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Abstract. This paper presents the development and appli-
cation of a deep-learning-based method for inverting CO2
atmospheric plumes from power plants using satellite im-
agery of the CO2 total column mixing ratios (XCO2). We
present an end-to-end convolutional neural network (CNN)
approach, processing the satellite XCO2 images to derive es-
timates of the power plant emissions, that is resilient to miss-
ing data in the images due to clouds or to the partial view of
the plume owing to the limited extent of the satellite swath.

The CNN is trained and validated exclusively on CO2 sim-
ulations from eight power plants in Germany in 2015. The
evaluation on this synthetic dataset shows an excellent CNN
performance with relative errors close to 20 %, which is only
significantly affected by substantial cloud cover. The method
is then applied to 39 images of the XCO2 plumes from nine
power plants, acquired by the Orbiting Carbon Observatory-
3 Snapshot Area Maps (OCO3 SAMs), and the predictions
are compared to average annual reported emissions. The re-
sults are very promising, showing a relative difference in the
predictions to reported emissions only slightly higher than
the relative error diagnosed from the experiments with syn-
thetic images. Furthermore, analysis of the area of the images
in which the CNN-based inversion extracts the information
for the quantification of the emissions, based on integrated-
gradient techniques, demonstrates that the CNN effectively
identifies the location of the plumes in the OCO-3 SAM im-
ages. This study demonstrates the feasibility of applying neu-
ral networks that have been trained on synthetic datasets for

the inversion of atmospheric plumes in real satellite imagery
from XCO2 and provides the tools for future applications.

1 Introduction

Satellite imagery of the total column average dry-air mole
fraction of carbon dioxide (XCO2) from the Snapshot Area
Map (SAM) mode of the Orbiting Carbon Observatory-3
(OCO-3) (Eldering et al., 2019) or the forthcoming CO2M
mission (Janssens-Maenhout et al., 2020; Meijer et al., 2023)
is pivotal for monitoring carbon dioxide (CO2) emissions.
In the vicinity of large CO2 anthropogenic sources, such as
power plants, satellite images may include CO2 atmospheric
plumes emanating from these sources. From these images, at-
mospheric inversion approaches can estimate the CO2 emis-
sions of the sources by analysing the signal intensity of the
detected plumes (Nassar et al., 2017; Reuter et al., 2019;
Chevallier et al., 2019; Wu et al., 2020; Zheng et al., 2020;
Nassar et al., 2022; Chevallier et al., 2022; Cusworth et al.,
2021).

Various approaches can be used to determine the emissions
underlying the XCO2 plumes in the satellite imagery. The
first technique category relies on traditional atmospheric in-
version methods that minimize the misfits between the satel-
lite observations and simulations of the plumes with rela-
tively expensive (Eulerian or Lagrangian) transport models
to identify the optimal emission estimate (Pillai et al., 2016;
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Broquet et al., 2018). The second technique category in-
cludes light-weight methods that apply the principle of mass
conservation to compute the emissions from the CO2 en-
hancement of the emission plume (such as integrated mass
enhancements, divergence methods, and cross-sectional flux
methods) or compare the observed plume with a Gaus-
sian plume model (Gaussian plume inversions). Light-weight
methods rely on wind fields taken, for example, from mete-
orological reanalysis products. These light-weight methods
have been evaluated in several studies (e.g. Varon et al., 2018;
Hakkarainen et al., 2024; Danjou et al., 2025; Santaren et al.,
2025; Kuhlmann et al., 2024; Danjou et al., 2024). Despite
the advancements in CO2 plume inversion techniques, signif-
icant challenges remain, notably, (1) the extraction of plumes
from XCO2 backgrounds, which is hindered by low signal-
to-noise ratios due to the large amplitude of background vari-
ations associated with the CO2 natural fluxes and to relatively
high noise in the image (due to instrumental errors and to
uncertainties in the retrieval of mole fractions from the satel-
lite measurements); (2) the complex process of deducing the
source emissions from clearly delineated plumes, which is
marred by uncertainties in the corresponding transport and
dispersion (i.e. in either the transport modelling or in the
wind field and assumptions regarding the vertical structure
of the 3D CO2 plume for the derivation of the effective wind
driving the 2D XCO2 plume in the light-weight analysis; Du-
mont Le Brazidec et al., 2023); and (3) the reconstruction of
emissions from images with a partial view of the plumes due
to missing data where there are clouds or gaps in satellite
coverage.

