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Abstract. A new tool for objective parameter tuning of
regional climate models is presented. The climate model
output was emulated using a linear regression approach
for each grid point on a monthly mean basis. This linear
approximation showed decent accuracy over a 6-year pe-
riod. The root-mean-square error norm between the Meta-
Model and the observational data sets was minimized us-
ing the gradient-based, limited-memory Broyden–Fletcher–
Goldfarb–Shanno method with box constraints. We refer to
this framework as LiMMo (Linear Meta-Model optimiza-
tion). The LiMMo framework was applied to the state-of-the-
art regional climate model ICON-CLM, tuned to the E-OBS
and HOAPS observational data sets. Different optimization
objectives were explored by assigning varying weights to
model variables in the error norm definition. The combina-
tion of a linear emulator with fast gradient-based optimiza-
tion allows the proposed method to scale linearly with the
number of model variables and parameters, facilitating the
tuning of dozens of parameters simultaneously.

1 Introduction

Tuning model parameters is crucial in Earth system mod-
eling, where the aim is to minimize discrepancies between
simulation results and observations. This process is essen-
tial for achieving reliable simulations in a variety of applica-
tions, ranging from short-term numerical weather prediction
(e.g., Zängl, 2023) to long-term global and regional climate
projections (e.g., Mauritsen and Roeckner, 2020). As model
complexity and resolution continue to grow, tuning becomes
increasingly challenging due to the computational expense of

each simulation, therefore the demand for robust, transparent
and efficient tuning procedures has grown significantly. Ef-
fective tuning improves model fidelity and enhances trust in
model outcomes for policy-relevant decision-making.

In the context of global and regional climate models,
four primary approaches to tuning have emerged (Hourdin
et al., 2017). The first and most widely used is expert tun-
ing, where model developers or users manually adjust pa-
rameters based on empirical experience and trial-and-error
procedures (e.g., Mauritsen et al., 2012; Golaz et al., 2013).
A more systematic alternative is metamodel-based tuning,
also known as objective calibration, where a computation-
ally cheap surrogate parameterized model (emulator) is con-
structed to approximate the behavior of the full model (e.g.,
Neelin et al., 2010; Bellprat et al., 2012). Third, Bayesian
frameworks explicitly incorporate observational uncertainty
and prior knowledge to estimate probability distributions of
parameter values (see Kennedy and O’Hagan, 2001; Hour-
din et al., 2023). Lastly, resolution-linked hierarchical emu-
lators combine outputs from low- and high-resolution mod-
els to reduce computational burden while retaining accu-
racy (Williamson et al., 2012). This study contributes to the
second category – objective calibration – by introducing a
novel framework called LiMMo (Linear Meta-Model opti-
mization), which employs a cost-efficient linear regression-
based emulator combined with gradient-based optimization.

Previous studies on objective calibration have mainly cen-
tred on quadratic regression-based emulators, which permit
nonlinear interactions among parameters and offer robust ap-
proximations (introduced in Neelin et al., 2010 and utilized
in Bellprat et al., 2012, 2015; Avgoustoglou et al., 2022).
However, a key limitation of this method is its high compu-
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tational cost: the number of simulations required increases
with the number of parameters (N ) as N2, since the simu-
lation must be conducted for each pair of disturbed param-
eters in order to approximate interaction terms. To explore
parameter space, many studies have employed Monte Carlo
or Latin Hypercube sampling, which requires an exponen-
tially growing number of samples to find global minimum
for the error norm function, as dimensionality increases (Mo-
rokoff and Caflisch, 1995). Although this method is robust,
it is computationally intensive and inefficient, restricting its
use to tunings involving only a limited number of parameters
– typically no more than seven. These constraints underscore
the need for more efficient approximation and optimization
approaches.

Another important issue is selecting an appropriate objec-
tive function to guide optimization. Although there are many
alternatives, including multi-objective and probabilistic for-
mulations, many studies continue to rely on simple met-
rics, such as root mean square error (RMSE) and/or Pearson
correlation coefficient. However, RMSE and Pearson cor-
relation may not capture all aspects of model performance
(Liemohn et al., 2021). Nevertheless, to demonstrate the ca-
pabilities of the proposed LiMMo framework in a transparent
and tractable way, this study focuses on minimizing RMSE.
This relatively simple error norm allows us to demonstrate
the LiMMo framework’s capabilities, laying the groundwork
for future expansions to more advanced metrics that take the
distribution function into account.

The literature on statistical emulators includes Gaussian
process models (Kennedy and O’Hagan, 2001; Williamson
et al., 2013), high degree polynomial meta-models (Neelin
et al., 2010; Bellprat et al., 2012), and hierarchical em-
ulators that leverage multi-resolution outputs (Williamson
et al., 2012). Despite its simplicity, linear regression has re-
ceived less attention, even though it offers substantial ef-
ficiency benefits. Furthermore, gradient-based optimization
techniques have rarely been applied to climate model tun-
ing, partly due to the difficulty of computing derivatives.
Taking advantage of the structural simplicity of linear re-
gression makes it easier to derive the gradients of the objec-
tive function analytically and implement the gradient-based
optimization procedure. This improves the scalability and
convergence properties of the optimization process. To our
knowledge, this is the first application of gradient-based opti-
mization in the context of objective calibration for a regional
climate model.

The following text is divided into five sections. The mate-
rials (Sect. 2) describes the tuned model quantities, the ob-
servational data sets, the regional climate model and its phys-
ical parameterizations. The tuning method is introduced in
section The LiMMo framework (Sect. 3). The results of the
optimization are presented in Sect. 4. Discussion in Sect. 5
covers aspects of tuning that fall outside the scope of the cur-
rent study. Finally, the most important results are highlighted
in conclusions (Sect. 6).

2 Materials

In this section, we provide a detailed description of ICON-
CLM regional climate model (Pham et al., 2021). The model
was configured at a 12 km spatial resolution over the EURO-
CORDEX domain (Jacob et al., 2014) and optimized against
observational data. The list of considered model quantities is
presented in Sect. 2.1. Details of the observational data sets
are provided in Sect. 2.2. The setup of the regional climate
model ICON-CLM is described in Sect. 2.3, while the list of
ICON-CLM tuning parameters is outlined in Sect. 2.4.

2.1 Model quantities

The list of surface prognostic variables (or model quantities)
considered in this study is shown in the Table 1.

The selection of variables can be adjusted according to the
user’s interests. In addition to the commonly analyzed vari-
ables (tas, tasmin, tasmax, pr_amount, psl), we include the
latent heat flux (hfls) due to its significant influence on long-
term precipitation formation via evaporation over the sea.
These 2D quantities were extracted from both climate model
output and observational data sets for the tuning period from
1 January 2003 to 31 December 2008.

