Articles | Volume 18, issue 12
https://doi.org/10.5194/gmd-18-3735-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-3735-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wastewater matters: incorporating wastewater treatment and reuse into a process-based hydrological model (CWatM v1.08)
Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Mikhail Smilovic
Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Peter Burek
Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Sylvia Tramberend
Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Taher Kahil
Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Related authors
Taher Kahil, Safa Baccour, Julian Joseph, Reetik Sahu, Peter Burek, Jia Yi Ng, Samar Asad, Dor Fridman, Jose Albiac, Frank A. Ward, and Yoshihide Wada
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-238, https://doi.org/10.5194/gmd-2024-238, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study presents the development of the global version of the ECHO hydro-economic model for assessing the economic and environmental performance of water management options. This improved version covers a large number of basins worldwide, includes a detailed representation of irrigated agriculture, and accounts for economic benefits and costs of water use. Results of this study demonstrates the capacity of the model to address emerging water-related research and practical questions.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Taher Kahil, Safa Baccour, Julian Joseph, Reetik Sahu, Peter Burek, Jia Yi Ng, Samar Asad, Dor Fridman, Jose Albiac, Frank A. Ward, and Yoshihide Wada
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-238, https://doi.org/10.5194/gmd-2024-238, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study presents the development of the global version of the ECHO hydro-economic model for assessing the economic and environmental performance of water management options. This improved version covers a large number of basins worldwide, includes a detailed representation of irrigated agriculture, and accounts for economic benefits and costs of water use. Results of this study demonstrates the capacity of the model to address emerging water-related research and practical questions.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
Muhammad Awais, Adriano Vinca, Edward Byers, Stefan Frank, Oliver Fricko, Esther Boere, Peter Burek, Miguel Poblete Cazenave, Paul Natsuo Kishimoto, Alessio Mastrucci, Yusuke Satoh, Amanda Palazzo, Madeleine McPherson, Keywan Riahi, and Volker Krey
Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024, https://doi.org/10.5194/gmd-17-2447-2024, 2024
Short summary
Short summary
Climate change, population growth, and depletion of natural resources all pose complex and interconnected challenges. Our research offers a novel model that can help in understanding the interplay of these aspects, providing policymakers with a more robust tool for making informed future decisions. The study highlights the significance of incorporating climate impacts within large-scale global integrated assessments, which can help us in generating more climate-resilient scenarios.
Peter Burek and Mikhail Smilovic
Earth Syst. Sci. Data, 15, 5617–5629, https://doi.org/10.5194/essd-15-5617-2023, https://doi.org/10.5194/essd-15-5617-2023, 2023
Short summary
Short summary
We address an annoying problem every grid-based hydrological model must solve to compare simulated and observed river discharge. First, station locations do not fit the high-resolution river network. We update the database with stations based on a new high-resolution network. Second, station locations do not work with a coarser grid-based network. We use a new basin shape similarity concept for station locations on a coarser grid, reducing the error of assigning stations to the wrong basin.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Cited articles
Abeshu, G. W., Tian, F., Wild, T., Zhao, M., Turner, S., Chowdhury, A. F. M. K., Vernon, C. R., Hu, H., Zhuang, Y., Hejazi, M., and Li, H.-Y.: Enhancing the representation of water management in global hydrological models, Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, 2023.
Angelakis, A., Marecos Do Monter, M. H. F., Bontoux, L., and Asano, T.: The status of wastewater reuse practice in the Mediterranean basin: need for guidelines, Water Res., 33, 2201–2217, https://doi.org/10.1016/S0043-1354(98)00465-5, 1999.
Ayalon Cities Association: Wastewater treatment plant Ayalon-Nesher – Annual report for 2019, https://ayalonb.co.il (last access: 3 October 2024), 2020.
Ayalon Cities Association: Wastewater treatment plant Ayalon-Nesher – Annual report for 2020, https://ayalonb.co.il (last access: 3 October 2024), 2021.
Ayalon Cities Association: Wastewater treatment plant Ayalon-Nesher – Annual report for 2021, https://ayalonb.co.il (last access: 3 October 2024), 2022.
Ayalon Cities Association: Wastewater treatment plant Ayalon-Nesher – Annual report for 2022. https://ayalonb.co.il (last access: 3 October 2024), 2023.
Bixio, D., Thoeye, C., de Koning, J., Joksimovic, D., Savic, D., Wintgens, T., and Melin, T.: Wastewater reuse in Europe, Desalination, 187, 89–101, https://doi.org/10.1016/j.desal.2005.04.070, 2006.
Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M., Guillaumot, L., Zhao, F., and Wada, Y.: Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management, Geosci. Model Dev., 13, 3267–3298, https://doi.org/10.5194/gmd-13-3267-2020, 2020.