Machine learning models have been suggested in response
to these obstacles and have been primarily applied to CH4
and NO2 images (e.g. Lary et al., 2016; Finch et al., 2022;
Jongaramrungruang et al., 2021; Joyce et al., 2023; Kumar
et al., 2023). Our previous work (Dumont Le Brazidec et al.,
2023, 2024a) pioneered the use of deep learning methodolo-
gies, specifically convolutional neural networks (CNNs), for
the segmentation and inversion of CO2 plumes for the esti-
mate of point sources. This approach has demonstrated its ef-
ficacy in addressing these challenges when tackling synthetic
satellite images with a full coverage of the plumes, i.e. with-
out the loss of observations due to cloud cover or quality
control in the limited satellite field of view. This paper is a
direct continuation of Dumont Le Brazidec et al. (2024a).
Specifically, our approach involves developing a supervised-
learning CNN system designed to predict CO2 emissions us-
ing XCO2 images and ancillary data (such as wind fields,
time, and NO2 images which will be measured by CO2M).
This CNN is trained on a synthetic dataset, constructed from
model simulations, comprising synthetic XCO2 fields and the
corresponding true emissions. Through this training process,
the CNN learns to correlate specific features within the in-
put images covering the plume from a targeted point source
with certain output values, namely, the emissions from the
point source. The CNN’s capability to generalize is subse-

quently assessed using a new, unseen dataset during the train-
ing phase. In particular, this assessment is based on tests tar-
geting a source that was not covered by the synthetic images
used for the training phase.

Our previous research (Dumont Le Brazidec et al., 2023)
evaluated the models using only synthetic images without
missing data, comparing them against light-weight alter-
native methods for which they demonstrated better perfor-
mance, with an absolute error about half that of the cross-
sectional flux method. In the current study, we extend our
approach by analysing actual satellite data, specifically ex-
amining 39 OCO-3 SAM observations to quantify emis-
sions. These images encompass 64 km2 and cover nine power
plants located in the USA (seven images), Europe (one im-
age), and China (one image). To make this possible, this pa-
per introduces a new upgrade of the CNN approach to ad-
dress the third principal challenge in CO2 plume inversion:
handling images with a partial cover of the plumes due to
the loss of observations associated with clouds or due to the
limited extent of the satellite swath. Furthermore, the train-
ing of the CNN involves a novel data augmentation strategy,
specifically the incorporation of beta or uniform distribution
mappings for plumes and the corresponding emissions. This
enhancement aims to improve the robustness and stability of
the CNN with respect to predicting CO2 emissions under var-
ious conditions.

The structure of this paper is as follows: Sect. 2 introduces
the synthetic dataset, which bears a significant resemblance
to that described by Dumont Le Brazidec et al. (2024a) and
Santaren et al. (2025), the OCO-3 SAMs utilized exclusively
for evaluation, and the dataset’s training–validation–test split
strategy. Section 3 details the model, the developed data aug-
mentation approach aimed at stabilizing CNN training, the
methodology for addressing the problem of clouds, and the
training parameterization. In Sect. 4, we successively present
the CNN’s emission estimations for plumes across the syn-
thetic and OCO-3 SAM datasets. Special attention is given
to analysing the model’s OCO-3 SAM predictions through
the lens of integrated gradients, a method that elucidates the
contribution of each input feature to the model’s predictions,
enhancing interpretability. Finally, Sect. 5 discusses cogent
future directions, before we conclude.