2.2 Observational data sets

The E-OBS version 29.0 data set (Cornes et al., 2018) was
selected as a reference for tas, rsds, tasmin, tasmax, psl and
pr_amount. This land-only, station-based observational grid-
ded data set is compiled from high-density in-situ measure-
ments provided by over 2000 European meteorological and
hydrological stations. These measurements are then interpo-
lated onto a regular grid and provided with ensemble uncer-
tainty estimates. It provides high-quality daily data over Eu-
rope with a spatial resolution of approximately 25 km (12 km
resolution is also available in the latest versions) and tem-
poral coverage since 1950. Due to its fine spatial detail,
daily temporal resolution and ensemble-based uncertainty
estimates, E-OBS is a robust resource for analysing regional
climate variability and long-term trends, and for making re-
liable climate assessments.

Our aim is to calibrate the hfls to align with the HOAPS
version 4.0 data set (Andersson et al., 2010). HOAPS pro-
vides a satellite-based climatology of latent heat flux over
the global ice-free oceans, derived from recalibrated SSM/I
and SSMIS sensor measurements. The data set covers the
period from 1987 to 2014, has a spatial resolution of approx-
imately 55 km, and provides 6-hourly averages. HOAPS uses
the COARE bulk flux algorithm version 2.6a (Fairall et al.,
2003), to provide accurate estimates, making it a key refer-
ence for ocean-atmosphere interaction studies and energy ex-
change assessments.

Temporally averaged surface fields of tasmin, tasmax,
rsds, pr_amount, psl, and hfls interpolated to the climate
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Table 1. The list of surface model quantities considered in the tuning process.

Acronym Description Unit

tas hourly mean 2 m temperature K
rsds hourly mean downward net short-wave radiation flux W m−2

tasmin daily minimum 2 m temperature K
tasmax daily maximum 2 m temperature K
psl hourly mean atmospheric pressure at the surface Pa
pr_amount hourly total amount of precipitations mm h−1

hfls hourly mean surface downward latent heat flux W m−2

Figure 1. 2003–2008 mean observations: (a) daily minimum 2 m temperature, E-OBS; (b) daily maximum 2 m temperature, E-OBS; (c) daily
mean short-wave radiation flux, E-OBS; (d) total monthly precipitations, E-OBS; (e) daily mean atmostperic pressure at sea level, E-OBS;
(f) daily mean latent heat flux over water, HOAPS.

model output grid are shown in Fig. 1 for the tuning period
2003–2008.

2.3 Regional climate model ICON-CLM

ICON is a state-of-the-art model for global circulation mod-
eling, Regional Climate Modeling (RCM), operational Nu-
merical Weather Prediction (NWP), Large Eddy Simula-
tions (LES), and environmental prediction (Zängl et al.,

2015; Klocke et al., 2017; Stevens et al., 2017). The model
is available since 2024. It uses an unstructured triangular
grid, allowing nearly uniform resolution across the globe at
any grid scale. The model is capable of simulations down to
sub-kilometer scales, with common dynamics and numerics
across all application modes. The model physics, however,
differs between applications, with specific versions for Earth
system modeling, NWP/RCM, and LES.
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Figure 2. EURO-CORDEX domain, height of the Earths surface
above sea level.

ICON-CLM (ICON in Climate Limited-area Mode) is the
configuration used for RCM applications. It utilizes NWP
physics with climate-specific extensions for long-term sim-
ulations. The first version of ICON-CLM is based on ICON
release 2.6.1 (Pham et al., 2021). Typically, it operates in
a one-way nesting mode, with coarse grid lateral boundary
conditions and bottom boundary conditions over oceans. In
the current study, Rayleigh damping is applied at the upper
boundary to handle gravity waves.

The ICON release model version from July 2024 (ICON
partnership , DWD, MPI-M, DKRZ, KIT, C2SM) is used
with the ERA5 reanalysis (Hersbach et al., 2020) boundary
conditions for the period 2003–2008. The simulation grid
R13B5 (ICON terminology) corresponds to a mesh size of
about 12.14 km. As a post-processing step, the model fields
were interpolated onto a rotated 412× 424 rectangular grid
of the EURO-CORDEX model domain (Fig. 2) with a spa-
tial resolution of 12 km, ensuring convenient data storage and
accessibility for analysis.

2.4 Tuning parameters of ICON-CLM

In this study, 15 parameters are selected for optimization,
which is twice the number of parameters used in applica-
tions of the quadratic regression Meta-Model approach (Bell-
prat et al., 2012; Avgoustoglou et al., 2022). The follow-
ing subsections discuss the physical meaning and relevance
of these parameters. All model parameters are grouped into
four categories. A brief description of the Surface Transfer

Scheme (Sect. 2.4.1) and Mixing in the Planetary Bound-
ary Layer (Sect. 2.4.2) parameters is given in Table A1.
Descriptions of the Cloud Cover (Sect. 2.4.3) and External
Data sets (Sect. 2.4.4) parameters can be found in Table A2.
For more details, please refer to the ICON namelist param-
eter overview (https://gitlab.dkrz.de/icon/icon-model/-/blob/
release-2024.07-public/doc/Namelist_overview.pdf, last ac-
cess: February 2025).

The ICON namelist parameter names are designed to be
self-explanatory, but this often results in them being quite
long. To address this, the tables in the appendix (Tables A1
and A2) provide a mapping between the full ICON parame-
ter names and the shorter versions used in the current study.
In the text, ICON parameter names are highlighted with
mono-space font, while the corresponding short acronyms
are highlighted with bold font. For example, the ICON pa-
rameter for the relative humidity range is tune_box_liq,
which corresponds to the acronym tbl.

2.4.1 Surface transfer scheme

The surface transfer scheme contains several tuning pa-
rameters, some of which are known to significantly impact
near-surface climate conditions. These parameters, along
with several related and newly introduced ones, are used
for optimization. Specifically, the parameters rlam_heat,
rat_sea, cr_bsmin, and rsmin_fac have been identi-
fied as particularly sensitive in climate modeling. Even small
changes within their uncertainty ranges can lead to substan-
tial changes in the simulated climate, particularly in the near-
surface air temperature (tas). These parameters have been
optimized in previous studies (Bellprat et al., 2012; Avgous-
toglou et al., 2022).

The parameters rlam_heat and rat_sea, along with
the newly introduced parameter rat_lam, serve to scale the
resistance to latent and sensible heat flux over both land and
sea surfaces, as described in the Table 2.

These parameters provide the flexibility to tune the heat
fluxes over land and sea surfaces independently, and allow
the adjustment of the Bowen ratio over land surfaces.

The parameters cr_bsmin and rsmin_fac represent
the minimum resistance to evaporation from bare soil, rel-
evant for wet soil conditions, and the scaling factor for
the minimum resistance of plant transpiration, respectively.
These minimum resistances limit evapotranspiration and are
known to have a significant impact on soil moisture. Conse-
quently, they influence the annual cycle climatologies, espe-
cially with respect to soil moisture dynamics.

