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S1. LPJ-GUESS Model Modifications, Experimental Setup and Forcing Data 

We used LPJ-GUESS version 4.1.1 (Nord et al., 2021) for our simulations. To ensure 

reproducibility, we provide the model code with necessary modifications used to generate data for 

emulation development through the Zenodo repository at: https://zenodo.org/records/15065248. 

 

• Modification 1: Implemented an eXtended NetCDF input (cfxinput.h/cpp). 

• Modification 2: Added output for annual climate data. 

• Modification 3: Introduced a parameter to apply a fixed nitrogen deposition across 

simulations (fixed_ndep and fixed_ndep_year). 

• Modification 4: Enabled the output of spin-up period results (if_spinup_outputs). 

• Modification 5: Added spinup_clear2_year parameter to control stand-replacing 

disturbances. 

 

Experimental Setup 

 

Each LPJ-GUESS simulation began with a 500-year spin-up to stabilize carbon pools, using the 

1901 atmospheric CO₂ concentration and repeating, detrended 1901–1930 climate data. 

Following the spin-up, a stand-replacing disturbance (via spinup_clear2_year) simulated a clear-

cut, removing all vegetation and exposing soil. Vegetation residues were left on-site, contributing 

to litter and soil carbon pools. Post-disturbance, natural vegetation regrew under historical (1850–

2014) and future (2015–2100) conditions. Land-use changes and fire disturbance were not 

modelled. In LPJ-GUESS, besides fire disturbances, we account for other external disturbances 

(e.g. windstorms, plant diseases etc) using a generic patch-destroying regime with a stochastic 

probability interval of the expected return time. Disturbance return time varies substantially 

across the global forest area (Pugh et al., 2019), and the interval we have chosen is a 

simplification that has been adopted in a number of previous studies using LPJ-GUESS and other 

vegetation models (Zaehle et al. 2008). The LPJ-GUESS parameter settings are presented below: 

• Fire model: Disabled. 

• Nitrogen deposition: Held constant at 2015 levels, following Lamarque et al. (2013). 

• Disturbance interval: Default LPJ-GUESS setting of 100 years. 

• Replicate number of patches: 50. 

• Vegetation type: Potential natural vegetation only, to simplify ecosystem carbon 

responses and isolate climate-driven impacts. 

 

 

Forcing Data 

The simulations used both historical (1850–2014) and future (2015–2100) climate data. Future 

runs began from the end state of the historical period. 

• Climate Data: Bias-corrected CMIP6 data from the ISIMIP 3b project (Lange, 2019) was 

used, including five Earth System Models (ESMs) to cover climate sensitivity variations: 

IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, GFDL-ESM4, and UKESM1-0-LL. 

Simulations included four Representative Concentration Pathways (RCPs): RCP2.6, 

RCP4.5, RCP7.0, and RCP8.5. 

• Nitrogen Deposition: Set at 2015 levels based on Lamarque et al. (2013) data. 

• Atmospheric CO₂ Concentrations: Aligned with observed CO₂ mixing ratios for each 

RCP scenario. 

https://zenodo.org/records/15065248
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Table S1. Random forests hyperparameters, showing the values tested during the hyperparameter 

grid search and the best values for each task (Carbon stocks: C stocks and Carbon fluxes: C fluxes). 

Hyperparameter Description Values Best value (C stocks | 

C fluxes) 

n_estimators Number of trees in the random forest 350, 500, 600, 

700, 1000 

1000 | 1000 

max_samples The number of samples to draw from data to 

train each decision tree 

0.2, 0.4, 0.6, 0.8, 

1.0 

0.2 | 0.2 

max_features Number of features to consider when looking for 

the best split 

0.2, 0.4, 0.6, 0.8, 

1.0 

0.8 | 0.8 

max_depth Maximum depth of the decision tree  200, 1000, 2000 200 | 200 

min_samples_split Minimum number of samples required to split an 

internal node 

10, 20, 250, 400 250 | 250 
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Table S2. Neural network hyperparameters, showing the values tested during the hyperparameter 

grid search and the best values for each task (Carbon stocks: C stocks and Carbon fluxes: C fluxes). 

Hyperparameter Name Description Values Best value  

(C stocks | C 

fluxes 

learning_rate Learning rate Controls the step size at each iteration 

while moving toward a minimum of the 

loss function. 

0.001, 0.01, 

0.1   

0.001 | 0.001 

layers Number of 

layers 

Defines the depth of the neural network. 

Each layer encapsulates a state (weights) 

and some computation. 

1, 2, 3 2 | 2 

neurons Number of 

neurons 

The basic computational units in a neural 

network layer. More neurons can capture 

more complex patterns. 

32, 64, 128 64 | 128 

activation_function Activation 

function 

Introduces non-linearity into the network, 

allowing it to learn complex patterns. 

'relu', 'tanh' ‘tanh’ | ‘relu’ 

dropout_rate Dropout rate A regularization technique to prevent 

overfitting. Determines the proportion of 

neurons randomly set to zero during 

training. 

0, 0.2, 0.5 0.2 | 0.2 

batch_size Batch size Determines the number of samples 

processed before the model is updated. 

Affects training speed and stability. 

32, 64, 128 32 | 128 
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Figure S1. SHAP values per feature for carbon stock predictions (vegetation carbon (VegC), soil 

carbon (SoilC), and litter carbon (LitterC)) using the (a - c) Random Forest (RF) and (d - f) Neural 

Network (NN) emulators. The Y-axis lists the features used in the model. The X-axis displays SHAP 

values, which quantify the impact of each feature on the model’s prediction. Positive SHAP values 

indicate that a feature increases the prediction, while negative SHAP values suggest a decrease. The 

color gradient represents the feature values (red for high, blue for low). Each point on the plot 

corresponds to a single data point from the dataset, and its position along the X-axis shows the 

contribution of that feature to the prediction for that instance. For example, in 6a, low values (blue) 

of time elapsed since last disturbance (time_since_disturbance) decrease the predicted VegC, while 

high values (red) increase the predicted VegC by up to 2.feature values (red for high, blue for low).  
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Figure S2: SHAP values per feature for carbon flux predictions (gross primary productivity (GPP), 

net primary productivity (NPP), and heterotrophic respiration (Rh)) using the (a - c) Random Forest 

(RF) and (d - f) Neural Network (NN) emulators. For a detailed explanation of the SHAP plot, refer 

to the caption of Fig. S1.  

 
 


