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Abstract. Chemical-transport models (CTMs) are indispens-
able for air-quality assessment and policy development, yet
their operational use is hampered by high computational cost.
We present FastCTM, a physics-informed neural-network
emulator that rapidly predicts hourly concentrations of ten
key pollutant variables: major PM2.5 species (SO2−

4 , NO−3 ,
NH−4 , organic matter, elemental carbon, crustal material),
coarse PM10, SO2, NO2, CO, and O3. FastCTM embeds
five process-specific neural modules – primary emissions,
horizontal transport, turbulent diffusion, chemical reactions
and deposition within a unified framework. Given 1 h ini-
tial condition data, FastCTM can simulate future 24 h con-
centrations for ten air pollutants using corresponding mete-
orological fields and emissions as input. Trained on 2018–
2022 WRF-CMAQ forecasts over China and evaluated on
2023 data, FastCTM reproduces CMAQ with mean RMSE
(µg m−3) of 9.1, 11.9, 4.4, 4.0, 48.9, 10.9 and R2 of 0.80,
0.81, 0.80, 0.83, 0.90, 0.70 for PM2.5, PM10, SO2, NO2,
CO and O3, respectively. Sensitivity tests confirm physically
plausible responses to temperature, wind speed, boundary-
layer height and precursor emissions. The modular architec-
ture enables quantitative process analysis, offering CTM-like
insight at GPU-accelerated speeds. In a nutshell, FastCTM
provides a computationally efficient solution for air-quality

simulations, sensitivity analysis, and process attribution with
high accuracy and physical consistency.

1 Introduction

Effective air quality management requires accurate charac-
terization of current and future pollution conditions to im-
plement targeted emission control measures (Wang et al.,
2010; Council, 2004). Driven by this demand, deterministic
air quality numerical models have been developed to simu-
late the spatiotemporal variability and evolution of ambient
air pollutants in the atmosphere (Hakami et al., 2003; Eder
et al., 2006). In these models, such as the Community Mul-
tiscale Air Quality (CMAQ) model, atmospheric physical
and chemical processes (e.g., emissions, chemical reactions,
horizontal advection, and diffusion) are mathematically rep-
resented by partial differential equations. The air pollutant
and species concentrations can then be calculated by solving
these complex equations using numerical methods (Byun and
Schere, 2006), which is often time-consuming (Leal et al.,
2017) and requires substantial computational resources such
as high-performance computing (Efstathiou et al., 2024).

Deep learning offers promising alternatives for develop-
ing rapid, data-driven CTMs by leveraging the capacity of
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neural networks to encode complex spatiotemporal patterns
from large datasets (LeCun et al., 2015; He et al., 2016; Liao
et al., 2020). These deep learning-based CTM models are ex-
pected to provide accurate simulations that are comparable
to the current deterministic numerical CTMs while offering
much higher computational efficiency and enhanced learning
capabilities. However, progress has been hindered by chal-
lenges in designing neural architectures that simultaneously
achieve high accuracy, interpretability, and long-term simu-
lation stability and fidelity (Reichstein et al., 2019; Irrgang et
al., 2021). In constructing deep learning-based CTM models,
air quality modeling is often formulated as a sequence-to-
sequence prediction problem (Shi et al., 2015; Zhang et al.,
2024) to capture the spatiotemporal correlations among mul-
tiple variables. Consequently, previous studies have mainly
focused on refining neural network’s representation capabil-
ities by proposing new neural-network structures to improve
error back-propagation efficiencies and model encoding ca-
pabilities (Wang et al., 2018; Huang et al., 2021; Mao et
al., 2021). For example, Xing et al. (2022) developed a deep
learning-based module named deepCTM that mimics atmo-
spheric photochemical modeling to simulate ozone concen-
trations. However, these deep learning-based CTMs are often
structured as uninterpretable black-box models that generate
simulations reflecting the cumulative effect of all physical
and chemical processes. Such black-box models hinder error
attribution, inspection of internal processes, and knowledge
discovery (Reichstein et al., 2019).

Quantifying individual atmospheric processes enables a
mechanistic interpretation of model predictions and identi-
fication of error sources (Liu et al., 2010). Motivated by this
need, recent studies have developed models that learn spe-
cific atmospheric processes, such as chemical reactions and
deposition, within CTM frameworks. Kelp et al. (2022) de-
veloped a neural network chemical solver for stable long-
term global simulations of atmospheric chemistry, trained
from the GEOS-Chem model. Xia et al. (2025) simulated 74
chemical species and 229 reactions following the SAPRC-
99 mechanism using an artificial intelligence photochemistry
(AIPC) scheme, achieving approximately 8-fold speed-up.
Sturm and Wexler (2020) developed a mass- and energy-
conserving framework for using machine learning to accel-
erate computations, demonstrating successful application in
a photochemistry example. For the deposition process, Silva
et al. (2019) proposed a deep learning parameterization for
ozone dry deposition velocities that provided accurate pre-
dictions on independent new datasets, revealing the potential
of neural networks to capture complex spatio-temporal latent
processes. Liu et al. (2025) proposed a Neural Network Em-
ulator, named ChemNNE, for rapid chemical concentration
modelling, which achieved strong performance in both accu-
racy and efficiency. Although these successes, a gap remains
in coupling these NN operators into a complete deep-learning
CTM.

The main objective of our study is to develop and validate
a principles-guided, neural network-based FastCTM, capa-
ble of simulating spatial-temporal fields of hourly concen-
trations of 10 criteria pollutants, including major species of
PM2.5 (SO2−

4 , NO−3 , NH+4 , organic matters and other inor-
ganic components, coarse part in PM10, CO, NO2, SO2, and
O3. FastCTM models individual atmospheric process: trans-
port, diffusion, deposition, chemical reactions, and emis-
sions. FastCTM is capable of performing analysis of internal
chemical and physical processes, offering benefits like high
computational speed, efficient data assimilation, and rapid
model updates.

2 Data and Methods

2.1 Parent Model Simulations and Datasets

In this study, the FastCTM model was designed to repli-
cate the parent model CMAQ, trained by learning CMAQ’s
underlying physical and chemical processes among multi-
ple air pollutants, including the complicated chemical reac-
tion, transport, diffusion, and deposition. CMAQ has a pro-
cess analysis (PA) tool to separate out and quantify the con-
tributions of individual physical and chemical processes to
the changes in the predicted concentrations of a pollutant,
which provides the opportunity to conduct a sensitivity anal-
ysis by comparing process contributions between CMAQ and
FastCTM.