Burek, P., Smilovic, M., de Bruijn, J., Fridman, D., Hanus, S., Guillaumot, L., Satoh, Y., EmilioMariaNP, and Artuso, S.: iiasa/CWatM: CWatM reservoir, crop, snow update (1.081), Zenodo [code], https://doi.org/10.5281/zenodo.10044318, 2023.
Coxon, G., McMillan, H., Bloomfield, J. P., Bolotin, L., Dean, J. F., Kelleher, C., Slater, L., and Zheng, Y.: Wastewater discharges and urban land cover dominate urban hydrology across England and Wales, EGU General Assembly 2024, 14–19 Apr 2024, EGU24-5850, https://doi.org/10.5194/egusphere-egu24-5850, 2024.
Dai, Y., Xin, Q., Wei, N., Zhang, Y., Shangguan, W., Yuan, H., Zhang, S., Liu, S., and Lu, X.: A Global High-Resolution Data Set of Soil Hydraulic and Thermal Properties for Land Surface Modeling, J. Adv. Model. Earth Sy., 11, 2996–3023, https://doi.org/10.1029/2019MS001784, 2019.
Ehalt Macedo, H., Lehner, B., Nicell, J., Grill, G., Li, J., Limtong, A., and Shakya, R.: Distribution and characteristics of wastewater treatment plants within the global river network, Earth Syst. Sci. Data, 14, 559–577, https://doi.org/10.5194/essd-14-559-2022, 2022.
Eilander, D., Winsemius, H. C., Van Verseveld, W., Yamazaki, D., Weerts, A., and Ward, P. J.: MERIT Hydro IHU [data set], https://doi.org/10.5281/zenodo.5166932, 2020.
European Parliament: New EU rules to improve urban wastewater treatment and reuse (News: press releases, published 10 April 2024), https://www.europarl.europa.eu/news/en/press-
room/20240408IPR20307/new-eu-rules-to-improve-urban-
wastewater-treatment-and-reuse#:$∼$:text=EU%20countries%20
will%20be%20required,especially%20in%20water%2D
stressed%20areas (last access: 10 July 2024), 2024.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Fridman, D.: dof1985/CWatM-Israel: CWatM-Israel v1.06.1 (V1.06.1), Zenodo [code], https://doi.org/10.5281/zenodo.13990296, 2024.
Fridman, D., Biran, N., and Kissinger, M.: Beyond blue: An extended framework of blue water footprint accounting, Sci. Total Environ., 777, 146010, https://doi.org/10.1016/j.scitotenv.2021.146010, 2021.
Fridman, D., Kahil, T., and Wada, Y.: Evaluating the global wastewater's untapped irrigation potential, EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023, EGU23-7018, https://doi.org/10.5194/egusphere-egu23-7018, 2023.
Fridman, D., Smilovic, M., Burek, P., Tramberend, S., and Kahil, T.: Input data for the Community Water Model (CWatM) – a regional dataset covering Israel and the Ayalon Basin, Zenodo [data set], https://doi.org/10.5281/zenodo.12752966, 2025.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 Global 500 m SIN Grid V006 NASA EOSDIS Land Processes DAAC [data set], https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1 (last access: 5 June 2022), 2019.
Graham, D. J., Bierkens, M. F., and van Vliet, M. T.: Impacts of droughts and heatwaves on river water quality worldwide, J. Hydrol., 629, 130590, https://doi.org/10.1016/j.jhydrol.2023.130590, 2024.
Guillaumot, L., Smilovic, M., Burek, P., de Bruijn, J., Greve, P., Kahil, T., and Wada, Y.: Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale, Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, 2022.
Hamaarag: Vegetation map of Israel's natural and forested areas, 2017, https://hamaarag.org.il (last access: 1 April 2022), 2017.
Hanasaki, N., Matsuda, H., Fujiwara, M., Hirabayashi, Y., Seto, S., Kanae, S., and Oki, T.: Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan, Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, 2022.
Hoch, J. M., Sutanudjaja, E. H., Wanders, N., van Beek, R. L. P. H., and Bierkens, M. F. P.: Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent, Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, 2023.
ICBS: Municipal data in Israel 1999–2021 data set, https://www.cbs.gov.il/he/publications/Pages/2019/%D7%94%D7%A8%D7%A9%D7%95%D7%99%D7%95%D7%AA-%D7%94%D7%9E%D7%A7%D7%95%D7%9E%D7%99%D7%95%D7%AA-%D7%91%D7%99%D7%A9%D7%A8%D7%90%D7%9C-%D7%A7%D7%95%D7%91%D7%A6%D7%99-%D7%A0%D7%AA%D7%95%D7%A0%D7%99%D7%9D-%D7%9C%D7%A2%D7%99%D7%91%D7%95%D7%93-1999-2017.aspx (last access: 1 April 2022), 2022.
IIASA: Community Water Model, https://cwatm.iiasa.ac.at/ (last access: 12 March 2025), 2025.
