 2017.
Lyu, B.: FastCTM(v1.0)_a principle-guided neural network for chemical transport modelling, Zenodo [data set], https://doi.org/10.5281/zenodo.13757211, 2024.
Mao, W., Wang, W., Jiao, L., Zhao, S., and Liu, A.: Modeling air quality prediction using a deep learning approach: Method optimization and evaluation, Sustainable Cities and Society, 65, 102567, https://doi.org/10.1016/j.scs.2020.102567, 2021.
Michalakes, J., Chen, S., Dudhia, J., Hart, L., Klemp, J., Middlecoff, J., and Skamarock, W.: Development of a next-generation regional weather research and forecast model, IEEE International Conference on High Performance Computing, Data, and Analytics, 11/1/2001, https://doi.org/10.1142/9789812799685_0024, 2001.
Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., and Wang, W.: The Weather Research and Forecast Model: Software Architecture and Performance, https://doi.org/10.1142/9789812701831_0012, 2005.
Muller, N. Z. and Mendelsohn, R.: Measuring the damages of air pollution in the United States, Journal of Environmental Economics and Management, 54, 1–14, https://doi.org/10.1016/j.jeem.2006.12.002, 2007.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Cham, 234–241, 2015.
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c.: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, Computer Science, https://doi.org/10.48550/arXiv.1506.04214, 2015.
Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D. Y., Wong, W., and Woo, W.: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model, Neural Information Processing Systems, https://doi.org/10.48550/arXiv.1506.04214, 2017.
Silva, S. J., Heald, C. L., Ravela, S., Mammarella, I., and Munger, J. W.: A deep learning parameterization for ozone dry deposition velocities, Geophysical Research Letters, 46, 983–989, 2019.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 3, NCAR Tech. Note, https://doi.org/10.13140/RG.2.1.2310.6645, 2008.
Sturm, P. O. and Wexler, A. S.: A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example, Geosci. Model Dev., 13, 4435–4442, https://doi.org/10.5194/gmd-13-4435-2020, 2020.
Su, T., Li, Z., Zheng, Y., Luan, Q., and Guo, J.: Abnormally Shallow Boundary Layer Associated With Severe Air Pollution During the COVID-19 Lockdown in China, Geophysical Research Letters, https://doi.org/10.1029/2020GL090041, 2020.
Sun, H., Fung, J. C. H., Chen, Y., Li, Z., Yuan, D., Chen, W., and Lu, X.: Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement, Geosci. Model Dev., 15, 8439–8452, https://doi.org/10.5194/gmd-15-8439-2022, 2022.
Tang, G., Zhang, J., Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., and Wang, Y.: Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, 2016.
Tessum, C. W., Hill, J. D., and Marshall, J. D.: InMAP: A model for air pollution interventions, PLOS ONE, 12, e0176131, https://doi.org/10.1371/journal.pone.0176131, 2017.
Wang, C., Jia, M., Xia, H., Wu, Y., Wei, T., Shang, X., Yang, C., Xue, X., and Dou, X.: Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar, Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, 2019.
Wang, L., Jang, C., Zhang, Y., Wang, K., Zhang, Q., Streets, D., Fu, J., Lei, Y., Schreifels, J., He, K., Hao, J., Lam, Y.-F., Lin, J., Meskhidze, N., Voorhees, S., Evarts, D., and Phillips, S.: Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment, Atmospheric Environment, 44, 3449–3457, https://doi.org/10.1016/j.atmosenv.2010.05.058, 2010.
Wang, Y., Gao, Z., Long, M., Wang, J., and Yu, P. S.: PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning, ICML, https://doi.org/10.48550/arXiv.1804.06300, 2018.
Wong, P.-Y., Lee, H.-Y., Chen, Y.-C., Zeng, Y.-T., Chern, Y.-R., Chen, N.-T., Lung, S.-C. C., Su, H.-J., and Wu, C.-D.: Using a land use regression model with machine learning to estimate ground level PM2.5, Environmental Pollution, 277, 116846, https://doi.org/10.1016/j.envpol.2021.116846, 2021.
Xia, Z., Zhao, C., Du, Q., Yang, Z., Zhang, M., and Qiao, L.: Advancing Sophisticated Photochemistry Simulation in Atmospheric Numerical Models With Artificial Intelligence PhotoChemistry (AIPC) Scheme Using the Feature-Mapping Subspace Self-Attention Algorithm, Journal of Advances in Modeling Earth Systems, 17, e2024MS004646, https://doi.org/10.1029/2024MS004646, 2025
Xing, J., Zheng, S., Li, S., Huang, L., Wang, X., Kelly, J. T., Wang, S., Liu, C., Jang, C., Zhu, Y., Zhang, J., Bian, J., Liu, T.-Y., and Hao, J.: Mimicking atmospheric photochemical modeling with a deep neural network, Atmospheric Research, 265, 105919, https://doi.org/10.1016/j.atmosres.2021.105919, 2022.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021.
Zhang, Z., Zhang, S., Chen, C., and Yuan, J.: A systematic survey of air quality prediction based on deep learning, Alexandria Engineering Journal, 93, 128–141, https://doi.org/10.1016/j.aej.2024.03.031, 2024.
Zhao, J., Ma, X., Wu, S., and Sha, T.: Dust emission and transport in Northwest China: WRF-Chem simulation and comparisons with multi-sensor observations, Atmospheric Research, 241, 104978, https://doi.org/10.1016/j.atmosres.2020.104978, 2020.
Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., and Liang, J.: UNet : A Nested U-Net Architecture for Medical Image Segmentation, Cham, 3–11, https://doi.org/10.1007/978-3-030-00889-5_1, 2018.
Short summary
FastCTM is a neural network model to simulate key criteria air pollution levels, offering an efficient alternative to traditional chemical transport models. Its structure is informed by the physical and chemical principles of the atmosphere, allowing it to learn and replicate complex atmospheric processes. FastCTM demonstrated matching accuracy to traditional models with less computational demand. It also provides analysis of how different atmospheric processes contribute to air quality changes.
FastCTM is a neural network model to simulate key criteria air pollution levels, offering an...