Recently, the parameter pair tune_albedo_wso=
(taw1, taw2) was introduced to correct the reference albedo
for dry (taw1) and wet (taw2) soil conditions. This param-
eterization was initially motivated by the model’s warm tas
bias in the Mediterranean and cold bias in central and north-
ern Europe. Additionally, it accounts for the fact that ob-
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Table 2. Influence of the parameters rlam_heat, rat_sea, and rat_lam on the latent and sensible heat fluxes.

Land Sea

Latent Heat Flux rlam_heat ·rat_lam rlam_heat ·rat_sea
Sensible Heat Flux rlam_heat rlam_heat ·rat_sea

served albedo tends to be reduced for wet soils and increased
for very dry soils.

2.4.2 Mixing in the planetary boundary layer

The parameters tkhmin and tkmmin represent the min-
imum diffusion coefficients for vertical mixing of heat
and momentum, respectively. They maintain mixing under
opaque cloud cover and help dissolve the clouds, compensat-
ing for the excessive effective viscosity caused by numerical
diffusion, which dampens instabilities. However, this min-
imum diffusion can keep mixing too high in stable, low-
turbulence conditions, especially in winter, leading to ex-
cessively warm near-surface temperatures. These parameters
should be as low as possible, but high enough to be effec-
tive, and have previously been optimized by expert judgment
or objective calibration (Avgoustoglou et al., 2022). In this
study, tkhmin and tkmmin are tuned simultaneously with
the same factor (later the same acronym tkhmin is used for
tkhmin= tkmmin).

2.4.3 Cloud cover

The cloud cover parameters are optimized to address the rsds
bias. The tune_box_liq and tune_box_liq_asy pa-
rameters are introduced to adjust the relationship between
cloud cover (CLC) and relative humidity (RH), and are care-
fully tuned for operational NWP applications.

The allow_overcast factor further refines the depen-
dence of cloud cover on relative humidity. Values less than
one increase the average cloud cover. To incorporate seasonal
variability, we define a time-dependent monthly variation for
allow_overcast as follows:

allow_overcast[i] = ao+ aot4 · aot[i],

where ao is the mean and aot[i] are the monthly devia-
tions from that mean, i is the index of the month. The de-
viations are predefined to be positive in summer and nega-
tive in winter. This monthly variability is parameterized in
the Meta-Model by the mean (ao) and the scaling factor
(0.0≤ aot4≤ 1.5) of the monthly deviations.

2.4.4 External data sets

In recent years, new data sets describing the physical proper-
ties of soils, surfaces, and the atmosphere have become avail-
able. In this study, we investigate the following alternative
options:

– soil_data_base (sdb) describes the physical prop-
erties of the soil, provided by FAO (FAO/UNESCO,
1981) [sdb= 0] and HWSD data (Nachtergaele et al.,
2023) [sdb= 1]. The FAO data set mainly represents
sandy soils with a typical spatial resolution of 50 km,
while the HWSD data set has a finer resolution of ap-
proximately 7 km.

– type_of_orography (oro) is used to calculate the
grid-scale surface elevation and parameters required to
parameterize subgrid-scale orographic effects. We use
the global NOAA GLOBE data (GLOBE Task Team
et al., 1999) [oro= 0] with a resolution of 30 arcsec (ap-
proximately 1 km), or the Yamazaki-Lab MERIT data
(Yamazaki et al., 2017) [oro= 1] with a finer grid reso-
lution of 3 arcsec (approximately 100 m).

– type_of_aerosols (acrf) parameterizes the
feedback of the Cloud Condensation Nuclei Den-
sity (CDNC) on cloud formation. For this study, we
use Kinne aerosol data (Kinne, 2019) [acrf= 0], for
which CDNC is not available, so we supplement it with
MODIS (Schaaf et al., 2021) [acrf= 1] CDNC data.

3 The LiMMo framework

This section introduces the LiMMo tuning framework. In
principle, the described steps are model-independent, en-
abling users to adopt the framework for their own tuning
objectives. The definition of the error norm relative to ob-
servations, which serves as the optimization objective, is dis-
cussed in Sect. 3.1. The Meta-Model approximation method-
ology is explained in Sect. 3.2. The proposed gradient-based
optimization method is described in Sect. 3.3. Finally, in
Sect. 3.4, we introduce the measure of variable sensitivities
with respect to model parameters.

3.1 Error norm

The standard ICON-CLM model output is generated on an
hourly basis (except for tasmin, tasmax which are daily). To
reduce the temporal dimensionality, the daily means for tas,
rsds, psl, and hfls and the daily sum for pr_amount are com-
puted first. To maintain temporal consistency across analy-
ses, an annual cycle of daily values was generated, based
on multi-year daily means for each model variable. This ap-
proach allows for flexibility in the selection of time spans
per variable to accommodate any temporal inconsistencies in
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observations. For this study, a uniform six-year period from
2003 to 2008 was used across all variables for both model
outputs and observations to generate the annual cycle. In
addition, to further reduce the dimensionality of the data,
monthly mean values of the annual cycle were calculated
for each model variable, consolidating the temporal dimen-
sion to 12. In principle, there is no need to accumulate the
daily values first to generate the monthly averages of the an-
nual cycles, since one can compute the monthly averages first
and then compute the multi-year average of the annual cy-
cle. However, this approach generally provides more flexibil-
ity, since it allows for more sophisticated distribution-based
monthly quantities (e.g., 99th percentiles of hourly/daily val-
ues within climatological month).

To define the error norm we consider horizontal model re-
sults MODi,j,k,n for model variables vn. The indices i, j cor-
respond to horizontal surface spatial dimensions, k is the in-
dex of month. The observational data OBSi,j,k,n were then
interpolated to the model grid.

The spatially reduced Root Mean Square Error RMSEk,n
for each variable and time period is defined as

RMSEk,n =

√
1

Nx ·Ny

∑
i,j

(
MODi,j,k,n−OBSi,j,k,n

)2
, (1)

where Nx ·Ny is the number of horizontal grid points of the
simulation domain excluding the lateral boundary relaxation
zone. For each variable and month the internal variability (or
intrinsic uncertainty) σk,n is defined as the RMSE between
the reference and disturbance simulation, where the initial
conditions were shifted to 1 month

σk,n =

√
1

Nx ·Ny

∑
i,j

(
MODref

i,j,k,n−MODdis
i,j,k,n

)2
. (2)

In order to obtain a reliable measure of the intrinsic uncer-
tainty of the model, both the reference and disturbance simu-
lations should cover a sufficiently long period, as is the case
in the current study with a 6-year period. Otherwise, signif-
icant imbalances in the monthly values within the climato-
logical year can occur. The unit less error ERRn for each
variable is defined as the averaged over months RMSE nor-
malized on internal variability

ERRn =
1
Nt

∑
k

RMSEk,n
σk,n

, (3)

whereNt = 12 is the number of months. The final error norm
ERR is defined as the weighted sum of the errors for each
variable

ERR=
∑
n

cn ·ERRn,
∑
n

cn = 1. (4)

The weights cn are specified by the user to emphasize the
importance of a particular variable and should have the unit
sum. The goal of the tuning process is to minimize the error
norm (Eq. 4) with respect to the model parameters.

