Articles | Volume 18, issue 18
https://doi.org/10.5194/gmd-18-6177-2025
https://doi.org/10.5194/gmd-18-6177-2025
Methods for assessment of models
 | 
22 Sep 2025
Methods for assessment of models |  | 22 Sep 2025

Linear Meta-Model optimization for regional climate models (LiMMo version 1.0)

Sergei Petrov, Andreas Will, and Beate Geyer

Related authors

Uncertainty in Offshore Wind Power Forecasts: A Regional Climate Modeling Approach for the North Sea
Alberto Elizalde, Naveed Akhtar, Beate Geyer, and Corinna Schrum
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-64,https://doi.org/10.5194/wes-2025-64, 2025
Revised manuscript under review for WES
Short summary

Cited articles

Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010. a, b
Avgoustoglou, E., Carmona, I., Voudouri, A., Levi, Y., Will, A., and Bettems, J.: Calibration of COSMO model in the Central-Eastern Mediterranean area adjusted over the domains of Greece and Israel, Atmos. Res., 279, 106362, https://doi.org/10.1016/j.atmosres.2022.106362, 2022. a, b, c, d, e
Bellprat, O., Kotlarski, S., Lüthi, D., and Schär, C.: Objective calibration of regional climate models, J. Geophys. Res.-Atmos., 117, https://doi.org/10.1029/2012JD018262, 2012. a, b, c, d, e, f
Bellprat, O., Kotlarski, S., Lüthi, D., Elía, R., Frigon, A., Laprise, R., and Schär, C.: Objective Calibration of Regional Climate Models: Application over Europe and North America, J. Climate, 29, 151211135749001, https://doi.org/10.1175/JCLI-D-15-0302.1, 2015. a
Broyden, C. G.: The Convergence of a Class of Double-Rank Minimization Algorithms 2. The New Algorithm, IMA J. Appl. Math., 6, 222–231, https://doi.org/10.1093/imamat/6.3.222, 1970. a
Download
Short summary
This study introduces a new method that helps improve the accuracy of climate models by automatically selecting the best parameters to match real-world observations. Instead of manually adjusting many parameters, the method uses a mathematical tool to find the most appropriate settings for the model. It can be especially helpful for researchers who introduce new physical parameters into climate models to assess their impact on model results and optimize them along with the old ones.
Share