Weather and air quality simulations from 2018 to 2023
were conducted using a WRF-CMAQ modeling system con-
sisting of three major components: (1) the meteorology com-
ponent, the Weather Research and Forecasting model, WRF
v3.4.1 (Michalakes et al., 2005; Skamarock et al., 2008),
which provides meteorological fields; provides meteorologi-
cal fields, (2) the emission component, which supplies grid-
ded estimates of hourly emission rates for primary pollu-
tants matched to model species, and (3) the CTM compo-
nent, CMAQ v5.0.2 (Byun and Schere, 2006), which solves
the governing physical and chemical equations to obtain 3-D
pollutant concentration fields. WRF-CMAQ simulations are
not two-way coupled, so weather and chemistry do not influ-
ence each other. We used hourly average concentrations of
dominant PM2.5 components of sulfate (SO4), nitrate (NO3),
ammonium (NH4), organic carbon (OC), and other compo-
nents (EC and soil, etc.), and CO, SO2, NO2, and O3 in the
surface layer. The 10 species were selected based on their di-
rect relevance to regulatory standards (e.g., PM2.5, PM10, O3,
NO2, SO2, and CO) and their dominance in driving health
and environmental impacts in urban and industrial regions.

Meteorological variables used in this study include rela-
tive humidity (RH), air temperature (T ), wind components
(U , V ) at surface 10 m height, precipitation (RN), cloud
fraction (CFRAC), and planetary boundary layer height
(PBLH). Wind speed (WS) was calculated from U and V .
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The data covered the whole of China at a horizontal res-
olution of 12 km with 372× 426 grid cells. The simula-
tion data from 2018–2022 are used as the training dataset,
while the remaining simulation data in 2023 is used for in-
dependent evaluation. The surface topographic data (HGT,
Fig. S1 in the Supplement, obtained from https://lta.cr.usgs.
gov/GTOPO30, last access: 28 July 2023) and land cover
data (Zhang et al., 2021) of urban and tree fraction (LULC)
are also used to reflect the effects of land surface conditions
in this study.

The original primary emissions used in the aforemen-
tioned WRF-CMAQ modelling system are used as input to
the FastCTM. The large amount of emission data is grouped
according to the simulated 10 pollutant variables. Specif-
ically, the primary PM2.5 emissions of SO4, NO3, NH4,
OC, and other components, and gaseous emissions includ-
ing sulfur oxide (SO2), nitrogen oxides (NOx , including
HONO, NO, and NO2), ammonia (NH3), volatile organic
species (VOCs, including isoprene (ISOP), terpene (TERP),
and other species of VOC) are used in the FastCTM. Annual
average emissions of NOx , SO2, and VOC are respectively
depicted in Figs. S2–S4 in the Supplement.

2.2 FastCTM Model Formulations

2.2.1 FastCTM Model Framework

The deterministic CTM models simulate emissions, trans-
port, deposition, diffusion, and chemical transformations of
gases and particles in the troposphere through numerically
solving the governing equations as follows,

∂Ci

∂t
=−∇ · (uCi)+∇ (K∇Ci)+Ri +Ei +Di (1)

where Ci is the concentration of species i, u is the air fluid
velocity, K is the eddy diffusivity tensor, Ri is the net rate of
chemical generation of species i, Ei is the rate of direct ad-
dition of the species from primary emissions, and Di is the
deposition rate caused by both dry and wet depositions. A de-
tailed description of CMAQ principles is available elsewhere
(Byun and Schere, 2006; Appel et al., 2017). Inspired by nu-
merical CTMs principles and equations, the guiding frame-
work of FastCTM was also structured in a similar formula-
tion to represent the dominant processes in order to simulate
air pollutant spatiotemporal variations.

In the context of deep learning, hourly air quality simula-
tion is a spatiotemporal sequence-to-sequence learning prob-
lem aimed at predicting the most probable future sequence of
length K , given a previous sequence of length J , as shown
in Eq. (2),

Ŷt+1Ŷt+K = argmaxp
([

Yt−J+1, . . .,Yt

]
,[

Xt−J+1, . . .,Xt , Xt+1, . . .,Xt+K

])
(2)

Where the arg max (short for “argument of the maxi-
mum”) function is used to find the p class with the high-

est predicted probability. The Xt ∈ RM×N×VX is the data
of VX input variables at the spatial grid of M ×N at time
t . The Yt ∈ RM×N×VY is the data of VY predictive vari-
ables at time t . Specifically, the FastCTM simulates fu-
ture K-hour air pollutant concentrations, given J -hour air
pollutant concentrations

[
Yt−J+1, . . ., Yt

]
as initial fields

and (K + J )-hour meteorological and emission conditions[
Xt−J+1, . . .,Xt , Xt+1, . . .,Xt+K

]
. Previous studies gener-

ally used multiple-step input data with J > 1 to ensure suf-
ficient spatial-temporal correlations contained in the training
data (Sun et al., 2022; Xing et al., 2022). Instead, we use
a 1 h initial pollutant concentration (J = 1) to simulate 24 h
air quality pollutants (K =24), to ensure FastCTM is dedi-
cated to learning air quality changes between two neighbor-
ing hours as shown in Fig. 1a. In other words, at time t = 0,
FastCTM predicted K-hour air pollutant concentrations of
Ct=0Ct=1, . . .,Ct=K−1, given the input air pollutant concen-
tration in the previous hour Ct=−1 and corresponding meteo-
rological data and emissions at time t = 0,1, . . .,K − 1. The
unit of concentrations is µg m−3 for all pollutants.

The FastCTM model uses the basic simulator module
(Fig. 1a) recursively for hourly simulations, using output air
pollutant concentrations from one step as input to the next
step basic simulator. In contrast to directly learning spa-
tiotemporal correlations of predictand itself as in most pre-
vious studies (Wang et al., 2018; Shi et al., 2017), the basic
simulator (Fig. 1b) is formulated following the atmospheric
physical and chemical equations and constraints shown in
Eq. (1), and is composed of five modules to respectively rep-
resent the physics-chemical processes to improve the model
performance. The modules for each of the five processes in
the basic simulator are described in the following section.
The time step used in FastCTM was 60 s.

2.2.2 Primary Emissions Module

Primary pollutants are assumed to be directly emitted into
the atmosphere and instantly well-mixed within the PBL.
Therefore, hourly enhancement of air-pollutant concentra-
tions caused by primary emissions could be described in the
following Eq. (3).

Em,n,i, t =
1000×PEm,n,i,t

PBLH× dx× dy
(3)

Where Em,n,k,t refers to the concentration changes con-
tributed by primary emissions at spatial coordinate (m,n) for
species i at time t . The PEm,n,i,t is the corresponding total
primary emissions within the grid cell per second, which has
a unit of g s−1. Considering that the cell size in the FastCTM
is 12 km by 12 km, we have dx= 12 000 and dy= 12 000 in
this study. The boundary layer height PBLH, is also in the
unit of meters (m). Therefore, the resulting air pollutant con-
centration increases by primary emission Em,n,i,t has a unit
of µg m−3.
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Figure 1. (a) General model workflow, and (b) the basic simulator module structure at the time step t of the deep learning simulation model
FastCTM, designed according to Eq. (1). Arrows and boxes with different colours represent calculation modules of different atmospheric
physical and chemical processes.