3.2 The linear meta-model approximation

The mean climate can be regarded as a balanced, stable sta-
tionary state and thus to be weakly dependent on the model
parameters pi . This allows to consider the climate state CLI
as a function of a model parameter vector p and to expand
CLI(p) in a Taylor series around the reference model solu-
tion CLI(p0). The linear meta model is the first order approx-
imation of the climate state:

CLI(p)≈ CLI
(
p0
)
+∇pCLI

(
p0
)
·
(
p−p0

)
. (5)

We rewrite Eq. (5) in the form of a linear regression
REGi,j,k,n for each grid point (xi , yj ), month mk and vari-
able vn

REGi,j,k,n(p)= Ai,j,k,n+
Nc∑
m=1

pm ·K
m
i,j,k,n, (6)

where Ai,j,k,n is the shift tensor, Km
i,j,k,n is the tendency ten-

sor (m is the index of the parameter) and Nc is the number of
continuous parameters considered.

To train the linear regression model we present the analyt-
ical values of a tendency tensor Km

i,j,k,n for each m, obtained
by the method of undefined coefficients by substituting simu-
lations to the general form of linear regression (Eq. 6). After
substituting the reference and single parameter disturbance
simulation, the value of the tendency tensor is defined as the
fraction of the simulation difference to the parameter incre-
ment. For example, one can obtain the tensor Km

i,j,k,n corre-
sponding to the parameter pm as

Km
i,j,k,n =

MODpm=p
ref
m +1pm

i,j,k,n −MODpm=p
ref
m

i,j,k,n

1pm
, (7)

since the other parameters except pm remained unchanged. If
more than one linear combination could define the tendency
on the parameter, the least-square technique is utilized. The
specific values of the parameters used for training (tested val-
ues) can be found in Tables A1 and A2. After the computa-
tion of all tendency tensors, the additional substitution of the
reference simulation gives the value of the shift tensor

Ai,j,k,n =MODref
i,j,k,n−

Nc∑
m=1

pref
m ·K

m
i,j,k,n. (8)

To account for logical switches, we incorporate constant sig-
nals into the Meta-Model (Eq. 6):

REGi,j,k,n(p)= Ai,j,k,n+
Nc∑
m=1

pm ·K
m
i,j,k,n+

Nb∑
l=1

pl

·

(
MODpl=1

i,j,k,n−MODpl=0
i,j,k,n

)
, (9)

where Nb denotes the number of binary (logical) parameters,
and each binary parameter pl can take the values 0 or 1. The
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reference simulation assumes pl = 0 for all binary parame-
ters. When pl = 0, the logical switch is off, and no additional
signal is added, so the Meta-Model would reproduce the state
of the reference simulation. The inclusion of binary param-
eters introduces constant shifts in the emulator, but does not
affect the gradient of the Meta-Model with respect to contin-
uous parameters. Consequently, the following minimization
involves only continuous parameters, while logical ones are
prescribed to 0 or 1.

3.3 The gradient-based optimization

The core concept behind Meta-Model tuning is to replace the
climate model output with a regression approximation in the
definition of the error norm (Eq. 4). Due to the simplicity of
the Meta-Model, the gradient of the error norm with respect
to the model parameters can be computed analytically. The
linear regression approximation (Eq. 9) provides the follow-
ing analytical expression for the gradient with respect to the
continuous parameters:(
∂REG
∂p

)
m

=Km
i,j,k,n. (10)

Using the chain rule, the analytical form of the gradient of
the error norm (Eq. 4) could be written as(
∂ERR
∂p

)
m

=

∑
n

cn
1

Nt ·Nx ·Ny

∑
k

1
σk,n ·RMSEk,n(p)

·

∑
i,j

(
REGi,j,k,n(p)−OBSi,j,k,n

)
·Km

i,j,k,n. (11)

The computation of the gradient requires one loop over grid
points (i, j ), time (k), and model variables (n), making
its duration comparable to that of a single norm evaluation
O(Nx ·Ny ·Nt ·Nvars).

The availability of a fast gradient computation procedure
allows the use of different optimization methods. Gradient-
descent-type optimization involves iterations over the vec-
tor of parameters p that search for the minimum error
norm function (Eq. 4) in the direction opposite the gradient
(Eq. 11).

This study proposes the implementation of the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno with Box con-
straints (L-BFGS-B) algorithm (Broyden, 1970; Byrd et al.,
1995). This method is chosen due to its high convergence
speed, being a quasi-Newton method that approximates the
Hessian matrix, and its capability to impose constraints on
parameter ranges, thereby eliminating nonphysical parame-
ter values during the optimization.

In gradient-based optimization, parameter normalization
is highly beneficial, as it results in a spherical shape of iso-
lines, improving the convergence rate by avoiding the steep
slopes of the objective function

pnew
i =

pold
i −p

min
i

pmax
i −pmin

i

. (12)

The parameter ranges pmin
i /pmax

i are user-defined (Ta-
bles A1 and A2) and are used for parameter normalization
as well as for the box constraints in L-BFGS-B optimization.
Applying this linear transformation to the parameters results
in the following transformation of the gradient function(
∂

∂p
f
(
pnew

1 , . . ., pnew
m

))
i

=

(
pmax
i −pmin

i

)
·

(
∂

∂p
f
(
pold

1 , . . ., pold
m

))
i

.

Figure 3 illustrates the difference in convergence of the pro-
posed method with and without parameter normalization
for a specific parameter configuration. The results clearly
demonstrate that the normalized approach achieves the same
objective function value, but with an order of magnitude
fewer iterations (the objective function decrement was set
to 10−5 as the stop criterion in both cases).

The dependence of the solution on the initial conditions
can lead to different optimization results. An extremely high
optimization speed makes it possible to consider the ensem-
ble of optimization trajectories with the perturbed initial con-
ditions. We propose to select the perturbed initial conditions
from the Latin Hypercube vicinity of the reference parame-
ters[
pref
m −AMPL ·

(
pmax
m −pmin

m

)
, pref

m +AMPL

·

(
pmax
m −pmin

m

)]
, m= 1,Nc. (13)

The scaling factor AMPL ∈ [0,1] defines the amplitude of
the perturbation. In the case of the linear regression emula-
tor with a simple RMSE score function, we found no depen-
dence of the result on the initial conditions, as shown in Fig. 4
(we used AMPL= 0.3 and 15 samples), but this may be dif-
ferent for more advanced statistical emulators or error norm
definitions. If a dependence on the initial conditions occurs,
one could choose the result with the minimum value of the
objective function.