INRA: Wastewater collection, treatment, and recalmation for irrigation purposes – a national survey 2014, https://www.google.
com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&
uact=8&ved=2ahUKEwimn9aF7Z6GAxXRBdsEHTj0DEwQF
noECBIQAQ&url=https%3A%2F%2Fwww.gov.il%2FBlobFol
der%2Freports%2Ftreated_waste_water1%2Fhe%2Fwater-
sources-status_kolhin_kolhim_2014.pdf&usg=AOvVaw3RjSA
odJvw9NF0XD9h6qWY&opi=89978449 (last access: 1 April 2022), 2016.
Israel Hydrological Services: Hydrologic data – Annual report – The state of the water resources 2014, https://www.gov.il/he/departments/publications/reports/water-resources-2014 (last access: 1 April 2022), 2014.
Israeli Government portal: Desalination volumes by year, https://www.gov.il/BlobFolder/reports/desalination-stractures/he/%D7%9E%D7%AA%D7%A7%D7%A0%D7%99%20%D7%94%D7%AA%D7%A4%D7%9C%D7%94%20%D7%91%D7%99%D7%A9%D7%A8%D7%90%D7%9C.pdf (last access: 1 April 2022), 2022.
Jones, E. R., van Vliet, M. T. H., Qadir, M., and Bierkens, M. F. P.: Country-level and gridded estimates of wastewater production, collection, treatment and reuse, Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, 2021.
Jones, E. R., Bierkens, M. F. P., Wanders, N., Sutanudjaja, E. H., van Beek, L. P. H., and van Vliet, M. T. H.: DynQual v1.0: a high-resolution global surface water quality model, Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, 2023.
Kim, Y., Park, H., Kimball, J. S., Colliander, A., and McCabe, M. F.: Global estimates of daily evapotranspiration using SMAP surface and root-zone soil moisture, Remote Sens. Environ., 289, 113803, https://doi.org/10.1016/j.rse.2023.113803, 2023.
Lange, S., Mengel, M., Treu, S., and Büchner, M.: ISIMIP3a atmospheric climate input data, ISIMIP Repository [data set], https://doi.org/10.48364/ISIMIP.982724, 2022.
Liao, X., Tian, Y., Gan, Y., and Ji, J.: Quantifying urban wastewater treatment sector's greenhouse gas emissions using a hybrid life cycle analysis method – An application on Shenzhen city in China, Sci. Total Environ., 735, 141176, https://doi.org/10.1016/j.scitotenv.2020.141176, 2020.
Melloul, A., Albert, J., and Collin, M.: Lithological Mapping of the Unsaturated Zone of a Porous Media Aquifer to Delineate Hydrogeological Characteristic Areas: Application to Israels Coastal aquifer, Afr. J. Agr. Res., 1, 47–56, 2006.
Meron, N., Blass, V., and Thoma, G.: A national-level LCA of a water supply system in a Mediterranean semi-arid climate – Israel as a case study, Int. J. Life Cycle Ass., 25, 1133–1144, https://doi.org/10.1007/s11367-020-01753-5, 2020.
MOAG – Ministry of Agriculture and Rural Development of Israel: Cultivated lands map, online GIS resource [data set], https://data1-moag.opendata.arcgis.com/datasets/f2cbce5354024da28f93788c53b182d2_0/explore?location = 31.747323%2C34.905146%2C12.88 (last access: 1 April 2022), 2022.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: Performance measures and evaluation criteria, T. ASABE, 58, 1763-1785, https://doi.org/10.13031/trans.58.10715, 2015.
Mu, Q., Maosheng, Z. Running, S. W., and Numerical Terradynamic Simulation Group: MODIS Global terrestrial evapotranspiration (ET) product MOD16A2 collection 5 [data set], 2014.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and Water Assessment Tool Theoretical Documentation Version 2009, Technical Report No. 406, Texas Water Resources Institute, Texas A&M University System, College Station, TX, 2011.
OpenStreetMap contributors: Planet dump, https://planet.osm.org (last access: 5 June 2022), 2022.
PCBS: Wastewater statistics in Palestinian territory, https://www.pcbs.gov.ps/PCBS_2012/Publications.aspx?CatId=33&scatId = 312 (last access: 1 April 2022), 2022a.
PCBS: Water statistics in Palestinian territory 2001–2008, [data set], https://www.pcbs.gov.ps/PCBS_2012/Publications.aspx?CatId=33&scatId = 312 (last access: 1 April 2022), 2022b.
Pescod, M. B.: Wastewater Treatment and Use in Agriculture, FAO Irrigation and Drainage Paper 47, Food and Agriculture Organization of the United Nations, Rome, https://www.fao.org/4/T0551E/t0551e00.htm (last access: 29 May 2025), 1992.