2.2.3 Horizontal Transport Module

In the FastCTM, horizontal transport usually has a significant
influence on air quality variations (Lang, 2013). In CMAQ,
the regional transport is generally represented by the diver-
gence of the product of wind field and air pollutant species as
in Eq. (1), inferred from continuity equations and convection
equations (Michalakes et al., 2001; Byun and Schere, 2006).
By decomposing the air mass movement into two orthogonal
directions of east–west (x) and north–south (y), they could
be rewritten in the form shown in Eq. (4),

∇ · (uCi)=
∂ (CiU)

∂x
+

∂ (CiV )

∂y
(4)

Where the wind field is represented as u, which is then de-
composed into U and V , respectively, in the x and y direc-
tions.

In the deep learning framework, the partial equation in
Eq. (4) could be rewritten in a discrete form as convolution
operations and inner product calculations as shown in Eq. (5)
with a finite difference method. The convolutional kernels of
Wx and Wy were defined in an upwind scheme as shown in
Eqs. (6) and (7). With the scheme, this transport module it-
self is mass-conserved, even though FastCTM is not mass-
conserved as a whole.

∇ · (uCi)=
Wx · (Ci ×U)

dx
+

Wy · (Ci ×V )

dy
(5)

Wx =

{ [
−1 1 0

]
if U < 0[

0 −1 1
]

if U ≥ 0 (6)

Wy =



 0
1
−1

 if V < 0 1
−1
0

 if V ≥ 0

(7)

2.2.4 Diffusion Module

Diffusion involves the physical and chemical processes that
disperse pollutants in the atmosphere. It is influenced by
meteorological conditions, i.e. atmospheric stability and hu-
midity, and surface features, i.e., land terrains and vegeta-
tion (Jiang et al., 2021). The turbulence diffusion process
∇ (K∇Ci) in Eq. (1) helps the spread of pollutants in the
atmosphere. It is expressed as the second-order deviation of
species concentrations as shown in Eq. (8). They could also
be discretized to convolutional operations with the finite dif-
ference method as shown in Eq. (9), just like that in the hori-
zontal transport process module.

∇ (K∇Ci)=
∂

∂x

(
K

∂Ci

∂x

)
+

∂

∂y

(
K

∂Ci

∂y

)
(8)

∇ (K∇Ci)=
Wx · (K ×Wx ·Ci)

dx× dx
+

Wy · (K ×Wy ·Ci)

dy× dy
(9)

K = EncoderK([T ,RH,PRS,PBLH]) (10)

The turbulent diffusivity K is closely related to the meteo-
rological conditions of the atmosphere and is simulated with
an encoder module EncoderK (Eq. 10). The input variables
of the EncoderK include temperature T , humidity RH, sur-
face pressure PRS, and boundary layer height PBLH. The
EncoderK is determined to be a grid-to-grid regression model
based on the Unet++model with a nested structure (Zhou et
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al., 2018; Ronneberger et al., 2015). The EncoderK model
consists of 5 layers with each layer respectively composed of
16, 32, 64, 128 and 256 filters.

2.2.5 Chemical Reaction Module

Reduced-form models like InMAP (Tessum et al., 2017)
and EASIUR (Gentry et al., 2023) focus on annual-average
exposure, while FastCTM provides hourly-resolved simula-
tions critical for real-time management. FastCTM quantifies
hourly contributions from individual processes (transport,
chemistry, emissions) via its modular design, rather than ag-
gregating source impacts in reduced-form models (e.g., EAS-
IUR’s source-receptor matrices). Furthermore, FastCTM ex-
plicitly couples meteorology (PBLH, T , RH) with chemistry,
whereas InMAP/APEEP (Muller and Mendelsohn, 2007) as-
sume static meteorology, which limits their utility in cap-
turing diurnal or synoptic-scale variations. Specifically, the
air pollutant concentration changes caused by chemical reac-
tions are represented in the following Eq. (11). In the equa-
tion, the rate of chemical reaction of species i is expressed as
the product of a rate constant k and a term that is dependent
on the concentrations of its reactants j (Carter, 1990; Carter
and Atkinson, 1996).

Rm,n,i,t = km,n,i,t × f
(
Cm,n,j,t

)
(11)

ki = Encoderk([T ,RH,PRS,WS,PRE,CFRAC]) (12)

The reaction kinetics constant k is generally temperature-
dependent. They could also be related to atmospheric pres-
sures and moisture humidity in some reaction processes.
Therefore, the reaction rate constant k is simulated using a
spatial encoder function Encoder as shown in Eq. (12), which
has the same structure as that of diffusion encoder modules
(Eq. 10). There are 6 input variables of the Encoderk includ-
ing T , RH, PRS, WS, RN and CFRAC. The concentration
processor f is designed as a simple multi-layer convolutional
network with a kernel size of 1 to represent high-order and
complex relations among different reactants.

2.2.6 Deposition Module

Air pollutant deposition refers to the process by which atmo-
spheric pollutants are transferred to Earth’s surfaces (land,
water, vegetation) or removed from the air. This phenomenon
plays a critical role in environmental pollution dynamics
and ecosystem impacts. The deposition was closely influ-
enced by meteorological conditions and surface characteris-
tics (Janhäll, 2015). For example, high wind disperses pollu-
tants, while turbulence enhances dry deposition. Forests and
crops act as sinks due to large surface areas for adsorption.
Air quality changes due to the deposition process are ex-
pressed linearly as the product of the deposition rate d and
the corresponding air pollutants concentrations C, as shown
in Eq. (13). The constant d is closely related to the current
and previous meteorological conditions, terrains, and under-

lying land cover types. Therefore, they are all simulated with
an Encoder module as shown in Eq. (14).

Dm,n,i,t = dm,n,i,t ×Cm,n,i,t (13)
d = Encoderd([WS,RH,RN,HGT,LULC]) (14)

The model structure and parameter configurations are also
the same as that of EncoderK and Encoderk . The input
data variables of Encoderd include WS, RH, RN, HGT and
LULC.

2.3 Model Training

The FastCTM was programmed with Python 3 on the deep
learning framework TensorFlow (Abadi et al., 2016). The
model was trained with the WRF-CMAQ operational fore-
cast data in China for 2018–2022. Considering that on
each day we had 120 h forecasts with a spatial coverage
of 426× 372 grid cells (each with a size of 12× 12 km2)
for 9 meteorological variables and I = 10 air pollutant
variables, the total training dataset has a size of TD=
R1826, 120, 426, 372, 19, where 1826 represents the total count-
ing days from 2018 to 2022. Since the model was set
to predict 24 h PM2.5 concentrations from 1 h input data,
the total input sequence length was 25 h in each train-
ing step. Besides, the size M ×N of the input data Xt to
FastCTM was decided to be 150× 150, equal to an area of
1800× 1800 km2 in 12 km resolution. Therefore, the input
batch data for FastCTM in each step should be the size of
BD= Rb, 25, 150, 150, 19, where b is the batch size (determined
as 1 in this study). The input data BD are randomly sliced
from the whole training dataset TD in each training iteration,
indicating each BD represents different spatial and tempo-
ral coverages. The random sampling tactics help the model
learn inherent physical and chemical principles rather than
just statistical spatiotemporal autocorrelations using data in a
constant spatial area (Xing et al., 2022). Besides, the spatio-
temporal random samples contain varied emissions, which
would improve FastCTM adaptation to changing emission
levels.