Gradient-based optimization with an analytical represen-
tation of the gradient is highly advantageous in terms of per-
formance. The use of linear regression as the statistical emu-
lator results in a linear scaling of the dimensions of the prob-
lem (number of variables, parameters, grid points, and time
steps), allowing a large number of parameters to be tuned in
a reasonable amount of time. A numerical approximation of
the gradient is also possible in the case of a more sophisti-
cated statistical emulator or an error norm definition, when
the analytical expression is unavailable.

3.4 Sensitivity measure

To estimate the sensitivity of the ICON-CLM and conse-
quently of the regression model to the considered parame-
ters, the unit-less measure of maximum change SENSn,m is
calculated for each prognostic variable. Firstly we compute
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Figure 3. Convergence of L-BFGS-B method: error norm (Eq. 4) values without (a) and with (c) parameter normalization, l2-norm of error
norm gradient (Eq. 11) without (b) and with (d) parameter normalization.

Figure 4. The axes are the same as in Fig. 3. Ensemble of 15 optimization trajectories with disturbed initial conditions: (a) error norm (Eq. 4),
(b) l2-norm of error norm gradient (Eq. 11).

the maximal function increments by separately changing all
parameters to their limits

1REGm,min/max
i,j,k,n = REGi,j,k,n

(
pref

1 , . . ., p
min/max
m , . . .,

pref
Np

)
−REGi,j,k,n

(
pref

1 , . . ., p
ref
m , . . ., p

ref
Np

)
, (14)

where Np is the total number of parameters, including con-
tinuous and logical ones. Here, 1REGm,min

i,j,k,n is the regres-
sion increment where only the parameter pm is changed to

its minimum limit. Similarly1REGm,max
i,j,k,n corresponds to the

regression increment when pm is changed to its maximum.
The sensitivity benchmark SENSn,m of the variable vn to the
parameter pm is defined as the maximum of the sensitivities
revealed for pm = pmin

m and pm = pmax
m respectively

SENSn,m =max
(

SENSmin
n,m,SENSmax

n,m

)
. (15)

Equation (16) gives the expression for calculating the
SENSmin

n,m and SENSmax
n,m as the monthly mean signal-to-noise
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measures (normalized by internal variability σk,n) of regres-
sion increment where pm = pmin

m and pm = p
max
m respec-

tively (Eq. 14)

SENSmin/max
n,m =

1
NT
·

∑
k

1
σk,n

·

√
1

Nx ·Ny
·

∑
i,j

(
1REGm,min/max

i,j,k,n

)2
. (16)

4 Results

In this section, we analyze the sensitivity results (Sect. 4.1)
and the regression validation (Sect. 4.2) to identify the most
influential parameters and to evaluate the performance of the
proposed statistical emulator. Subsequently, an example ap-
plication of LiMMo is presented for a selected parameter set
(Sect. 4.3), demonstrating its flexibility in handling varying
variable weights. Additionally, the results of an optimization
incorporating logical switches (Sect. 4.4) constraints are dis-
cussed.

4.1 Sensitivity results

The sensitivity measures for all parameters computed as
Eq. (15) are shown in Fig. 5.

Overall, the sensitivity results are consistent with theoreti-
cal expectations. It is clear that the surface albedo parameter-
isation taw1 is the primary driver of surface air temperature
variations (tas, tasmin, tasmax). taw2 has a negligible impact
on the model variables, which is below the level of the ICON-
CLM’s intrinsic variability. The heat flux scaling factors rlh
and rs show sensitivity primarily to latent heat flux over the
sea (hfls), with a moderate impact on other quantities. The
ratio of the laminar scaling factors rl has the greatest impact
on short-wave radiation (rsds), contributing only slightly to
precipitation (pr_amount) and latent heat flux (hfls). The soil
resistance parameters rsmf and crb exhibit sensitivity across
all model variables. Although optimizing these parameters
may not lead to improvements in one variable without af-
fecting others, their inclusion may still be beneficial for opti-
mization.

The cloud cover parameters tbl and tbla and the allow
overcast parameters ao and aot4 demonstrate the most pro-
nounced sensitivity to short-wave radiation (rsds), as ex-
pected. The momentum and vertical diffusion coefficient
tkhmin primarily influence the mean (tas) and the mini-
mum (tasmin) daily temperatures with minimal impact on
other variables, suggesting opportunities for targeted tuning.

The external soil database sdb primarily affects the
mean (tas) and the minimum (tasmin) daily temperature.
Aerosol type acrf has only a limited effect on short-wave ra-
diation (rsds). The orography type oro has a small effect on
all model variables, although it is known to influence wind
speed, which is outside the scope of this study.

The proposed sensitivity measure is highly effective for
evaluating the impact of parameter changes on model vari-
ables and for comparing these impacts quantitatively. This
analysis is particularly valuable when considering new pa-
rameters, as it helps to assess their influence on model re-
sults. Parameters that have a low sensitivity across all model
variables (less than 1) could either be removed from the op-
timization or have the limits of their variation expanded.

4.2 Meta-model validation

Several parameter configurations were additionally simu-
lated with ICON-CLM to evaluate the accuracy of the linear
Meta-Model approximation. Due to limited computational
resources, only a subset of parameters was considered. The
most influential parameters, which exhibited the largest sen-
sitivity in the sensitivity analysis (see Fig. 5), were selected:
taw1, rlh, rs, rl, tbl, tbla, ao and tkhmin. Test samples were
generated by simultaneously varying these parameters from
the Latin Hypercube within the intervals from minimum to
maximum values (see Tables A1 and A2).

A direct comparison between the regression model and the
ICON-CLM simulation for different grid points and months
is presented in Fig. 6. Here values are plotted together for
all test cases from Latin Hypercube. For the variables tas,
tasmin, tasmax, psl, and hfls, the coefficient of determina-
tion (R2) exceeds 0.95 (not shown), indicating a decent ap-
proximation by the linear model. The variable rsds exhibits
some spread around the mean, but maintains a high deter-
mination coefficient (> 0.99). The precipitation (pr_amount)
shows the poorest performance of all optimization variables.
The spread exhibits values of up to 100 mm per month and
the determination coefficient R2 is 0.9 only. A compari-
son of the histograms (not shown) reveals that the Meta-
Model yields slightly higher precipitation values than ICON-
CLM. Also, due to the lack of physical constraints, the Meta-
Model yields marginally negative precipitation values; how-
ever, their impact on the overall RMSE is very limited (ap-
proximately 3 % of the intrinsic uncertainty of precipitation
(Eq. 2)).

