Cheong, B. L., Palmer, R. D., and Xue, M.: A Time Series Weather Radar Simulator Based on High-Resolution Atmospheric Models, J. Atmos. Ocean. Tech., 25, 230–243,
https://doi.org/10.1175/2007JTECHA923.1, 2008.
a
Crouch, J. F., Pardo, N., and Miller, C. A.: Dual polarisation C-band weather radar imagery of the 6 August 2012 Te Maari Eruption, Mount Tongariro, New Zealand, J. Volcanol. Geoth. Res., 286, 415–436,
https://doi.org/10.1016/j.jvolgeores.2014.05.003, 2014.
a
GOES-R: GOES-R Program/ Code 410 (2020) 410-R-CONOPS-0008 Version 3.0. GOES-R Series Concept of Operations (CONOPS), Tech. rep., U.S. Dept of Commerce, National Oceanic and Atmospheric Administration, NOAA Satellite and Information Service, National Aeronautics and Space Administration,
https://www.goes-r.gov/syseng/docs/CONOPS.pdf (last access: 25 April 2025), 2020. a
Herzog, M. and Graf, H.-F.: Applying the three-dimensional model ATHAM to volcanic plumes: Dynamic of large co-ignimbrite eruptions and associated injection heights for volcanic gases, Geophys. Res. Lett., 37, L19807,
https://doi.org/10.1029/2010GL044986, 2010.
a
Herzog, M., Graf, H.-F., Textor, C., and Oberhuber, J. M.: The effect of phase changes of water on the development of volcanic plumes, J. Volcanol. Geoth. Res., 87, 55–74,
https://doi.org/10.1016/S0377-0273(98)00100-0, 1998.
a
Herzog, M., Oberhuber, J. M., and Graf, H.-F.: A Prognostic Turbulence Scheme for the Nonhydrostatic Plume Model ATHAM, J. Atmos. Sci., 60, 2783–2796,
https://doi.org/10.1175/1520-0469(2003)060<2783:APTSFT>2.0.CO;2, 2003.
a
Jenkins, S., Wilson, T., Magill, C., Miller, V., Stewart, C., Blong, R., Marzocchi, W., Boulton, M., Bonadonna, C., and Costa, A.: Volcanic ash fall hazard and risk, Cambridge University Press, United Kingdom, ISBN 9781107111752, 2015. a
Jung, Y., Zhang, G., and Xue, M.: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables, Mon. Weather Rev., 136, 2228–2245,
https://doi.org/10.1175/2007MWR2083.1, 2008.
a
Kelleher, P.: The impact of volcanic ash and other contaminants on airworthiness, in: Flying through an Era of Volcanic Ash, Royal Aeronautical Society, London, ISBN 9781510801844, 2010. a
Lacasse, C., Karlsdóttir, S., Larsen, G., Soosalu, H., Rose, W. I., and Ernst, G.: Weather radar observations of the Hekla 2000 eruption cloud, Iceland, B. Volcanol., 66, 457–473,
https://doi.org/10.1007/s00445-003-0329-3, 2004.
a
Li, X., Mecikalski, J. R., Otkin, J. A., Henderson, D. S., and Srikishen, J.: A Polarimetric Radar Operator and Application for Convective Storm Simulation, Atmosphere, 13, 645,
https://doi.org/10.3390/atmos13050645, 2022.
a
Macfarlane, D. G., Robertson, D. A., and Capponi, A.: R4AsH: a triple frequency laboratory radar for characterizing falling volcanic ash, in: Radar Sensor Technology XXV, Proceedings of SPIE, vol. 11742, SPIE, SPIE Defense
+ Commercial Sensing, edited by: Ranney, K. and Raynal, A.,
https://doi.org/10.1117/12.2587613, 2021.
a
Marzano, F., Barbieri, S., Vulpiani, G., and Rose, W. I.: Volcanic Ash Cloud Retrieval by Ground-Based Microwave Weather Radar, IEEE T. Geosci. Remote, 44, 3235–3246,
https://doi.org/10.1109/TGRS.2006.879116, 2006.