Even though five modules are defined in FastCTM, indi-
vidual processes are not trained separately. The model was
trained as a whole with hour-to-hour air pollutant concen-
trations, while each process could learn its parameters un-
der the constraints of its dedicated formulation. Specifically,
FastCTM was tuned to minimize the loss function L, which
was determined to be L2 loss (Bühlmann and Yu, 2003)
of the regularized mean squared error (MSE) as shown in
Eq. (15). The model was optimized using the Adam opti-
mizer (Kingma and Ba, 2014).

L=
1

J ×N ×M × I

J∑
t=1

M∑
m=1

N∑
n=1

I∑
i=1

(
Cm,n,i,t − C̃m,n,i,t

)2
(15)

The learning rate was set to be 0.001, and the batch size to be
1. The FastCTM model was trained on one entry-level pro-
fessional acceleration card of NVIDIA A40 with a running
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time of 10 h for every 10 000 iterations. A total of 300 000
iterations were performed until the remaining model loss sta-
bilized.

2.4 Model Evaluation

FastCTM was assessed against CMAQ simulations using the
same input emission data and meteorological fields. Starting
from 00:00 local time on each day, the CMAQ model sim-
ulated 120 h forecasts in one cycle. There are 139 cycles in
the evaluation year of 2023 due to data unavailability in the
remaining days. The FastCTM model generated 119 h fore-
casts using a 1 h initial input condition. The 119 h forecasts in
the leading hours from 2 to 120 by the two models were com-
pared regarding to the corresponding leading time. For exam-
ple, when we had a 120 h forecast starting at 00:00 on 1 Jan-
uary 2023 at Beijing Local Time (BLT), the data of 00:00
on 1 January 2023 were fed into FastCTM to get the 119 h
forecasts until 23:00 on 5 January. The 10 species forecasts
by FastCTM were compared against the CMAQ forecasts at
each corresponding hour. The metrics of root mean square er-
ror (RMSE) and coefficient of determination (R2) were cal-
culated daily in each of 119 leading hours on the difference in
each of the 158 742 grid cells between CMAQ and FastCTM.
Therefore, metrics of R2 and RMSE were obtained on each
lead hour on each day of the independent test year of 2023.
The statistical values on each day are then averaged for the
same leading hour for comparison.

The FastCTM was also assessed in terms of sensitivity
analysis to emission inputs and meteorological fields. For
meteorological variables, responses of six criteria pollutant
concentrations to T , WS, and PBLH were calculated. For
emissions, responses to paired variables of SO2/NH4 and
NOx /VOC were calculated. Besides, FastCTM’s capability
to simulate responses to emission changes was also evalu-
ated by comparing with CMAQ simulations in 11 emission-
intervention scenarios. Finally, the contributions of five inter-
nal processes of transport, diffusion, emission, reaction, and
deposition were also analyzed and discussed for an example
pollution episode.

3 Results

3.1 Forecast Performance by FastCTM

FastCTM has exhibited strong, stable performance in repro-
ducing CMAQ forecasts over the 119 h forecast period eval-
uated for 2023 (Fig. 2). The average RMSE values for six
criteria pollutants of PM2.5, PM10, SO2, NO2, CO, and O3
are, respectively 9.1, 11.9, 4.4, 4.0, 48.9 and 10.9 µg m−3. For
R2 values, they are 0.8, 0.81, 0.8, 0.83, 0.9 and 0.7. As for
PM2.5 components, RMSE values are 1.68, 2.68, 1.52, 1.98
and 4.25 µg m−3, respectively for SO2−

4 , NO−3 , NH+4 , organic
matters and other inorganic components, while the R2 values
are 0.72, 0.6, 0.3, 0.83 and 0.68. Compared to the ∼ 5 ppb

(∼ 10.5 µg m−3) in the previous study by Xing et al. (2022),
the FastCTM model has similar RMSE values in forecasting
O3. To test the influences of initial conditions on FastCTM
long-term simulations, FastCTM forecasts using zero values
as input air quality data were almost the same as those using
ordinary input in the long leading hours. Results indicating
that FastCTM simulations in long leading hours are not af-
fected by initial conditions (Fig. S5 in the Supplement), just
like deterministic CTMs (such as CMAQ). In other words,
the insensitivities of FastCTM to initial conditions indicate
that it has well learned and encoded the most physical and
chemical principles in CMAQ CTM, rather than just spatio-
temporal correlations among air quality sequences.

Hourly RMSE values show clear diurnal variation with
higher RMSE values in the nighttime than that in the day-
time, which could be due to higher hourly concentrations of
air pollutants in the nighttime, except for O3 (Fig. S6 of the
Supplement). Consistency between CMAQ and FastCTM,
as characterized by R2, is lower in the daytime. Since the
FastCTM is a 2-D model only considering atmospheric pro-
cesses within the boundary layer, lower consistency with the
CMAQ model during daytime, possibly due to more vigor-
ous vertical mixing. Strong vertical mixing of air pollutants
to the height above PBLH has been found (Li et al., 2017;
Tang et al., 2016), which may not be fully represented in
FastCTM. It is important to note that the relatively low R2

values observed for NH+4 . While CMAQ explicitly resolves
NH+4 formation reactions, FastCTM does not explicitly en-
code these pathways. Instead, the neural network implicitly
learns relationships between NH+4 and precursor emissions
(NH3, NOx , SO2) and meteorological variables (e.g., temper-
ature, humidity). This simplification omits acid-base equilib-
ria and aerosol thermodynamics, which are critical for par-
titioning NH+4 between gas and particle phases. The low R2

for NH+4 primarily reflects FastCTM’s simplified chemical
mechanism in this part, which could be improved by adding
related species in the simulation.

