Articles | Volume 18, issue 17
https://doi.org/10.5194/gmd-18-5913-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-5913-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FACA v1 – Fully Automated Co-Alignment of UAV point clouds
Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hanover, Germany
Jewgenij Torizin
Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hanover, Germany
Claudia Gunkel
Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hanover, Germany
Karsten Schütze
State Bureau for Environment, Nature Protection and Geology Mecklenburg-Western Pomerania (LUNG), 18273 Güstrow, Germany
Lars Tiepolt
State Agency for Agriculture and the Environment of Central Mecklenburg, 18069 Rostock, Germany
Dirk Kuhn
Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hanover, Germany
Michael Fuchs
Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hanover, Germany
Steffen Prüfer
Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hanover, Germany
Related authors
Jewgenij Torizin, Nick Schüßler, and Michael Fuchs
Geosci. Model Dev., 15, 2791–2812, https://doi.org/10.5194/gmd-15-2791-2022, https://doi.org/10.5194/gmd-15-2791-2022, 2022
Short summary
Short summary
With LSAT PM we introduce an open-source, stand-alone, easy-to-use application that supports scientific principles of openness, knowledge integrity, and replicability. Doing so, we want to share our experience in the implementation of heuristic and data-driven landslide susceptibility assessment methods such as analytic hierarchy process, weights of evidence, logistic regression, and artificial neural networks. A test dataset is available.
Jewgenij Torizin, Nick Schüßler, and Michael Fuchs
Geosci. Model Dev., 15, 2791–2812, https://doi.org/10.5194/gmd-15-2791-2022, https://doi.org/10.5194/gmd-15-2791-2022, 2022
Short summary
Short summary
With LSAT PM we introduce an open-source, stand-alone, easy-to-use application that supports scientific principles of openness, knowledge integrity, and replicability. Doing so, we want to share our experience in the implementation of heuristic and data-driven landslide susceptibility assessment methods such as analytic hierarchy process, weights of evidence, logistic regression, and artificial neural networks. A test dataset is available.
Cited articles
Agisoft LLC: Java API Reference, https://download.agisoft.com/metashape-java-api/latest/index.html (last access: 6 September 2024), 2024. a
Anderson, K., Westoby, M. J., and James, M. R.: Low-budget topographic surveying comes of age: Structure from motion photogrammetry in geography and the geosciences, Prog. Phys. Geogr.: Earth Environ., 43, 163–173, https://doi.org/10.1177/0309133319837454, 2019. a
Bay, H., Tuytelaars, T., and Van Gool, L.: SURF: Speeded Up Robust Features, Springer, Berlin, Heidelberg, 404–417, ISBN 9783540338338, https://doi.org/10.1007/11744023_32, 2006. a
Bendig, J., Bolten, A., and Bareth, G.: UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability, Photogram.Fernerkdg. Geoinf., 2013, 551–562, https://doi.org/10.1127/1432-8364/2013/0200, 2013. a
Besl, P. J. and McKay, N. D.: A method for registration of 3-D shapes, IEEE T. Pattern Anal. Mach. Intel., 14, 239–256, https://doi.org/10.1109/34.121791, 1992. a, b
BGR – Engineering Geological Hazard Assessment: BGR-EGHA/FACA: FACA v1, Zendodo [code], https://doi.org/10.5281/ZENODO.14067821, 2024. a
Blanch, X., Eltner, A., Guinau, M., and Abellan, A.: Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras, Remote Sens., 13, 1460, https://doi.org/10.3390/rs13081460, 2021. a, b
Brosens, L., Campforts, B., Govers, G., Aldana-Jague, E., Razanamahandry, V. F., Razafimbelo, T., Rafolisy, T., and Jacobs, L.: Comparative analysis of the Copernicus, TanDEM-X, and UAV-SfM digital elevation models to estimate lavaka (gully) volumes and mobilization rates in the Lake Alaotra region (Madagascar), Earth Surf. Dynam., 10, 209–227, https://doi.org/10.5194/esurf-10-209-2022, 2022. a
Carbonneau, P. E. and Dietrich, J. T.: Cost‐effective non‐metric photogrammetry from consumer‐grade sUAS: implications for direct georeferencing of structure from motion photogrammetry, Earth Surf. Proc. Land., 42, 473–486, https://doi.org/10.1002/esp.4012, 2016. a