To assess the inaccuracy of the approximation statistically,
we computed the monthly mean values of RMSE between
the ICON-CLM output and the linear Meta-Model for each
test case in the Latin Hypercube, and plotted the mean val-
ues in Fig. 7. As can be seen, the imprecision of the linear
approximation (green bars) is slightly greater than the intrin-
sic uncertainty of the ICON-CLM (orange bars), by a factor
of 1.5–1.7 for tas, rsds, tasmin, tasmax and pr amount, and
by a factor of 2.5 for hfls. However, this imprecision (green
bars) is still much smaller than the typical error to observa-
tions (blue bars) for all variables except precipitation, indi-
cating the potential for optimization.

The linear approximation error for various variables was
also assessed by comparing the time-averaged (averaged
over all climatological months) RMSEs to the observations
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Figure 5. The sensitivity measure of prognostic variables (columns) on model parameters (rows) computed as Eq. (15). The “Avg” column
shows the mean sensitivity of the model to the parameter, calculated as the mean values in the rows. Darker shades are used to color the
background of the numbers for larger values.

Figure 6. Regression vs. ICON-CLM for the variables rsds (a) and pr_amount (b). Each grey point shows the monthly value of the model
quantity for a single grid point in the model domain, for one of the validation configurations (i.e., all validation cases plotted together). The
dashed red line indicates “perfect match”, the value of the R2 determination coefficient is given in the label. Every 100th grid point is shown
in the plot.

(Eq. 1), as shown in Fig. 8. For each of the Latin Hyper-
cube validation setups, we plot the RMSE to observations
for different pairs of variables, for both the linear regres-
sion approximation and the corresponding dynamical simu-
lation. The scores of the dynamical simulations and their cor-
responding Meta-Model approximations are represented by
markers of identical shape. With a few exceptions, the order

of the RMSEs for the linear and dynamic models is largely
maintained, i.e., if the RMSE is smaller for the regression
results, the same is true for the dynamical simulation. This
justifies the reduction in the RMSE-based error norm for the
linear emulator, which is minimized by the optimization pro-
cedure, corresponding to an improved dynamic setup with
reduced biases. This is particularly true when the reduction
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Figure 7. The comparison of the different sources of error in LiMMo. Values are normalized on the intrinsic variability σi of the ICON-CLM
(Eq. 2) for each model variable. The blue bar shows the RMSE of the ICON-CLM output with the NWP configuration to the observations. The
orange bar shows the intrinsic variability. The green bar shows the RMSE between the ICON-CLM and the linear regression approximation,
averaged over all test cases from Latin Hypercube. The temporally averaged values (averaged for all months) are displayed for all quantities.

in RMSE exceeds the level of imprecision in the approxima-
tion, bearing in mind the error in the linear approximation.

This analysis demonstrates the applicability and reliability
of the linear approach for representing the dynamical simu-
lations.

4.3 Tuning of continuous parameters

LiMMo provides substantial flexibility in the selection of re-
gression parameters for optimization as well as in the weight-
ing of model variables. To systematically evaluate its perfor-
mance, we fix the set of continuous parameters to the fol-
lowing: ao, aot4, taw1, taw2, rlh, rs, rl, rsmf, tbl, tbla,
crb, and tkhmin. Four different weight configurations (Ta-
ble 3) for the model variables that define the error norm in
Eq. (4) are analyzed. As the reference configuration, we used
the proposed configuration of ICON for NWP, which defines
the shift tensor in Eq. (8). The parameter values of the refer-
ence configuration can be found in Table 4.

The first configuration, “equal_weights”, assigns equal
weights to all model variables. LiMMo allows to ex-
plore the predictive potential of the climate model for spe-
cific fields, therefore, two extreme cases are considered:
“tune_prec” assigns weights exclusively to precipitation, ne-
glecting all other variables, while “tune_temp” distributes
weights among tas, tasmin, and tasmax. Finally, the “ex-
pert_weights” configuration reflects weights determined a
posteriori by the authors based on an analysis of the op-
timization results. There are also some objective ways of
defining weights, such as entropy weights for multi-criteria
decision-making in information theory, which are beyond the
scope of the current study. These could be implemented in

the LiMMo framework by assigning a variable weight that is
inversely proportional to signal-to-noise values of the initial
configuration for each model quantity.

The performance scores of the model variables (Eq. 3) af-
ter optimization are shown in Fig. 9. Note that in the cur-
rent study we tend to minimize the variable scores (error
norms), so the reduced score values demonstrate the better
performance. It is evident that the predictability of precipita-
tion is approaching its theoretical limit for the selected set of
model parameters, as the optimal score of pr_amount in the
“tune_prec” configuration is only slightly (∼ 2 %) lower than
that of the reference configuration. It is also worth noting that
the initial NWP configuration is already very well tuned for
precipitation. Conversely, when optimizing only for tempera-
ture variables (“tune_temp”), significant error reductions are
achievable: a 5 % reduction for tas, a 12 % reduction for tas-
max, and a 4 % reduction for tasmin. However, this comes at
the cost of a significant imbalance in the surface heat bud-
get, with notable increases in rsds (5 %) and hfls (47 %). The
quality of pr_amount is also badly affected by 15 %.

The “equal_weights” setup demonstrates significant re-
ductions in rsds (10 %) and hfls (25 %), but it underper-
forms the NWP configuration for the key prognostic vari-
ables tas, tasmax, and pr_amount. On the other hand, the
“expert_weights” setup achieves comparable performance to
the NWP configuration for most variables, with the excep-
tion of rsds (1 %–2 % worse) and tasmax (2 %–3 % worse).
In particular, this setup yields significant improvements in
the values of tasmin (7 %) and hfls (∼ 10 %). Consequently,
the “expert_weights” setup can be considered as a viable al-
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Figure 8. The monthly mean RMSEs (Eq. 1) to observations for ICON-CLM simulations (blue markers) and corresponding regression results
(red markers) for all parameter setups from Latin Hypercube. Corresponding dynamical and linear setups are indicated by the same marker
shape. The 2003–2008 monthly mean RMSEs are shown for: (a) daily mean 2 m temperature tas versus daily mean short-wave flux rsds,
(b) daily minimum 2 m temperature tasmin versus daily mean sea level pressure psl, (c) monthly total precipitation pr_amount versus daily
mean latent heat flux hfls. The 2003–2008 mean internal variabilities of the model (Eq. 2) are shown as horizontal and vertical segments.