The spatial distributions of the mean absolute error (MAE)
and the normalized mean absolute error (NMAE) are pre-
sented in Fig. 3. For all six pollutants under consideration,
MAE values tend to be higher in polluted areas. In pol-
luted environments, there are often multiple sources of emis-
sions, complex chemical reactions, and variable meteorolog-
ical conditions that can lead to greater discrepancies between
the predicted concentrations of the two models. Conversely,
the NMAE values exhibit an opposite trend, being lower in
polluted areas. In these regions, the NMAE values typically
hover around 0.2, in contrast to the relatively higher values
of approximately 1 in cleaner areas. The NMAE is a nor-
malized metric that takes into account the magnitude of the
actual pollutant concentrations. A lower NMAE in areas with
high pollution levels suggests that the FastCTM model is ef-
fectively capturing the overall magnitude and trends relative
to the reference CMAQ simulation. The Air quality forecasts
starting from 00:00 a.m. on 4 March 2023 (Fig. S7 in the Sup-
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Figure 2. The evaluation performances of FastCTM forecasts against CMAQ forecasts in 2023. Panels (a) and (b) respectively show RMSE
values of criteria pollutants and the PM2.5 components. Panels (c) and (d) show R2 values. It should be noted that the RMSE value of CO
corresponds to the right axis in (a).

plement) demonstrate FastCTM’s strong capability in mod-
elling the complex spatio-temporal changes in a large spatial
domain and over a relatively long period and a large area.

Defining the warm season as the months from April to
September and the winter and cold season as the remaining
months, the FastCTM model exhibited comparable perfor-
mances. As shown in Fig. 4 (with detailed information in
Fig. S8 in the Supplement), the coefficient of determination
R2 values for the six criteria pollutants were 0.82, 0.8, 0.8,
0.82, 0.91, and 0.7 in the warm season, and 0.8, 0.79, 0.78,
0.83, 0.88, and 0.68 in the cold season, respectively. To as-
sess the performance variations of FastCTM across differ-
ent spatial locations, comparative evaluations were carried
out in urban and rural areas as well as in inland and coastal
regions. Generally, FastCTM demonstrated slightly higher
accuracies in rural areas compared to urban areas (as pre-
sented in Fig. S9 in the Supplement). This outcome is rea-
sonable given the more intricate emission and chemical pro-
cesses prevalent in urban settings (Guo et al., 2014). Simi-
larly, FastCTM exhibited comparable performances in inland
areas to those in coastal areas, except for PM2.5 and PM10
(Fig. S10 in the Supplement).

To validate the FastCTM model, three land use regression
(LUR) models were constructed, namely the linear regres-
sion model, the random forest model (with the number of
trees set at 500), and the XGBoost model (with the booster
specified as gbtree). These LUR models were developed us-
ing the same input meteorological data, emissions, and geo-
physical variables as FastCTM to ensure fair comparison.
When compared with the FastCTM model, the performance
of the LUR models was found to be significantly inferior, as
demonstrated in the Table 1 and Figs. S10–S12 in the Sup-

plement. For example, R2 values for FastCTM range from
0.68–0.90, whereas the LUR models only achieve 0.06–0.33.
This outcome is anticipated when we consider the complex
nature of air quality dynamics in predicting future air qual-
ity. Air quality is not a static entity, but it varies both spa-
tially and temporally, determined by the joint effects of local
emissions, meteorological conditions, and surface features,
etc. For instance, the transport of air pollution is a highly
dynamic process that hinges on wind fields and air pollu-
tion concentrations in a reciprocal manner. The wind direc-
tion and speed dictate the trajectory along which pollutants
travel, while the existing pollutant concentrations in differ-
ent regions influence the overall dispersion and mixing pat-
terns. LUR models, which on the other hand predominantly
rely on local input data (Wong et al., 2021; Cheng et al.,
2021), struggle to capture these intricate, non-local interac-
tions. They cannot account for the far-reaching effects, such
as wind-driven pollutant transport and the temporally accu-
mulated changes in air quality over larger geographical areas.
As far as we know, LUR models have been mostly applied in
predicting air pollution fields in retrieval given correspond-
ing air quality observations as training and constrained in-
put data. They have been seldom used in air quality forecasts
and simulations, as we have demonstrated with the FastCTM
model.

Annually, the daily air quality typically exhibits similar
fluctuations to those in other years, which can be primar-
ily attributed to the cyclical nature of meteorological condi-
tions and pollutant emission patterns. The FastCTM model
was trained using a comprehensive dataset spanning five
years, from 2018 to 2022. In light of this, it was crucial to
rule out the possibility that the model was merely reproduc-
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Figure 3. Spatial distribution of mean absolute error (a, c, e, g, i, k) and normalized mean absolute error for the six criteria pollutants (b, d,
f, h, j, l) of FastCTM compared with CMAQ in 2023.

Figure 4. The mean evaluation R2 values for all 119 leading hours
of FastCTM forecasts in warm/cold seasons, rural/urban areas, and
coastal/inland areas.

ing historical averages during the test year of 2023. To this
end, the daily national average concentrations of PM2.5 and
O3 in 2023, as predicted by FastCTM, were meticulously
compared with those simulated by CMAQ in the same test
year, as well as with the CMAQ forecasts from the train-
ing years of 2018–2022. As illustrated in Fig. 5, the pre-
dictions made by FastCTM in 2023 align more closely with
the actual CMAQ forecasts for that year, with R2

= 0.94
and 0.72, respectively, for PM2.5 and O3, rather than with
the forecasts generated from the training data of 2018–2022,
with R2

= 0.54 and 0.59. The NMB was also lower between
FastCTM and CMAQ for the same year, 2023. These re-
sults not only validate the adaptive learning capabilities of
the FastCTM model but also indicate that the model is not

using a simplistic approach of averaging concentrations from
the previous five years based on time of day. Hourly time se-
ries plots of air pollutant concentrations (Fig. S6 in the Sup-
plement) further demonstrate that FastCTM appears to incor-
porate real-time meteorological feedback, adjust for shifts in
emission patterns, and leverage its learned relationships to
provide more accurate and contemporaneous predictions.

3.2 Sensitivity Analysis with FastCTM

The FastCTM model was trained with 5-year meteorological
and air quality simulations by WRF-CMAQ. These simula-
tions used an emission inventory that was identical for every
year. In this condition, the FastCTM model has learned the
relationships between the air quality and varied meteorology
with fixed emissions input. Considering that the FastCTM
model has exhibited high accuracy in an independent eval-
uation year 2023, when new meteorological fields are fed
into FastCTM, the deep learning model should be able to
simulate responses of air pollutant concentrations to mete-
orological variables. However, for the response of air pol-
lutant concentrations to emissions, the training data do not
contain relationships between inter-annual varied emissions
and air quality under the condition of the same annual meteo-
rological fields. Therefore, it is less expected for FastCTM to
simulate reliable and correct response relationships between
emissions and air quality. To validate these analyses, we cal-
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Figure 5. The daily FastCTM forecasts compared with CMAQ forecasts, respectively, in the training period of 2018–2022 and the evaluation
period of 2023 for (a) PM2.5 and (b) O3. The gaps for FastCTM and CMAQ in 2023 are due to data unavailability these days.

Table 1. Performance metrics of LUR models and FastCTM com-
pared against CMAQ.