Cook, K. L.: An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection, Geomorphology, 278, 195–208, https://doi.org/10.1016/j.geomorph.2016.11.009, 2017. a
de Haas, T., Nijland, W., McArdell, B. W., and Kalthof, M. W. M. L.: Case Report: Optimization of Topographic Change Detection With UAV Structure-From-Motion Photogrammetry Through Survey Co-Alignment, Front. Remote Sens., 2, 626810, https://doi.org/10.3389/frsen.2021.626810, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Diaz, V., van Oosterom, P., Meijers, M., Verbree, E., Ahmed, N., and van Lankveld, T.: Comparison of Cloud-to-Cloud Distance Calculation Methods – Is the Most Complex Always the Most Suitable?, Springer Nature, Switzerland, 329–334, ISBN 9783031436994, https://doi.org/10.1007/978-3-031-43699-4_20, 2024. a
Feurer, D. and Vinatier, F.: Joining multi-epoch archival aerial images in a single SfM block allows 3-D change detection with almost exclusively image information, ISPRS J. Photogram. Remote Sens., 146, 495–506, https://doi.org/10.1016/j.isprsjprs.2018.10.016, 2018. a
Guimarães, N., Pádua, L., Marques, P., Silva, N., Peres, E., and Sousa, J. J.: Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities, Remote Sens., 12, 1046, https://doi.org/10.3390/rs12061046, 2020. a
Harkema, M. R., Nijland, W., de Jong, S. M., Kattenborn, T., and Eichel, J.: Monitoring solifluction movement in space and time: A semi-automated high-resolution approach, Geomorphology, 433, 108727, https://doi.org/10.1016/j.geomorph.2023.108727, 2023. a
Hendrickx, H., Vivero, S., De Cock, L., De Wit, B., De Maeyer, P., Lambiel, C., Delaloye, R., Nyssen, J., and Frankl, A.: The reproducibility of SfM algorithms to produce detailed Digital Surface Models: the example of PhotoScan applied to a high-alpine rock glacier, Remote Sens. Lett., 10, 11–20, https://doi.org/10.1080/2150704x.2018.1519641, 2018. a
Jacke, W. and Lampe, R.: Eiszeitlandschaften in Mecklenburg-Vorpommern, in: chap. Die Halbinsel Fischland-Darß-Zingst – Spätpleistozäne und holozäne Entwicklung der südlichen Ostsee und ihres Küstensaumes, Geozon Science Media, 34–49, ISBN 13 978-3941971059, ISBN 10 3941971050, https://doi.org/10.3285/g0005, 2010. a
James, M. R., Robson, S., and Smith, M. W.: 3‐D uncertainty‐based topographic change detection with structure‐from‐motion photogrammetry: precision maps for ground control and directly georeferenced surveys, Earth Surf. Proc. Land., 42, 1769–1788, https://doi.org/10.1002/esp.4125, 2017. a
Jenkins, C. M. and Johnson, S. A.: Agisoft Metashape Alignment Helper Version 1.0, USGS, https://doi.org/10.5066/P9YN4KDX, 2024. a
Jiang, N., Li, H., Hu, Y., Zhang, J., Dai, W., Li, C., and Zhou, J.-W.: A Monitoring Method Integrating Terrestrial Laser Scanning and Unmanned Aerial Vehicles for Different Landslide Deformation Patterns, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 14, 10242–10255, https://doi.org/10.1109/jstars.2021.3117946, 2021. a
Katzung, G. (Ed.): Geologie von Mecklenburg-Vorpommern, in: 1st Edn., Schweizerbart Science Publishers, Stuttgart, Germany, ISBN 9783510652105, 2004. a
Kerle, N., Nex, F., Gerke, M., Duarte, D., and Vetrivel, A.: UAV-Based Structural Damage Mapping: A Review, ISPRS Int. J. Geo-Inf., 9, 14, https://doi.org/10.3390/ijgi9010014, 2019. a
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z), ISPRS J. Photogram. Remote Sens., 82, 10–26, https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013. a, b, c, d
Li, W., Sun, K., Li, D., Bai, T., and Sui, H.: A New Approach to Performing Bundle Adjustment for Time Series UAV Images 3D Building Change Detection, Remote Sens., 9, 625, https://doi.org/10.3390/rs9060625, 2017. a
Logan, J., Wernette, P. A., and Ritchie, A. C.: Agisoft Metashape/Photoscan Automated Image Alignment and Error Reduction version 2.0, USGS, https://doi.org/10.5066/P9DGS5B9, 2022. a
Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints, Int. J. Comput. Vis., 60, 91–110, https://doi.org/10.1023/b:visi.0000029664.99615.94, 2004. a, b
Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P. A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordän, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., and Zhang, W.: Climate change in the Baltic Sea region: a summary, Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, 2022. a