2 Dataset

2.1 Synthetic dataset

The synthetic dataset employed in this study is very sim-
ilar to that used by Dumont Le Brazidec et al. (2024a).
The dataset consists of hourly XCO2 and NO2 fields from
the SMARTCARB project (Brunner et al., 2019; Kuhlmann
et al., 2019), which generated 1 year of synthetic CO2M
observations from high-resolution CO2 and NO2 transport
simulations covering power plants in Germany, Poland, and
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the Czech Republic. The SMARTCARB dataset has been
used in various studies for assessing emission quantification
methods (e.g. Kuhlmann et al., 2020a, 2021; Hakkarainen
et al., 2021; Santaren et al., 2025). For this study, we ex-
tracted 32 pixel× 32 pixel (2 km resolution) fields cen-
tred on different power plants. For comparison, in Dumont
Le Brazidec et al. (2024a), the image size was chosen as
64 pixel× 64 pixel. The transition to focusing the analysis
on a more confined area surrounding the hotspots (power
plants) is driven by several factors: (i) the critical portion
of the plume influencing emission reconstruction typically
lies within this central area, as noted in Dumont Le Brazidec
et al. (2024a); (ii) satellite swath limitations – the limited spa-
tial extent of a swath and temporal constraints between two
swaths makes it unlikely that satellite imaging will consis-
tently capture 128 km2 areas centred over emission sources;
and (iii) this more focused approach demonstrates a stabiliz-
ing effect on neural network training, likely due to the reduc-
tion in superfluous information.

To account for the inherent noise associated with satel-
lite instruments, we introduce Gaussian random noise with
a standard deviation of 0.7 ppm to the XCO2 images, re-
flecting typical noise levels expected for OCO-3 and CO2M
snapshots as reported by Meijer (2020), Taylor et al. (2023),
and Danjou et al. (2024). Given the observed strong corre-
lation between NO2 and CO2 plumes and CO2M’s capabil-
ity to measure NO2, we incorporate noisy NO2 fields in our
analysis, characterized by Gaussian noise with a variance of
1× 1015 molec. cm−2 (Kuhlmann et al., 2019).

Similarly to Dumont Le Brazidec et al. (2024a), we inte-
grate ERA5 wind data as additional input to the CNN model,
aligning their original resolution of 28 km with the 2 km res-
olution used for the CO2 and NO2 images. Specifically, we
employ 2D u and v wind fields, representing the average
zonal and meridional winds, respectively, across the five low-
est model levels of ERA5. This averaging process approxi-
mates the atmospheric conditions below 100m.

To include the impact of cloud cover in the inversion of
CO2 plumes, we use the simulated cloud cover fractions ex-
tracted from the SMARTCARB dataset to mask pixels where
retrievals are not available due to the high cloud fraction. Fol-
lowing Kuhlmann et al. (2019), we use a cloud threshold of
1 % for CO2 images and 30 % for NO2 images.

Moreover, we study the impact of introducing temporal
information to our CNN inputs, by incorporating the hour of
the day, day of the week, and day of the year. To capture the
cyclical nature of time, these features are transformed into
cosine and sine representations, ensuring proximity between
temporally adjacent data points (e.g. the last and first hours of
the day). Consequently, each XCO2 field is associated with a
vector of six scalar values encoding the temporal context of
the observation. In Fig. 1, we present typical input data used
by the CNN to predict the emissions of the local hotspot.

2.2 Set of OCO-3 SAMs

The OCO-3 SAM mode is an observation strategy designed
to monitor CO2 emissions from specific emission hotspots
(large urban areas and large industrial point sources). Un-
like OCO-3’s standard observation mode, which conducts
continuous scans of the Earth’s atmosphere in nadir or glint
mode, the SAM mode is a targeting mode that provides high-
resolution XCO2 images around such emission hotspots. In
this study, we selected 39 OCO-3 SAMs at nine power plants
to evaluate the applicability and reliability of our CNN model
trained on synthetic datasets. We selected OCO-3 SAM im-
ages corresponding to (1) power plants for which reports of
the emissions are available and have been studied in the sci-
entific literature and (2) a sufficient number of cloud-free
XCO2 retrievals of good quality are available. The list of
power plants selected are described, including the average re-
ported emissions and number of collected SAMs, in Table 1.