Variable Model RMSE R2 NMB

PM2.5 FastCTM 8.78 0.81 −0.15
Liner Model 35.05 0.09 −0.24
Random Forest 33.08 0.19 −0.25
XGBoost 33.02 0.14 −0.12

PM10 FastCTM 11.58 0.80 −0.17
Liner Model 44.66 0.10 −0.23
Random Forest 45.07 0.19 −0.33
XGBoost 44.53 0.15 −0.21

SO2 FastCTM 4.51 0.80 0.09
Liner Model 39.42 0.14 −1.18
Random Forest 25.74 0.33 −0.65
XGBoost 25.57 0.26 −0.60

NO2 FastCTM 4.24 0.83 0.04
Liner Model 21.42 0.27 −0.30
Random Forest 25.13 0.16 −0.58
XGBoost 23.88 0.15 −0.43

CO FastCTM 51.84 0.90 0.01
Liner Model 427.67 0.03 6.38
Random Forest 83.25 0.08 1.32
XGBoost 70.06 0.06 1.10

O3 FastCTM 11.46 0.68 0.02
Liner Model 357.97 0.09 −0.46
Random Forest 285.16 0.19 −0.21
XGBoost 291.58 0.15 −0.22

culated the sensitivities of simulated air pollutant concentra-
tions to changes in meteorological variables and emissions.

3.2.1 Response of Air Pollutant Concentration to
Meteorology

The responses of six criteria pollutants to meteorological
changes simulated by FastCTM are evaluated as exhibited
in Fig. 6. For ground-level temperature (T ) elicited a distinct

response in O3 concentrations compared to the other five cri-
teria pollutants. O3 concentrations have slight negative re-
sponses to T in January, as shown in Fig. 6a, which is prob-
ably because higher temperatures increase NO? emissions,
enhancing dilution. O3 concentrations had the strongest pos-
itive responses in August among six pollutants, which is con-
sistent with previous observation-based studies (Flaum et al.,
1996). The O3 had larger sensitivities when the air tempera-
ture was higher. The gaseous pollutants of CO, NO2, and SO2
show the strongest positive response to temperature, which
could be caused by the shift of chemical equilibrium towards
the higher release of these gaseous pollutants (Bassett and
Seinfeld, 1983; Cox, 1982). The particulate matter pollu-
tants, especially PM10, have the weakest responses among
six pollutants. Considering that there are dominating propor-
tions of chemically inert species in particulates, the weak re-
sponses of PM2.5 and PM10 are expected.

For the wind speed and PBLH, the responses of pollu-
tants have similar patterns for the same pollutant. First, O3
concentrations exhibited patterns opposite to other pollutants
both in January and August. Higher wind speed would in-
crease the dispersion and transport of air pollutants (Feng et
al., 2015; Lv et al., 2017), resulting in lower pollution lev-
els, so concentrations decrease as wind speed increases, ex-
cept for O3. The contradictory response of ozone and par-
ticulate matter concentrations to PBLH is consistent with
the analysis results of multiple-year observations (Liu and
Tang, 2024). Theoretically, the air pollutant concentrations
should exhibit an inverse relationship between air pollution
concentrations and PBLH. The actual air pollutant concen-
tration changes simulated by FastCTM generally fit the the-
ory that there are negative nonlinear effects with increas-
ing PBLH. Meanwhile, the sensitivity is stronger when the
PBLH is lower (Fig. 6e and f), which is consistent with pre-
vious observation-based analysis (Wang et al., 2019; Su et
al., 2020). The totally different relationship of O3 to wind
speed and PBLH compared to other pollutants could be due
to its high dependence on chemical precursors, such as NOx

and VOC. Concentrations of these precursors could have
an inverse relationship with O3 at specific locations. The
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Figure 6. The FastCTM predicted air pollutant percentage changes in response to changes of T , WS, and PBLH in Beijing on 2 January
(a–c, respectively in the left column) and 1 August (d–f, respectively in the right column), 2023. The air pollutant concentrations are relative
to those at the baseline meteorological conditions.

FastCTM model itself is trained with multi-year CMAQ sim-
ulations, indicating that it is preconditioned on varied me-
teorological fields with the same atmospheric physical and
chemical rules. Therefore, the sensitivity of air quality sim-
ulations to meteorological variations could be well learned,
especially with the discipline-based model FastCTM.

3.2.2 Response of Air Pollutant Concentration to
Emission

The sensitivity analysis with a “brute force” method can
be carried out with the FastCTM model quickly due to its
high computational efficiency on GPU. The responses of
PM2.5 concentrations to doubled emissions of SO2, NOx

were explored in the winter month of January 2023 (Fig. 7).
For doubled NOx , the PM2.5 concentrations exhibited posi-
tive responses in most areas of China as shown in Fig. 7a.
The largest increases occurred in North China, Heilongjiang
province in Northeast China, the Yangtze River Delta, and
Sichuan province. In these places, the NOx emissions are
relatively large. For doubled SO2, PM2.5 concentrations in-
creased in almost all of China as shown in Fig. 7b. The re-
sponse was larger in North China, Northeast China and the
Sichuan basin. The PM2.5 responses simulated by FastCTM

were generally consistent with previous studies (Li et al.,
2022).

As for ozone, its responses to doubled NOx and VOC are
explored as shown in Fig. 8. For NOx emission, decreases in
O3 concentrations in polluted regions like North China, the
Yangtze River Delta, and other highly industrial regions are
well captured by FastCTM. The response is reasonable con-
sidering that these regions are generally abundant with NOx

emissions and at VOC-limited conditions. Doubling VOC
emissions leads to a significant decrease in O3 (Fig. S14 in
the Supplement), since increased VOC would consume more
O3 in these regions. The spatial patterns of O3 responses to
NOx and VOC are similar to a previous deep learning study
trained by emission-controlled simulation data (Xing et al.,
2022). However, due to the complex speciation of VOC emis-
sions that is simplified in the FastCTM, uncertainties for re-
sponses of O3 to VOC should be noted.

The sensitivities of FastCTM simulations to emission in-
terventions were contrasted with those of CMAQ. Specifi-
cally, CMAQ was employed to simulate 11 emission sce-
narios over the two-month periods of January and July 2019
in Southwest China (Huang et al., 2022). The alterations in
emissions relative to the base case are presented in Table 1.
Among these scenarios, 10 involved reduced emissions of
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Figure 7. Average predictions of PM2.5 concentrations in 5 lead-days with doubled emissions in January 2023. Panel (a) refers to predictions
with doubled NOx , and (b) refers to double SO2.