Moran, M. G., Holbrook, J., Lensky, N. G., Ben Moshe, L., Mor, Z., Eyal, H., and Enzel, Y.: Century‐scale sequences and density‐flow deltas of the late Holocene and modern Dead Sea coast, Israel, Sedimentology, 70, 1945–1980, https://doi.org/10.1111/sed.13101, 2023. a
Nesbit, P. R., Hubbard, S. M., and Hugenholtz, C. H.: Direct Georeferencing UAV-SfM in High-Relief Topography: Accuracy Assessment and Alternative Ground Control Strategies along Steep Inaccessible Rock Slopes, Remote Sens., 14, 490, https://doi.org/10.3390/rs14030490, 2022. a
Omidiji, J., Stephenson, W., and Norton, K.: Cross-scale erosion on shore platforms using the micro-erosion meter and Structure-from-Motion (SfM) photogrammetry, Geomorphology, 434, 108736, https://doi.org/10.1016/j.geomorph.2023.108736, 2023. a
OpenDroneMap Authors: ODM – A command line toolkit to generate maps, point clouds, 3D models and DEMs from drone, balloon or kite images, GitHub [code], https://github.com/OpenDroneMap/ODM (last access: 9 September 2025), 2020. a
Over, J.-S. R., Ritchie, A. C., Kranenburg, C. J., Brown, J. A., Buscombe, D. D., Noble, T., Sherwood, C. R., Warrick, J. A., and Wernette, P. A.: Processing coastal imagery with Agisoft Metashape Professional Edition, version 1.6 – Structure from motion workflow documentation, USGS, https://doi.org/10.3133/ofr20211039, 2021. a
Parente, L., Chandler, J. H., and Dixon, N.: Automated Registration of SfM‐MVS Multitemporal Datasets Using Terrestrial and Oblique Aerial Images, Photogram. Rec., 36, 12–35, https://doi.org/10.1111/phor.12346, 2021. a
Pargieła, K.: Optimising UAV Data Acquisition and Processing for Photogrammetry: A Review, Geomat. Environ. Eng., 17, 29–59, https://doi.org/10.7494/geom.2023.17.3.29, 2023. a
Peppa, M. V., Mills, J. P., Moore, P., Miller, P. E., and Chambers, J. E.: Automated co‐registration and calibration in SfM photogrammetry for landslide change detection, Earth Surf. Proc. Land., 44, 287–303, https://doi.org/10.1002/esp.4502, 2018. a
Perlet-Markus, I.: Schwere Sturmflut vom 20. Oktober 2023, Tech. rep., Bundesamt für Seeschifffahrt und Hydrographie, https://www.bsh.de/DE/THEMEN/Wasserstand_und_Gezeiten/Sturmfluten/_Anlagen/Downloads/Ostsee_Sturmflut_20231020.pdf;jsessionid=B8BBDDF2E3F66F718354F46A9C0151F1.live21323?__blob=publicationFile&v=5 (last access: 9 September 2025), 2023. a
QGIS Development Team: QGIS Geographic Information System, QGIS Association, https://www.qgis.org (last access: 9 September 2025), 2024. a
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.: ORB: An efficient alternative to SIFT or SURF, in: IEEE 2011 International Conference on Computer Vision, 6–13 November 2011, Barcelona, Spain , https://doi.org/10.1109/iccv.2011.6126544, 2011. a
Saponaro, M., Capolupo, A., Caporusso, G., and Tarantino, E.: Influence of co-alignment procedures on the co-registration accuracy of multi-epoch sfm points clouds, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 231–238, https://doi.org/10.5194/isprs-archives-xliii-b2-2021-231-2021, 2021. a
Schulz, W.: Ingenieurgeologisches Gutachten zur Sicherung des Steilufers Quitzlaser Ort bei Sellin, Kreis Rügen, Bezirk Rostock, Tech. rep., VEB Geologische Forschung und Erkundung Halle, 1986. a
Schüßler, N.: Scripts for FACA article, Zenodo [code], https://doi.org/10.5281/ZENODO.14065302, 2024. a, b
Schüßler, N., Torizin, J., Fuchs, M., Schütze, K., Hahne, K., Kuhn, D., Gunkel, C., and Balzer, D.: Machine-Learning For Detection And Prediction Of Cliff Failures On The Baltic Sea Coast In Mecklenburg–Western Pomerania (Federal Republic Of Germany), in: Landslide Science for Sustainable Development: Proceedings of the 6th World Landslide Forum, 14-17 November 2023, Florence, Italy, p. 905, https://wlf6.org/wp-content/uploads/2023/11/WLF6_ABSTRACT-BOOK.pdf (last access: 9 September 2025), ISBN 9791221048063, 2023. a
Schüßler, N., Fuchs, M., Schütze, K., Kuhn, D., Gunkel, C., Torizin, J., Prüfer, S., and Tiepolt, L.: Wustrow bunker, Zenodo [data set], https://doi.org/10.5281/ZENODO.14002501, 2024a. a, b
Schüßler, N., Torizin, J., Fuchs, M., Kuhn, D., Balzer, D., Gunkel, C., Prüfer, S., Hahne, K., and Schütze, K.: Rapid geological mapping based on UAV imagery and deep learning texture classification and segmentation, EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-8334, https://doi.org/10.5194/egusphere-egu24-8334, 2024b. a