To adapt the raw OCO-3 SAM data for CNN analysis,
we first construct a 32 pixel× 32 pixel grid with a resolu-
tion of 2 km (similar to the resolution of OCO3 SAMs or
CO2M) centred on the power plant. Each grid cell is popu-
lated through a weighted interpolation of surrounding OCO-
3 SAM data pixel centres, considering only those within
a distance of less than 0.66 times the new grid resolution.
This specific distance threshold was determined through ex-
perimentation to optimally preserve information from the
original dataset. Although this mapping strategy provides a
straightforward means of converting OCO-3 SAM data into
a format compatible with our CNN, it is acknowledged that
this approach has limitations and that the observation infor-
mation might not be perfectly conserved. Additionally, as
most OCO3 SAMs used in this study were taken in 2021 or
2022, the synthetic images are adjusted to account for the ef-
fect of climate change and the general increase in the CO2
concentration of 2.3 ppm yr−1 since 2015 (SMARTCARB
synthetic dataset year). Using eight examples, Fig. 2 illus-
trates the process of transforming original OCO-3 SAM data
into an XCO2 field suitable for CNN reconstruction.

2.3 Training, validation, and test split choices

For tests on synthetic and real data, to avoid data leakage,
a rigorous geographical separation is maintained between
the power plants used in the training and validation datasets
and those used in the test dataset. For instance, when train-
ing a model to predict emissions from the Boxberg power
plant, Boxberg plumes are excluded from the training set.
The validation dataset comprises plumes from a different
power plant, Dolna Odra, which is neither used to train nor
test the CNNs. This splitting strategy is outlined in Fig. 3.

This approach mirrors the strategy adopted in Dumont
Le Brazidec et al. (2024a) for the analysis of synthetic im-
ages. We focus on the same three power plants for the tests
– Lippendorf, Boxberg, and Turów – and train distinct mod-

https://doi.org/10.5194/gmd-18-3607-2025 Geosci. Model Dev., 18, 3607–3622, 2025



3610 J. Dumont Le Brazidec et al.: Deep learning applied to CO2 power plant emission quantification

Figure 1. Examples of inputs used by the CNN model. The first, second, third, and fourth columns represent the XCO2 images, vertically
averaged u winds, vertically averaged v winds, and NO2 images, respectively. The power plant of interest is always located in the middle of
the image.

Table 1. List of power plants selected for this study, along with their annual reported emissions, coordinates, and number of observations used.
The data span from 2020 to 2023. Emission statistics are sourced from Nassar et al. (2021), Grant et al. (2021), and Lin et al. (2023), which
are based on the US Environmental Protection Agency (EPA, https://www.epa.gov/airmarkets/power-sector-emissions-data, last access: 15
June 2025) and the European Pollutant Release and Transfer Register (E-PRTR, https://www.eea.europa.eu/en, last access: 15 June 2025).

Power plant Coordinates (lat, long) Reported emissions Number of
(Mt CO2 yr−1) OCO-3 images

Colstrip 45.88, −106.61 13.6 4
Bełchatów 51.27, 19.33 37.6 4
Tuoketuo 40.20, 111.36 29.5 8
Cumberland 36.39, −87.65 12.4 3
Labadie 38.56, −90.84 15.0 6
Intermountain 39.51, −112.58 5.0 2
Hunters 39.17, −111.03 7.2 7
Parish 29.48, −95.63 13.2 4
Conemaugh 40.38, −79.06 16.9 1

els for each to predict their emissions. These models share
the same architectural framework, hyperparameters, CNN
structure, and preprocessing layers, but they are trained on
a dataset excluding plumes from the target power plant.

The rationale behind selecting Lippendorf, Boxberg, and
Turów as test power plants is thoroughly discussed by Du-
mont Le Brazidec et al. (2024a). Briefly, these power plants
were chosen for their distinct characteristics: Lippendorf’s
average emissions are equal to 15.2 Mt CO2 yr−1; Boxberg’s
plume is often located close to other power plant plumes and
its average emission amount to 19.0 Mt CO2 yr−1; and Turów
is characterized by low emissions of 8.7 Mt CO2 yr−1. These
selection criteria ensure an evaluation of the proposed CNN
architecture across various emission scenarios.