Table 3. The list of considered weights in the error norn definition (Eq. 4). Each row represents the set of weights of the model quantities
(columns).

tas rsds tasmin tasmax pr_amount psl hfls

equal_weights 1.0/7.0 1.0/7.0 1.0/7.0 1.0/7.0 1.0/7.0 1.0/7.0 1.0/7.0
tune_prec 0.0 0.0 0.0 0.0 1.0 0.0 0.0
tune_temp 0.25 0.0 0.5 0.25 0.0 0.0 0.0
expert_weights 0.15 0.01 0.18 0.15 0.45 0.01 0.05
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Table 4. The parameter values for the ICON-CLM for the NWP configuration and configurations obtained from LiMMo using different
weights from Table 3. The rows of the table correspond to the different weights of the variables in the optimization, the columns represent
the model parameters.

ao aot4 taw1 taw2 rlh rs rl rsmf tbl tbla crb tkhmin

NWP configuration 1.000 0.000 0.000 0.000 10.000 0.800 1.000 1.000 0.050 3.250 110.000 0.600
equal_weights 0.977 0.293 0.044 −0.027 12.000 1.172 0.972 1.082 0.067 3.277 120.825 0.671
tune_prec 0.966 0.123 0.017 −0.015 11.217 0.877 0.969 1.028 0.053 3.373 111.911 0.572
tune_temp 0.980 0.819 0.114 −0.103 5.000 0.605 1.089 1.070 0.040 3.147 115.625 0.566
expert_weights 0.984 0.225 0.071 −0.068 10.497 0.934 0.992 1.057 0.051 3.222 123.650 0.618

Figure 9. Scores of model variables (Eq. 3) normalized by the variable score of NWP configuration (dark blue bars) after optimization with
different weights from Table 3. Note that in the current study we aim to minimize the variable scores (error norms), so the reduced score
values demonstrate the better performance.

ternative to the NWP configuration. The optimal values of
the considered parameters are listed in the Table 4.

4.4 Optimization with logical switches

This subsection presents the optimization results obtained
using the Meta-Model with incorporated logical switches
(Eq. 9). The parameter set is fixed as in the previous sub-
section, with the “expert_weights” weight configuration ap-
plied. The study considers three logical parameters (sdb, acrf
and oro), resulting in a total of eight possible optimizations.
The continuous parameters were optimized for each configu-
ration of logical switches that defines the shifted linear Meta-
Model. The results are summarized in Fig. 10. This final
scores table provides the comprehensive information needed
to select the climate model configuration that best meets the
user’s priorities and interests.

From the Fig. 10 one can clearly see the positive effect
of more detailed orography on the latent heat flux (hfls),
as the bias is significantly reduced for all cases when
oro= 1. Overall, updating all external data sets (sdb, acrf,
oro)= (1,1,1) leads to the most pronounced improve-
ments in precipitation (pr_amount) and latent heat flux over
sea (hfls).

5 Discussion

The LiMMo optimization strategy demonstrates significant
potential for objective calibration. While it quickly and auto-
matically generates optimal parameter values, it requires ex-
tensive expert knowledge of the model parameters. The user
must define the parameter set, ensure the sensitivity of model
outputs to parameter changes, and determine the optimiza-
tion objective, which is reflected in the assignment of the er-
ror norm. The computational efficiency of LiMMo allows for
an extensive definition of the error norm. In this study, seven
different model quantities are considered, which is a signif-
icant increase compared to previous studies. However, for
simplicity, we limit the error norm to mean values (root mean
square error). From a methodological perspective, it is feasi-
ble to include more sophisticated and critical quantities such
as extreme precipitation (e.g., the 99th percentile of hourly
precipitation over a given period), the diurnal cycle of pre-
cipitation, and/or short-wave radiation. Tuning these quan-
tities will be a focus of future research. The current study
investigates 10–15 model parameters simultaneously, a scale
that was previously unfeasible. However, the linear scalabil-
ity of the optimization time with respect to the number of
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Figure 10. The variable scores (Eq. 3) for the optimal configurations with different sequences of logical switches. The first row represents
the reference NWP configuration. The first three columns describe the sequence of logical switches, while the following columns give the
resulting scores for the considered variables. The last column shows the optimal norm (Eq. 4). The values are color-coded with a gradient
from red to green, indicating relative deficiency or improvement compared to the corresponding reference values.

parameters allows for a significant expansion of this range,
potentially by hundreds of parameters.

Another important aspect, which is beyond the scope of
this study, is the monthly weighting of the model variables
in the definition of the error norm (Eqs. 3 and 4). Given
the broad tuning period of six years, the computation of
multi-year averages significantly reduces the imbalance of
monthly internal variability (Eq. 2), ensuring that the signal-
to-noise ratio is approximately equal across months. There-
fore, further reduction of temporal dimensionality by consid-
ering monthly averages (Eq. 3) is sufficient to treat all months
equally. However, for shorter tuning periods, the monthly im-
balance in the signal-to-noise ratio may become more pro-
nounced, especially since climate models typically exhibit
greater internal variability during the summer months. In
such cases, considering monthly averages could lead to an
underestimation of the impact of summer months on the
model quality score. A more general approach would be to
introduce monthly weights for variable errors fk,n (where
k is the month index, n is the model variable index), so that
the final error norm in the optimization would be

ERR=
∑
n

cn ·
∑
k

fk,n ·
RMSEk,n
σk,n

;

∑
k

fk,n = 1.

This would allow control over the contribution of monthly
errors, allowing the weights fk,n to be adjusted to balance
their contribution to the overall error norm. For example, one
could choose the monthly weights to be inversely propor-
tional to the signal-to-noise ratio for the reference simula-
tion:

fi,n ·
RMSEref

i,n

σi,n
= fj,n ·

RMSEref
j,n

σj,n
, ∀i,j ;

∑
k

fk,n = 1.

6 Conclusions

The current study introduces a new tool for objective tun-
ing of regional climate models. Building on previous work
(Neelin et al., 2010; Bellprat et al., 2012; Avgoustoglou et al.,
2022), the LiMMo framework employs a regression-based
approximation of climate model outputs. Unlike previous ap-
proaches, LiMMo primarily uses a linear regression approx-
imation rather than a quadratic one. This choice is motivated
by the cost-effectiveness of building the statistical emulator,
as it requires only a linear number of dynamical simulations
(at least one for each parameter). Despite its simplicity, the
approximation has demonstrated high accuracy when mod-
eling over long periods of time, as evidenced by the 6-year
span considered in this study.

A second distinctive feature of LiMMo is the use of a
gradient-based method to minimize the error norm relative to
observations, in contrast to previously proposed Monte Carlo
methods. The combination of a linear Meta-Model with fast
gradient-based optimization allows the approach to scale lin-
early with the number of model quantities and parameters,
allowing the simultaneous tuning of dozens of parameters, a
task previously infeasible due to time-to-solution constraints.