Schüßler, N., Fuchs, M., Schütze, K., Kuhn, D., Gunkel, C., Torizin, J., Prüfer, S., and Tiepolt, L.: Wustrow coastal erosion, Zenodo [data set], https://doi.org/10.5281/ZENODO.14655290, 2025a. a, b
Schüßler, N., Fuchs, M., Schütze, K., Kuhn, D., Gunkel, C., Torizin, J., Prüfer, S., and Tiepolt, L.: Sellin sand cliff, Zenodo [data set], https://doi.org/10.5281/ZENODO.14655548, 2025b. a, b
Semyonov, D.: Algorithms used in Photoscan, https://www.agisoft.com/forum/index.php?topic=89.msg323#msg323 (last access: 4 September 2024), 2011. a
Sevil, J., Benito‐Calvo, A., and Gutiérrez, F.: Sinkhole subsidence monitoring combining terrestrial laser scanner and high‐precision levelling, Earth Surf. Proc. Land., 46, 1431–1444, https://doi.org/10.1002/esp.5112, 2021. a
Śledź, S. and Ewertowski, M. W.: Evaluation of the Influence of Processing Parameters in Structure-from-Motion Software on the Quality of Digital Elevation Models and Orthomosaics in the Context of Studies on Earth Surface Dynamics, Remote Sens., 14, 1312, https://doi.org/10.3390/rs14061312, 2022. a
Staatliches Amt für Landwirtschaft und Umwelt Mittleres Mecklenburg: Küstenkilometrierung Mecklenburg-Vorpommern, in: Regelwerk Küstenschutz Mecklenburg-Vorpommern, Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern, https://www.stalu-mv.de/serviceassistent/download?id=155708 (last access: 9 September 2025), 2010. a, b
Sun, J., Yuan, G., Song, L., and Zhang, H.: Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review, Drones, 8, 30, https://doi.org/10.3390/drones8010030, 2024. a, b, c
Szeliski, R.: Computer Vision: Algorithms and Applications, Springer International Publishing, ISBN 9783030343729, https://doi.org/10.1007/978-3-030-34372-9, 2022. a
Tinkham, W. T. and Swayze, N. C.: Influence of Agisoft Metashape Parameters on UAS Structure from Motion Individual Tree Detection from Canopy Height Models, Forests, 12, 250, https://doi.org/10.3390/f12020250, 2021. a
Torizin, J., Schüßler, N., Fuchs, M., Kuhn, D., Balzer, D., Hahne, K., Prüfer, S., Gunkel, C., Schütze, K., and Tiepolt, L.: AI-aided Assessment of Mass Movement Potentials Along the Coast of Mecklenburg-Western Pomerania – Project Introduction and Outlook, EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-7821, https://doi.org/10.5194/egusphere-egu24-7821, 2024. a
Turner, D., Lucieer, A., and Wallace, L.: Direct Georeferencing of Ultrahigh-Resolution UAV Imagery, IEEE T. Geosci. Remote, 52, 2738–2745, https://doi.org/10.1109/tgrs.2013.2265295, 2014. a
Ullmann, S.: The interpretation of structure from motion, P. Roy. Soc. Lond. B, 203, 405–426, https://doi.org/10.1098/rspb.1979.0006, 1979. a
Ullrich: Uferveränderung KKM F176.000–F181.000 Vergleich von 1937–1983, Tech. rep., Staatliches Amt für Umwelt und Natur, 1983. a
Weiss, D., Gurwell, B., Jäger, B., Wiemer, R., and Zielisch, E.: Dokumentation über hydro- und sedimtdynamische Untersuchungen und über Vorschläge zur Küstensicherung im Raum Wustrow–Ahrenshoop (Fischland), resreport, Wasserwirtschaftsdirektion Küste Abt. Küstenhydrographie, 1983. a
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: `Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300–314, https://doi.org/10.1016/j.geomorph.2012.08.021, 2012. a
Williams, R.: DEMs of Difference, Geomorphol. Tech., 2, 1–17, 2012. a
Zhao, S., Kang, F., Li, J., and Ma, C.: Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction, Automat. Construct., 130, 103832, https://doi.org/10.1016/j.autcon.2021.103832, 2021. a
Short summary
FACA – Fully Automated Co-Alignment – is a tool designed to generate co-aligned point clouds. We aim to accelerate the application of the co-alignment method and achieve fast results with evolving temporal data and minimal site-specific preparation. FACA offers multiple ways to interact with the workflow, enabling new users to quickly generate initial results through the custom interface, as well as integration into larger automated workflows via the command line. Test datasets are provided.
FACA – Fully Automated Co-Alignment – is a tool designed to generate co-aligned point clouds. We...