It is critical to underline that while the test dataset for one
experiment becomes part of the training dataset for another,
each experiment was conducted independently, ensuring that
model tuning was not optimized by outcomes derived from
the test datasets. Finally, in our assessment of CNNs against
OCO-3 SAM data, the training was based exclusively on syn-
thetic data.

3 Deep learning methodology

The goal of this study is to determine the CO2 emission
rate (in MtCO2 yr−1) of the hotspot in the centre of a XCO2
image using a CNN model, which takes the XCO2 image
(alongside other data) as input. This section describes the
CNN model and the data augmentation strategy, with a par-
ticular focus on the method to address cloud interference, and
discusses training parameters.

3.1 CNN model and preprocessing layers

This subsection describes the CNN-based inversion system
(the CNN model with its preprocessing layers that estimates
emissions from images) and how it is trained. The CNN-
based inversion system is a compound of preprocessing lay-
ers and a core CNN model. Preprocessing layers are opera-
tions successively applied to the XCO2 fields and ancillary
data before they are processed by the core CNN model. The
core CNN model is a statistical model whose parameters (or
neurons) are optimized during the training phase; its function
is to identify and extract features from the input data, which
it learns to associate with specific levels of emissions. The
training phase of the CNN-based inversion system consists
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Figure 2. Examples of OCO-3 SAM observations for eight different power plants and the transformation of these observations into CNN-
compatible images. For each case, the original OCO-3 SAM data are described on the left, whereas the corresponding CNN-compatible
mapping (in which the power plant is always in the centre of the image) is shown on the right. All values are in parts per million by volume
(ppmv).

of a series of five steps, depicted in Fig. 4 and outlined in the
following paragraphs.

3.1.1 Data augmentation

The data augmentation process creates an artificially infinite
dataset from the SMARTCARB dataset to prevent the model
from overfitting due to the SMARTCARB dataset’s limita-
tions. Specifically, instead of using the XCO2 field directly
from the SMARTCARB dataset to train the core model, we
use a composition of five different elements:

1. The principal component is a synthetic image centred
on a major power plant of interest, exclusively contain-
ing the XCO2 plume from that facility and the other

major power plants. The SMARTCARB dataset com-
position facilitates isolating this field from all other an-
thropogenic and biogenic fluxes. This first component
undergoes a distribution mapping, whereby an emission
level is randomly drawn from a probability distribution,
either a beta (to mitigate the training on extreme emis-
sions) or a uniform distribution, as shown in Fig. 5, and
the plume image is adjusted accordingly (we trained
separate CNN models for each distribution choice). Si-
multaneously, the CNN output is also adjusted at the
emission level.

2. A randomly drawn XCO2 background, which is aug-
mented by summing it with a random number b ∼
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Figure 3. Map of XCO2 concentrations within the complete SMARTCARB domain on 12 December 2015 at 03:00 UTC. The depicted
XCO2 fields are devoid of synthetic satellite noise for visibility. When constructing a model to predict emissions from Lippendorf, based on
Lippendorf-centred fields (indicated by the red square), images from Dolna Odra (indicated by the orange square) are used for validation,
whereas images from the remaining power plants serve as training data.

U(−3.5,3.5) (in ppmv), is added, uniformly across the
field, to this first component in a manner analogous to
Dumont Le Brazidec et al. (2024a). The selection of the
background (and all subsequently described elements)
through uniform random drawing is independent of the
position of the main plume component.

3. Other anthropogenic XCO2 plumes identified in the
SMARTCARB area, each scaled by a random factor
ranging from 0.33 to 3, are added to this.

4. The application of cloud cover constitutes the fourth
component. A random selection of cloud cover from
the SMARTCARB area is made, independent of the se-
lections for other fields. The XCO2 pixels are deemed
unobserved when cloud cover exceeds 0.01, leading to
replacement with NaN, and are subsequently replaced
with the minimum value across all XCO2 fields. This is
done in order for the CNN model to learn to ignore this
non-informative constant value.

