Articles | Volume 18, issue 14
https://doi.org/10.5194/gmd-18-4317-2025
https://doi.org/10.5194/gmd-18-4317-2025
Development and technical paper
 | 
18 Jul 2025
Development and technical paper |  | 18 Jul 2025

Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application

Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth

Data sets

ISIMIP3b bias-adjusted atmospheric climate input data Stefan Lange and Matthias Büchner https://doi.org/10.48364/ISIMIP.842396.1

LPJ-GUESS Forest Carbon Emulator (Data, Models, SHAP values) C. Natel de Moura et al. https://doi.org/10.5281/zenodo.14230951

Model code and software

LPJ-GUESS code and modifications for the emulator C. Natel de Moura https://doi.org/10.5281/zenodo.15065248

natel-c/lpjg-forestC-emulator C. Natel de Moura https://doi.org/10.5281/zenodo.14231373

TensorFlow (v2.18.0) TensorFlow Developers https://doi.org/10.5281/zenodo.13989084

A Unified Approach to Interpreting Model Predictions S. Lundberg and S.-I. Lee https://doi.org/10.48550/arXiv.1705.07874

Download
Short summary
We developed fast machine learning models to predict forest regrowth and carbon dynamics under climate change. These models mimic the outputs of a complex vegetation model but run 95 % faster, enabling global analyses and supporting climate solutions in large modeling frameworks such as LandSyMM.
Share