Articles | Volume 18, issue 12
https://doi.org/10.5194/gmd-18-3607-2025
https://doi.org/10.5194/gmd-18-3607-2025
Model description paper
 | 
18 Jun 2025
Model description paper |  | 18 Jun 2025

Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods

Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet

Data sets

Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods - data and weights Joffrey Dumont Le Brazidec https://doi.org/10.5281/zenodo.12788520

Synthetic XCO2, CO and NO2 observations for the CO2M and Sentinel-5 satellites G. Kuhlmann et al. https://doi.org/10.5281/zenodo.4048228

Model code and software

Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods - code Joffrey Dumont Le Brazidec https://doi.org/10.5281/zenodo.14013176

Download
Short summary
We developed a deep learning method to estimate CO2 emissions from power plants using satellite images. Trained and validated on simulated data, our model accurately predicts emissions despite challenges like cloud cover. When applied to real OCO3 satellite images, the results closely match reported emissions. This study shows that neural networks trained on simulations can effectively analyse real satellite data, offering a new way to monitor CO2 emissions from space.
Share