Figure 8. Average predictions of hourly O3 concentrations in 5
lead-days with doubled NOx emissions in July 2023.

major species, with only the no-control scenario exhibiting
increased emissions. Utilizing the identical emissions and
meteorological data, FastCTM also conducted simulations,
which were then compared to those of CMAQ. For the 11
scenarios in question, the changes in air pollutant concentra-
tions relative to the base case at the locations of 139 national
air quality monitoring stations (Fig. S15 in the Supplement)
were extracted and compared in the winter month of Jan-
uary 2019 (Fig. 9a) and in the summer month of July 2019
(Fig. 9b). The results indicated that, overall, the FastCTM
simulations due to emissions changes were in good agree-
ment with those of CMAQ, as reflected in two aspects. The
correlation coefficient R values are around 0.9 for SO2, NO2,

and O3 in both summer and winter months. For PM2.5 and
PM10, FastCTM exhibited higher consistency with CMAQ
in July than in January, with R values around 0.6 for most
cases. For CO, FastCTM has much better performance in
January than in July, with R values of approximately 0.8 and
0.2. Considering that CO concentration changes are mostly

due to physical dispersion and transport, the decreased per-
formance is probably due to increased vertical mixing in
summer, which is not fully represented in the 2D scheme
of FastCTM. Specifically, in January 2019, except for NO2,
FastCTM responded to emission changes with an interquar-
tile range (IQR, 25 %–75 % percentile) similar to that of
CMAQ (Fig. S16). In July 2019, as depicted in Fig. S17, all
the criteria pollutants except CO demonstrated a comparable
degree of response to emission reductions.

FastCTM model used a principles-constrained formulation
framework. As shown in Eq. (4), atmospheric chemical re-
actions are in the Atkinson form, which independently esti-
mates the reaction rate from meteorological conditions and
polynomials of reactant concentrations in multiple powers.
The principle-based formulation should be the reason for
the relatively significant and reasonable response simulations
of PM2.5 and O3 to precursor emissions, even though the
FastCTM itself is not trained by emission-controlled CMAQ
scenario simulations. The remaining uncertainties should be
attributed to the reason that FastCTM only considered envi-
ronmental chemical reactants in part, compared to that of the
CMAQ model (Binkowski and Roselle, 2003).

3.3 Internal Processes Analysis with FastCTM

The FastCTM is a principles-guided deep neural network to
individually simulate the dominant atmospheric physical and
chemical processes as defined in Eq. (1). The processes are
calculated numerically with critical parameters describing
the processes being estimated by deep learning encoders. The
hourly concentration changes equal the sum of the changes
produced by each process. Figure 11 depicts an example dur-
ing the nighttime of 13 January 2023, when hourly PM2.5
concentration changes significantly. Between the two hours
of 18:00 and 19:00, hourly PM2.5 concentrations change
markedly in neighbouring areas of Shandong, Hebei, and
Henan provinces as shown in the red rectangle (denoted as
Area A hereafter) in Fig. 11c. In this example, strong north-

https://doi.org/10.5194/gmd-18-6295-2025 Geosci. Model Dev., 18, 6295–6312, 2025



6306 B. Lyu et al.: FastCTM (v1.0): Atmospheric chemical transport modelling

Table 2. The emission change details of the emission scenarios.

Scenario abbreviation Sector NOx VOCs SO2 CO PM2.5 PMC

nocontrol NCtrl Industrial 30 % 30 % 30 % 30 % 30 % 30 %
Traffic 20 % 20 % 20 % 20 % 20 % 20 %

medianX MedX Industrial −36 % −35 % −48 % −23 % −9 % −9 %
Traffic −40 % −10 % 0 −26 % −10 % −10 %

medianY MedY Industrial −26 % −20 % −38 % −13 % −4 % −4 %
Traffic −30 % 0 % 0 −16 % −5 % −5 %

medianZ MedZ Industrial −36 % −10 % −48 % −23 % −9 % −9 %
Traffic −40 % 0 % 0 −26 % −10 % −10 %

median− 3 Med-3 Industrial −10 % −10 % −18 % 0 0 0
Traffic −10 % 0 % 0 0 0 0

median− 2 Med-2 Industrial −16 % −20 % −28 % −3 % 0 0
Traffic −20 % 0 % 0 −6 % 0 0

median− 1 Med-1 Industrial −26 % −35 % −38 % −13 % −4 % −4 %
Traffic −30 % −10 % 0 −16 % −5 % −5 %

median0 Med0 Industrial −36 % −50 % −48 % −23 % −9 % −9 %
Traffic −40 % −20 % 0 −26 % −10 % −10 %

median+ 1 Med+1 Industrial −46 % −65 % −58 % −33 % −19 % −19 %
Traffic −50 % −30 % 0 −36 % −20 % −20 %

median2030 Med30 Industrial −55 % −70 % −80 % −40 % −40 % −40 %
Traffic −60 % −40 % 0 −40 % −40 % −40 %

median2035 Med35 Industrial −80 % −80 % −90 % −60 % −50 % −50 %
Traffic −80 % −60 % 0 −60 % −50 % −50 %

Figure 9. Correlation coefficient R for responses of FastCTM and CMAQ to different emission scenarios and different air pollutants in
January 2023 (a) and July 2023 (b).
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ern wind prevails, leading pollutants to move southward. For
PM2.5 concentration changes caused by primary emissions
(Fig. 8d), it is determined by the primary emission and the
mixing volumes determined by PBLH. PM2.5 changes are
mostly determined by the transport process (Fig. 11e) as its
spatial pattern most closely resembles total PM2.5 concen-
tration changes. In the transport process, air pollutants move
from one area to another, determined by the wind fields as
shown in Eq. (4). When the northern clean air prevails as in
Area A, changes should be negative in the upstream direction
and positive in the downstream direction. The transport pro-
cess simulated by FastCTM sticks to this pattern. As known
to us, the diffusion process will bring pollutants from a re-
gion of high concentration to one of low concentration. Its
contribution is low as shown in Fig. 11f, which is reasonable
considering the relatively large grid cell size of 12 km and
short simulation period of 1 h. PM2.5 concentration changes
caused by the diffusion process constituted a small propor-
tion compared to other processes. The activities of chemi-
cal reactions are determined by both meteorological condi-
tions and related precursor concentrations. PM2.5 contribu-
tion changes between T1 and T2 caused by chemical reac-
tions are lower in the areas to the north of Area A because
the cold and clean air in this area is not favourable for chemi-
cal reactions. The deposition is the dominant process that led
to PM2.5 concentration reductions where regional transport
was not significant. In general, deposition rates were propor-
tional to PM2.5 concentrations as shown in Fig. 8h (Davis and
Swall, 2006). It should be noted that FastCTM simulated air
quality in a 2-D domain rather than in 3-D. The deposition
may also include the vertical transport of air pollutants to the
upper air above PBL (Zhao et al., 2020).

Simulated contributions of five major processes to
hourly PM2.5 concentration changes are compared between
FastCTM and CMAQ at 139 stations (Fig. S15) in the
Sichuan-Chongqing region from 12 to 16 October 2024, as
shown in boxplots of Fig. 11. Overall, the simulation re-
sults of the process contributions by FastCTM and its par-
ent model CMAQ were relatively consistent. Higher degrees
of consistency were found in simulations of emissions, ad-
vection processes, and diffusion processes between the two
models. Contributions from chemical reactions of FastCTM
exhibited overestimation compared to CMAQ, while con-
tributions from deposition were underestimated. The differ-
ences in the simulated deposition and reaction contributions
between the two models could be due to incomplete repre-
sentation of influencing factors, given the complexity of the
two processes. In general, the consistency between the two
models provides confidence in the reliability of FastCTM for
simulating and understanding the complex interplay of atmo-
spheric processes that govern PM2.5 levels.