Reichle, R. H., De Lannoy, G., Koster, R. D., Crow, W. T., Kimball, J. S., Liu, Q., and Bechtold, M.: SMAP L4 Global 3 hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update, Version 7 [Indicate subset used], NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/LWJ6TF5SZRG3, 2022.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B. Am. Meteorol. Soc., 85, 381-394. https://doi.org/10.1175/BAMS-85-3-381, 2004.
Salvadore, E., Bronders, J., and Batelaan, O.: Hydrological modeling of urbanized catchments: A review and future directions, J. Hydrol,, 529, 62–81. https://doi.org/10.1016/j.jhydrol.2015.06.028, 2015.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping the global depth to bedrock for land surface modeling. J. Adv. Model. Earth Syst., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017.
Smilovic, M.: iiasa/CWatM, GitHub [code], https://github.com/iiasa/CWatM (last access: 12 March 2025), 2025.
Smilovic, M., Burek, P., Fridman, D., Guillaumot, L., de Bruijn, J., Greve, P., Wada, Y., Tang, T., Kronfuss, M., and Hanus, S.: Water circles-a tool to assess and communicate the water cycle, Environ. Res. Lett., 19, 021003, https://doi.org/10.1088/1748-9326/ad18de, 2024.
Tal, A.: Seeking Sustainability: Israel's Evolving Water Management Strategy, Science, 313, 1081–1084, https://doi.org/10.1126/science.1126011, 2006.
Thebo, A. L., Drechsel, P., Lambin, E. F., and Nelson, K. L.: A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows, Environ. Res. Lett., 12, 074008, https://doi.org/10.1088/1748-9326/aa75d1, 2017.
van Jaarsveld, B., Wanders, N., Sutanudjaja, E. H., Hoch, J., Droppers, B., Janzing, J., van Beek, R. L. P. H., and Bierkens, M. F. P.: A first attempt to model global hydrology at hyper-resolution, Earth Syst. Dynam., 16, 29–54, https://doi.org/10.5194/esd-16-29-2025, 2025.
van Vliet, M. T. H., Jones, E. R., Flörke, M., Franssen, W. H. P., Hanasaki, N., Wada, Y., and Yearsley, J. R.: Global water scarcity including surface water quality and expansions of clean water technologies, Env. Res. Lett., 16, 024020, https://doi.org/10.1088/1748-9326/abbfc3, 2021.
Wada, Y., Bierkens, M. F. P., de Roo, A., Dirmeyer, P. A., Famiglietti, J. S., Hanasaki, N., Konar, M., Liu, J., Müller Schmied, H., Oki, T., Pokhrel, Y., Sivapalan, M., Troy, T. J., van Dijk, A. I. J. M., van Emmerik, T., Van Huijgevoort, M. H. J., Van Lanen, H. A. J., Vörösmarty, C. J., Wanders, N., and Wheater, H.: Human–water interface in hydrological modelling: current status and future directions, Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, 2017.
Wang, C., Song, J., Nunes, L. M., Zhao, H., Wang, P., Liang, Z., Arp, H. P. H., Li, G., and Xing, B.: Global microplastic fiber pollution from domestic laundary, J. Hazard. Mater., 577, 135290, https://doi.org/10.1016/j.jhazmat.2024.135290, 2024.
WEF – Water Environment Federation: Clarifier Design, in: Manual of Practice No. FD-8, 2nd Edn., McGraw-Hill, New York, ISBN 978-0-07-146416-1, 2005.
Wollmann, S., Calvo, R., and Burg, A.: A three-dimensional two-layers model to explore the hydrologic consequences of uncontrolled groundwater abstraction at Yarkon-Taninim Aquifer – Final report, https://www.gov.il/he/departments/publications/reports/wollman-et-al-report-2009 (last access: 1 April 2022), 2009.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high accuracy map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853, https://doi.org/10.1002/2017GL072874, 2017.
Yang, W., Long, D., Scanlon, B. R., Burek, P., Zhang, C., Han, Z., Butler Jr., J. J., Pan, Y., Lei, X., and Wada, Y.: Human intervention will stabilize groundwater storage across the North China Plain, Water Resour. Res., 58, e2021WR030884, https://doi.org/10.1029/2021WR030884, 2022.
Zhang, K., Kimball, J. S., and Running, S. W.: A review of remote sensing based actual evapotranspiration estimation, WIREs Water, 3, 834-853, https://doi.org/10.1002/wat2.1168, 2016.
Short summary
Global hydrological models are applied at high spatial resolutions to quantify water availability and evaluate water scarcity mitigation options. Yet, they mainly oversee critical local processes. This paper presents and demonstrates the inclusion of wastewater treatment and reuse into a global hydrological model. As a result, model performance improves, and models consider treated wastewater as an alternative water source.
Global hydrological models are applied at high spatial resolutions to quantify water...