Articles | Volume 18, issue 17
https://doi.org/10.5194/gmd-18-5467-2025
https://doi.org/10.5194/gmd-18-5467-2025
Development and technical paper
 | 
01 Sep 2025
Development and technical paper |  | 01 Sep 2025

A framework for three-dimensional dynamic modeling of mountain glaciers in the Community Ice Sheet Model (CISM v2.2)

Samar Minallah, William H. Lipscomb, Gunter Leguy, and Harry Zekollari

Related authors

CMIP7 Data Request: Land and Land Ice Priorities and Opportunities
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207,https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Cited articles

Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res.-Sol. Ea., 102, 20355–20362, https://doi.org/10.1029/97JB01696, 1997. a
Blatter, H.: Velocity and stress fields in grounded glaciers – a simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333–344, 1995. a
Bolibar, J., Sapienza, F., Maussion, F., Lguensat, R., Wouters, B., and Pérez, F.: Universal differential equations for glacier ice flow modelling, Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, 2023. a
Bosson, J. B., Huss, M., Cauvy-Fraunie, S., Clement, J. C., Costes, G., Fischer, M., Poulenard, J., and Arthaud, F.: Future emergence of new ecosystems caused by glacial retreat, Nature, 620, 562–569, https://doi.org/10.1038/s41586-023-06302-2, 2023. a
Braithwaite, R. J. and Hughes, P. D.: Positive degree-day sums in the Alps: a direct link between glacier melt and international climate policy, J. Glaciol., 68, 901–911, https://doi.org/10.1017/jog.2021.140, 2022. a
Download
Short summary
We developed a new modeling framework within an Earth system model to study mountain glacier evolution under different climate scenarios, applied here to the European Alps. Substantial Alpine glacier mass loss is projected under current climate conditions, with near-total loss under further warming. This is the first use of a 3D, higher-order ice-flow model for regional glacier simulations, enabling assessment of coupled land ice–Earth system processes.
Share