4 Discussions

4.1 Model Accuracy and Uncertainty

One debatable concern is the accuracy of neural network
(NN)-based components in integrated chemical transport
models (CTMs) and the potential for amplified uncertainty
when coupling multiple NN modules. Literature precedent
suggests that individual NN emulators may exhibit lower ac-
curacy compared to traditional physical parameterizations,
but their integration could introduce unexplained uncertain-
ties. This is a valid consideration that aligns with broader
discussions in Earth system modeling about the trade-offs be-
tween computational efficiency and physical fidelity (Irrgang
et al., 2021).

In FastCTM, we address this by adopting a principle-
informed modular design where each module (transport,
chemistry, deposition, etc.) is constrained by governing phys-
ical/chemical equations (e.g., Eqs. 3–14). This distinguishes
it from unconstrained “black-box” NN models, as each pro-
cess is guided by known atmospheric dynamics. For exam-
ple, the transport module explicitly enforces mass conserva-
tion via upwind schemes (Eqs. 5–7), and the chemical reac-
tion module links reaction rates to meteorological conditions
(Eq. 12) based on kinetic theory. Our evaluation shows that
FastCTM maintains high consistency with CMAQ across
119 h forecasts (Sect. 3.1), with R2 values exceeding 0.8
for most pollutants, indicating that physical constraints ef-
fectively mitigate accuracy losses.

However, we acknowledge that uncertainty can accumu-
late when coupling modules, particularly for species involved
in complex multi-process interactions due to limited chem-
ical constraints in our current training datasets(e.g., NH+4 ,
Sect. 3.1). This is partly due to simplifications in FastCTM’s
chemical mechanism, which omits some aerosol thermody-
namics included in CMAQ. Future work will reduce such un-
certainties by incorporating additional species (e.g., VOCs)
and refining process formulations by adding CMAQ’s inte-
grated process rate (IPR) data for supervised training of indi-
vidual modules.

4.2 Choosing Neural Network Components over
Traditional Parameterizations

One question might arise about the utility of replacing non-
bottleneck CTM components (e.g., deposition) with NN
solvers, given the argument that traditional parameterizations
may already be accurate and fast. This highlights a criti-
cal design choice in FastCTM: balancing computational effi-
ciency with fidelity to the parent model (CMAQ).

It is important to note that even non-bottleneck compo-
nents in traditional CTMs can benefit from NN acceleration
in integrated simulations. For example, CMAQ’s deposition
module, while not a primary computational burden, relies
on parameterizations based on similarity theory and limited
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Figure 10. An example of the PM2.5 concentration at T1 (18:00, a) and T2 (19:00, b) on 13 January 2023 (with the forecast leading time of
42 h) and hourly changes (c). Changes caused by each of the five dominant processes are depicted in (d)–(h).

Figure 11. Boxplots of hourly PM2.5 contribution changes from five major atmospheric processes at 139 evaluation stations from 13 to
16 October 2024, simulated by (a) CMAQ and (b) FastCTM.

flux measurements (Janhäll, 2015), which may oversimplify
complex surface-atmosphere interactions (e.g., vegetation-
specific uptake). NN-based parameterizations have shown
promise in improving such processes. Silva et al. (2019), for
instance, developed a deep learning model for ozone dry de-
position that outperformed traditional schemes in indepen-
dent validation. In FastCTM, the deposition module (Eq. 14)
leverages NN to capture nonlinear relationships between me-
teorology (e.g., wind speed, land cover) and deposition rates,
while retaining compatibility with CMAQ’s output.

Moreover, FastCTM’s modular architecture allows flexible
integration of traditional parameterizations as an option. For
example, users could replace the NN-based deposition mod-
ule with CMAQ’s original parameterization if higher fidelity
to that specific process is prioritized. This hybrid approach
addresses concerns about unnecessary replacement of robust
components while retaining the overall speed advantage of
NN for bottleneck processes (e.g., chemical reactions, which
dominate CTM runtime; Xia et al., 2025).

4.3 Beyond “Black Boxes”: Interpretability and Error
Identification

A central goal of FastCTM is to advance beyond opaque
deep learning models by enabling process-level interpretabil-
ity, addressing concerns about error attribution. Traditional
“black-box” NN models obscure how individual processes
contribute to predictions, hindering error analysis. In con-
trast, FastCTM’s modular design quantifies hourly contri-
butions from transport, diffusion, emissions, chemistry, and
deposition separately (Sect. 3.3), allowing targeted identifi-
cation of error sources. For example, in the January 2023
pollution episode (Fig. 10), transport was found to domi-
nate PM2.5 concentration changes, while deposition acted as
a secondary sink This process-level attribution aligns well
with CMAQ’s process analysis (Fig. 11), ensuring that uncer-
tainties are traced to specific physical processes rather than
being attributed to arbitrary model behavior.

We anticipate that incorporating abundant CMAQ’s in-
tegrated process rate (IPR) data for supervised training of
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individual modules will further refine the FastCTM’s pro-
cess level predictions. However, a comprehensive process-
oriented error analysis that would further enhancing inter-
pretability, for instance isolating and quantifying whether
transport or chemistry drives urban-rural accuracy discrepan-
cies, requires long-term process simulations and systematic
perturbations plus observational datasets (e.g., tracer exper-
iments) to validate specific processes predictions from both
CMAQ and FastCTM.

4.4 Limitations and Future Directions

FastCTM’s current limitations include simplified vertical dy-
namics (2D boundary layer representation) and incomplete
chemical mechanisms, which affect performance during vig-
orous daytime mixing (Sect. 3.1). A future extension to a 3D
framework will improve representation of vertical transport
and in-cloud chemistry. Additionally, while FastCTM effi-
ciently reproduces CMAQ simulations, it does not claim su-
periority over traditional CTMs across all scenarios; rather,
it serves as a complementary tool for applications requiring
rapid simulations (e.g., ensemble forecasting, emission sce-
nario screening).

By addressing these limitations and engaging with ongo-
ing debates about NN integration in atmospheric modeling,
FastCTM aims to bridge the gap between computational effi-
ciency and physical rigor, providing a flexible framework for
air quality research and management.

Data availability. The land use and land cover data are avail-
able at the Data Sharing and Service Portal of the Chi-
nese Academy of Science (http://data.casearth.cn/en/sdo/detail/
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required). The CTM simulation data and source code files of
the exact version used to produce the results used in this pa-
per are available at https://doi.org/10.5281/zenodo.13757211 on
Zenodo (Lyu, 2024). The configuration files for running mod-
els of WRF v3.4.1 and CAMQ v5.0.2 are also available at
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