The LiMMo framework was applied to the state-of-the-art
regional climate model ICON-CLM, tuned to the E-OBS and
HOAPS observational data sets. A total of 15 model param-
eters were optimized using 7 model variables that define the
distance of the model to the observations. Different optimiza-
tion objectives were explored by assigning different weights
to the model variables in the error norm definition. In addi-
tion, optimization was performed for 8 different sequences
of 3 logical switches, providing comprehensive insights to
select the climate model configuration that best meets the
user’s priorities.
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Please note that the current study is not intended to give
any recommendations on the setup of ICON-CLM, but only
to demonstrate the capabilities of the proposed LiMMo tech-
nique. The final decision of the model configuration should
be made after careful and extensive analysis of the model
quantities, and LiMMo is only one of the tools that requires
expert judgment.

Appendix A: ICON parameters description

Table A1. The ICON tuning parameters for Surface Transfer Scheme (Sect. 2.4.1) and Mixing in the Planetary Boundary Layer (Sect. 2.4.2).
The section number with description of parameter is given in the column “Section”. The “Parameter” column gives the name of the parameter
as used in the ICON model, while the “Acronym” column shows the parameter acronym used in this article. The “Type” column indicates
whether the parameter is continuous (“C”) or binary (“B”). The “Min/Ref/Max” column represent the minimum, reference, and maximum
values, respectively. The “Tested values” column shows the values simulated by ICON-CLM, used for regression training. The “Description”
column provides a brief explanation of each parameter.

Section Parameter Acronym Type Min/Ref/Max Tested Description
value values

2.4.1 tune_albedo_wso(1) taw1 C 0.0/0.1/0.15 0.0, 0.1 Bare soil albedo correction for soil type 3–6
(sand, sandy-loam, loam, clay-loam) and soil
water content w_so< 0.01.

tune_albedo_wso(2) taw2 C −0.15/− 0.1/0.0 −0.1, 0.0 Bare soil albedo correction for soil type 3–6
(sand, sandy-loam, loam, clay-loam) soil water
content w_so> 0.02.

rlam_heat rlh C 5/6.25/12 6.25, 10.0 Scaling factor of the laminar boundary layer
for latent and sensible heat flux. Higher values
increase the resistance of reduce the sensible
heat flux at the surface.

rat_sea rs C 0.4/0.8/1.5 0.4, 0.7 Ratio of laminar scaling factors over sea and
land. The larger rat_sea the larger the
laminar resistance over sea.

rat_lam rl C 0.7/1.0/1.3 0.8, 1.0 Ratio of laminar scaling factors of latent and
sensible heat flux over land. The larger
rat_lam the larger the laminar resistance to
latent heat flux over land.

rsmin_fac rsmf C 0.7/1.0/1.5 1.0, 1.2 Scaling factor of class dependent minimum
stomata resistance. This preserves the
dependency of the resistance on vegetation
type.

cr_bsmin crb C 80/110/170 110, 150 Minimum bare soil evaporation resistance
(Schulz and Vogel, 2020) if itype_evsl=5
(c_soil if itype_evsl=2,3,4).

2.4.2 tkhmin tkhmin C 0.2/0.5/1.0 0.3, 0.6 Scaling factor for minimum vertical diffusion
coefficient for turbulent heat fluxes at the
surface. It is proportional to Ri−2/3, with Ri
Richardson number.

tkmmin tkmmin C 0.2/0.5/1.0 0.3, 0.6 As tkhmin but for momentum.
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Table A2. The ICON tuning parameters for Cloud cover (Sect. 2.4.3) and External data sets (Sect. 2.4.4). The description of the columns is
the same as in Table A1.

Section Parameter Acronym Type Min/Ref/Max Tested Description
value values

2.4.3 tune_box_liq tbl C 0.04/0.05/0.1 0.05, 0.07 Range of relative humidity (RH) for liquid
cloud cover (CLC) diagnostics with
1− tbla · tbl≤ RH≤ 1+ tbl. Higher values
increase the cloud cover.

tune_box_liq_asy tbla C 2.5/3.25/4.5 3.25, 4 Asymmetry factor for range of RH in liquid
cloud cover diagnostics (see
tune_box_liq). A smaller value is resulting
in a smaller range of CLC increase with RH
to 1.

allow_overcast ao C 0.8/0.9/1.0 0.9, 1.0 Parameter of the dependency of CLC on RH. A
smaller value is resulting in a steeper CLC
(RH) increase to 1.

aot4 C 0/1.0/1.5 0.0, 1.0 The amplitude of the annual cycle of monthly
deviations of allow_overcast from the
mean value of ao:
allow_overcast[i] = ao+ aot4 · aot[i],
aot= [−0.02,−0.06,−0.03,0.02,

0.05, 0.02, 0.02, 0.02,
−0.02,−0.04,−0.04,−0.03]

2.4.4 soil_data_base sdb B 0.0/0.0/1.0 0.0, 1.0 Soil type data base. [sdb= 0]: FAO
(FAO/UNESCO, 1981); [sdb= 1]: HWSD
(Nachtergaele et al., 2023).

type_of_orography oro B 0.0/0.0/1.0 0.0, 1.0 Orography data base. [oro= 0]: NOAA
GLOBE 1km resolution (GLOBE Task Team
et al., 1999); [oro= 1]: MERIT 100m
resolution (Yamazaki et al., 2017).

type_of_aerosols acrf B 0.0/0.0/1.0 0.0, 1.0 Aerosol climatology data base. [acrf= 0]
Kinne (Kinne, 2019); [acrf= 1] MODIS
(Schaaf et al., 2021).

Code and data availability. For the experi-
ments, we used the ICON release 2024.07
(https://doi.org/10.35089/WDCC/IconRelease2024.07, ICON
partnership , DWD, MPI-M, DKRZ, KIT, C2SM), which is
publicly available under the 3-Clause BSD License; The execu-
tion of the job workflow was managed using SPICE – Starter
Package for ICON-CLM Experiments, specifically the version 5.0
released in June 2023 (https://doi.org/10.5281/zenodo.10047021,
Rockel and Geyer, 2023), which is publicly available on Zenodo;
The ICON-CLM simulations were driven by ERA-5 reanalysis
data (https://doi.org/10.24381/cds.143582cf, Hersbach et al.,
2020, 2017), with optimization performed using the E-OBS
(https://doi.org/10.24381/cds.151d3ec6, Cornes et al., 2018;
Copernicus Climate Change Service, Climate Data Store, 2020)
and HOAPS (https://doi.org/10.24381/cds.92db7fef, Anders-
son et al., 2010; Copernicus Climate Change Service, 2022)
data sets as reference benchmarks; the Python-based LiMMo
software tool (version 1.0) is publicly available on Zenodo
(https://doi.org/10.5281/zenodo.14662292, Petrov and Will, 2025).

This published software package includes the scripts used to gener-
ate the plots in the current manuscript.
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