5. The fifth component adds random Gaussian noise with
a variance of 0.7 ppmv to the other fields.

3.1.2 Concatenation

The concatenation of the main XCO2 field with the ancil-
lary data represents the second step. The ancillary data may
include wind conditions, the time and date of the observa-
tion, and the NO2 field. In instances where the NO2 field is

incorporated, it also undergoes a data augmentation process
(not depicted in Fig. 4). Initially, the NO2 plume is scaled by
a random factor drawn from a uniform distribution ranging
from 0.75 to 2 to ensure that the NO2 plume amplitude is
decorrelated from that of the CO2 plume, thereby preventing
the core CNN model from relying on the tight correlation
between the NOx and CO2 emissions for the inversion. In
principle, due to the large variations and uncertainties in the
CO2-to-NOx emission ratios and the lifetime of NOx , NO2
should primarily support the plume detection in the overall
inversion process. Subsequently, the NO2 field is partially
masked due to cloud cover. For this, we adopt the criterion
from Kuhlmann et al. (2019): an NO2 pixel is marked as
NaN if its cloud cover fraction exceeds 0.3. Furthermore,
the NO2 field is subject to Gaussian noise with a variance
of 1× 1015 molec. cm−2 (Kuhlmann et al., 2019).

3.1.3 Normalization

Z-score normalization of each physical field within the con-
catenated input data constitutes the third step and is per-
formed independently for each channel.

3.1.4 Processing

The fourth step is the core CNN model mapping from XCO2
and ancillary fields to a scalar emission value. This model,
consistent with that described in Dumont Le Brazidec et al.
(2024a), features a series of convolutional, max pooling,
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Figure 4. Description of the inversion system at the training time as a compound of preprocessing layers and the model. The CNN-based
inversion system consists of five steps. First, in step (1), an XCO2 field is constructed as the sum of the background XCO2, major and minor
CO2 plumes, cloud cover, and synthetic satellite noise, with the latter represented by Gaussian noise with a standard deviation of 0.7 ppmv
and a 0 mean. The major plumes are scaled using either a beta or uniform distribution (with only the beta distribution shown in the figure),
a uniform random field of between −3.5 and 3.5 ppmv is added to the background, and the remaining plumes are scaled by random factors
drawn from a uniform distribution of between 0.33 and 3. Pixels in the reconstructed XCO2 field are marked as missing (NaN) when cloud
cover exceeds a specified threshold. The plumes of interest are augmented by a beta or uniform distribution (only beta is represented in the
figure), the background is added to uniformly drawn fields of between −3.5 and 3.5 ppmv, and the other plumes are multiplied by a uniform
distribution of between 0.33 and 3. The reconstructed XCO2 field pixels are considered to be NaN or not according to the clouds based on a
given threshold. In step (2), concatenation with ancillary data (winds, time, and NO2) is undertaken. Step (3) involves the standardization of
the fields. Step (4) entails processing by the core CNN model. Finally, step (5) involves backpropagation.

batch normalization, and dropout layers, with a total of
186000 trainable parameters. Specifically, if time and date
features are used, they are integrated into the CNN following
the feature extraction (following the last dense layer).

3.1.5 Backpropagation

The final step entails computing the loss gradient, enabling
neuron adjustments within the core CNN model through
backpropagation.

In contrast to the training phase, the inversion system in
the evaluation phase consists only of the concatenation, nor-
malization, and processing by the core CNN model. The
synthetic test dataset consists of preconstructed, physically
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Figure 5. At training time, the hotspot emission and corresponding plume are adjusted based on a random draw from either a beta or uniform
distribution.

consistent simulated data (except for clouds, as explained
in Sect. 3.2), maintaining consistency with the methodology
outlined in Dumont Le Brazidec et al. (2024a).

3.2 Clouds

To assess the impact of cloud cover on CNN performance,
we consider models trained and tested on varied datasets dis-
tinguished by varying degrees of fraction of cloudy pixels in
the XCO2 images:

– A first series of models are trained and tested on XCO2
images under clear-sky conditions.

– A second series of models are trained and tested on
XCO2 images with cloud cover ranging from 0% to
25%.

– A third series of models are trained on XCO2 images
with cloud cover from 0% to 50% but are tested on im-
ages with cloud cover from 25% to 50%.