a
Marzano, F., Barbieri, S., Picciotti, E., and Karlsdottir, S.: Monitoring Subglacial Volcanic Eruption Using Ground-Based C-Band Radar Imagery, IEEE T. Geosci. Remote, 48, 403–414,
https://doi.org/10.1109/TGRS.2009.2024933, 2010a.
a
Marzano, F. S., Roberti, L., Di Michele, S., Mugnai, A., and Tassa, A.: Modeling of apparent radar reflectivity due to convective clouds at attenuating wavelengths, Radio Sci., 38, 2-1–2-16,
https://doi.org/10.1029/2002RS002613, 2003.
a
Marzano, F. S., Marchiotto, S., Textor, C., and Schneider, D. J.: Model-Based Weather Radar Remote Sensing of Explosive Volcanic Ash Eruption, IEEE T. Geosci. Remote, 48, 3591–3607,
https://doi.org/10.1109/TGRS.2010.2047862, 2010b.
a
Marzano, F. S., Lamantea, M., Montopoli, M., Di Fabio, S., and Picciotti, E.: The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspective, Atmos. Chem. Phys., 11, 9503–9518,
https://doi.org/10.5194/acp-11-9503-2011, 2011.
a
Marzano, F. S., Picciotti, E., Vulpiani, G., and Montopoli, M.: Synthetic Signatures of Volcanic Ash Cloud Particles From X-Band Dual-Polarization Radar, IEEE T. Geosci. Remote, 50, 193–211,
https://doi.org/10.1109/TGRS.2011.2159225, 2012.
a
Marzano, F. S., Picciotti, E., Montopoli, M., and Vulpiani, G.: Inside Volcanic Clouds: Remote Sensing of Ash Plumes Using Microwave Weather Radars, B. Am. Meteorol. Soc., 94, 1567–1586,
https://doi.org/10.1175/BAMS-D-11-00160.1, 2013.
a,
b,
c
Nair, V. and Mohanathan, A.: SynRad v1.0 – Model, datasets and scripts (v1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.11863012, 2024.
Oberhuber, J. M., Herzog, M., Graf, H.-F., and Schwanke, K.: Volcanic plume simulation on large scales, J. Volcanol. Geoth. Res., 87, 29–53,
https://doi.org/10.1016/S0377-0273(98)00099-7, 1998.
a
Pfeifer, M., Craig, G. C., Hagen, M., and Keil, C.: A Polarimetric Radar Forward Operator for Model Evaluation, J. Appl. Meteorol. Clim., 47, 3202–3220,
https://doi.org/10.1175/2008JAMC1793.1, 2008.
a
Ryzhkov, A., Pinsky, M., Pokrovsky, A., and Khain, A.: Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics, J. Appl. Meteorol. Clim., 50, 873–894,
https://doi.org/10.1175/2010JAMC2363.1, 2011.
a,
b
Sauvageot, H.: Radar Meteorology, Norwell, MA, Artech House, ISBN 9780890063187, 1992.
a,
b
Shrestha, P., Mendrok, J., Pejcic, V., Trömel, S., Blahak, U., and Carlin, J. T.: Evaluation of the COSMO model (v5.1) in polarimetric radar space – impact of uncertainties in model microphysics, retrievals and forward operators, Geosci. Model Dev., 15, 291–313,
https://doi.org/10.5194/gmd-15-291-2022, 2022.
a
Smith, P. L.: Equivalent Radar Reflectivity Factors for Snow and Ice Particles, J. Clim. Appl. Meteorol., 23, 1258–1260,
http://www.jstor.org/stable/26181397 (last access: 24 June 2024), 1984. a
Wang, X., Bi, L., Wang, H., Wang, Y., Han, W., Shen, X., and Zhang, X.: AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE, Geosci. Model Dev., 18, 117–139,
https://doi.org/10.5194/gmd-18-117-2025, 2025.
a
Wiscombe, W.: Mie Scattering Calculations: Advances in Technique and Fast, Vector-speed Computer Codes. University Corporation for Atmospheric Research,
https://doi.org/10.5065/D6ZP4414, 1979.
a
Zeng, Y., Blahak, U., and Jerger, D.: An efficient modular volume-scanning radar forward operator for NWP models: description and coupling to the COSMO model, Q. J. Roy. Meteor. Soc., 142, 3234–3256,
https://doi.org/10.1002/qj.2904, 2016.
a