– A final series of models are trained on XCO2 images
with cloud cover from 0% to 75% but are tested on im-
ages with cloud cover from 50% to 75%.

These varying degrees of cloud cover are constructed through
random sampling of cloud cover over the SMARTCARB do-
main. This method of training and testing models under vary-
ing cloud conditions allows us to compare the degradation of
model performance with increased cloud cover. Additionally,
training the model tested on cloud cover between 50 % and
75 % on a range from 0 % to 75 % ensures the maintenance of
a “universal” model capable of inverting plumes in scenarios
with both low and high cloud cover.

3.3 Training parameterization

We configure the training hyperparameters as follows: the
model uses the Adam optimizer, with an initial learning rate

of 1× 10−3, which is adjusted according to a reduce-on-
plateau strategy down to 1× 10−5 with a patience parame-
ter set to 20. The batch size is established at 128, and the
training process spans 750 epochs. These parameters were
selected based on a rigorous experimental process, combined
with adherence to established practices in the field. For the
loss function, the mean absolute error (MAE) was chosen.

4 Application to synthetic and OCO-3 SAM
observations

4.1 Application to synthetic dataset

Similarly to Dumont Le Brazidec et al. (2024a), we investi-
gate the performance of various CNN models with respect
to predicting the emissions of the Lippendorf, Turów, or
Boxberg power plants. A collection of CNNs undergo train-
ing on subsets of power plants, each excluding one for eval-
uation. For each power plant, the collection corresponds to
models that are trained and tested on images affected by
varying levels of cloud cover. In addition, the models are
trained with two different input configurations: one that in-
cludes XCO2, wind, time, and NO2 data and another that in-
cludes all of these variables except for NO2. As a result, a
total of 3 (number of target power plants)×4 (cloud cover
scenarios)×2 (input configurations)= 24 CNNs are trained
and evaluated.

Figures 6 and 7 show kernel density estimation (KDE)
plots for the absolute relative error and the algebraic differ-
ence between the model predictions and the true emissions
for the configuration without and with NO2 input. A compre-
hensive summary of the results is also provided in Table 2.

The novel data augmentation strategy presented in
Sect. 3.1 improves the stability of the performance of the
CNNs in comparison to Dumont Le Brazidec et al. (2024a),
making it unnecessary to train a CNN ensemble to achieve
satisfactory and consistent results. Significantly, in compar-
ison to Dumont Le Brazidec et al. (2024a), the Boxberg
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Figure 6. Density plots of the absolute relative error and of the algebraic difference between the CNN predictions and the reported emissions.
The CNN models are trained and evaluated with XCO2, wind, and time input data, affected by varying levels of cloud cover. Predictions with
absolute relative errors greater than 250 % or absolute errors greater than 15Mtyr−1 were set to 250 or 15, respectively, to increase visibility.

Figure 7. Density plots of the absolute relative error and of the algebraic difference between the CNN predictions and the reported emissions.
The CNN models are trained and evaluated with XCO2, wind, time, and NO2 input data, affected by varying levels of cloud cover. Predictions
with absolute relative errors greater than 250 % or absolute errors greater than 15Mtyr−1 were set to 250 or 15, respectively, to increase
visibility.
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Table 2. Median of the relative error between the CNN predictions and the true emissions for Lippendorf, Boxberg, and Turów for varying
levels of clouds and input configurations. Entries in the table represent relative errors expressed as percentages of the true emissions.

Cloud fraction

Power plant With NO2 0 % 0 % to 25 % 25 % to 50 % 50 % to 75 %

Lippendorf x 23.1 22.8 25.1 23.7
Lippendorf X 17.9 18.7 21.6 23.5
Boxberg x 18.5 19.5 20.2 21.1
Boxberg X 15.6 15.5 16.7 19.5
Turów x 35.8 35.4 37.6 57.3
Turów X 24.8 28.9 37.9 65.2

median relative error with NO2 decreased from 36.9% to
15.6%. Furthermore, an improvement in the results is ob-
served when using the mean of the emissions predicted by
applying the CNN to an ensemble of images with added
Gaussian noise (not shown). Specifically, for added Gaus-
sian noise with a standard deviation of 0.3, the Lippendorf
median relative error (without additional inputs) decreases
from 23.1% to 18.5%. Finally, incorporating time or wind
as a feature yields no significant benefit with respect to the
performance of the CNNs.

Concerning the influence of clouds, in the cases of Lip-
pendorf and Boxberg, the accuracy of plume emission pre-
dictions is not significantly compromised by their introduc-
tion, even with a high cloud cover exceeding 50 %. This ob-
servation is valid whether or not NO2 is factored into the
analysis. However, for Turów, a power plant with lower emis-
sions, the performance of CNN predictions degrades progres-
sively with an increase in cloud cover, notably when cloud
cover exceeds 50 %. The specific decline in prediction ac-
curacy for Turów can likely be traced back to the fact that
Turów’s plume is mostly indistinguishable from the back-
ground. Consequently, the CNN’s capacity to accurately es-
timate Turów’s emissions is inherently based on limited in-
formation, even in the absence of clouds. The introduction of
cloud cover exacerbates this issue by further diminishing the
available information.

4.2 Application to OCO-3 SAM observations

In this section, we assess the ability of CNNs trained
on power plant plumes from the SMARTCARB synthetic
dataset encompassing the power plants of Jänschwalde,
Schwarze Pumpe, Boxberg, Lippendorf, Turów, Pa̧tnów, and
Opole, to estimate emissions from real plumes observed at
power plants by OCO-3 SAM, along with ERA5 wind fields
and time information. A total of 39 observations of OCO-3
SAM data for nine power plants are examined.

To obtain meaningful statistics from the small number of
images, we use two different methods to increase the number
of predictions for each image:

1. an ensemble of 100 images x1
i , . . .,x100

i for each nor-
malized OCO-3 SAM observation xi , where x

j
i ∼

N (xi,0.3);

2. an ensemble of 16 neural networks, all trained with
slightly different hyperparameters considering various
levels of cloud cover and with either uniform or beta
distribution used for augmentation.

Each neural network generates 100 predictions from the 100
images. The ensemble mean should give a more accurate es-
timate than a single prediction for xi , as seen with the syn-
thetic data (see Sect. 4.1). Together with the 16 networks,
we obtain 1600 predictions for each image, enhancing the
robustness and reliability of our statistical analysis.

Figure 8 shows the ensemble of predictions for each power
plant compared to the annual reported emissions. The me-
dian absolute and median absolute relative differences be-
tween the ensemble average predictions and the reported
emissions are 7Mtyr−1 and 29%, respectively. This relative
difference of 29% is only slightly higher than what was ob-
served on synthetic satellite imagery. Specifically, CNNs ex-
hibit a good match with reported emissions for power plants
with emissions ranging between 10 and 20Mtyr−1 (e.g. Col-
strip, Cumberland, Labadie, Parish, and Conemaugh). How-
ever, the discrepancy with reported emissions largely in-
creases for power plants at the extremes of low or high emis-
sions (e.g. Bełchatów, Tuoketuo, Hunters, and Intermoun-
tain). The emissions estimated by the CNNs range from
6.7 to 30.4Mtyr−1 (considering the 5% and 95% quan-
tile predictions), whereas Bełchatów’s reported emissions
stand at 37.6Mtyr−1 and Intermountain’s stand at 5Mtyr−1.
This indicates that the variance in CNN predictions is sig-
nificantly lower than that of the reported emissions. Given
that the CNNs were trained on plumes with emission lev-
els spanning from 0 to 45Mtyr−1, it was initially antici-
pated that they could accurately predict plumes akin to those
from Bełchatów or Intermountain. Furthermore, in Sect. 4.1,
we show that the CNNs reliably recover the low emissions
(8.7Mtyr−1 on average) of the Turów power plant. The sub-
sequent analyses will explore the causes of the observed dis-

Geosci. Model Dev., 18, 3607–3622, 2025 https://doi.org/10.5194/gmd-18-3607-2025



J. Dumont Le Brazidec et al.: Deep learning applied to CO2 power plant emission quantification 3617

Figure 8. Box plots of the ensembles of predictions based on the OCO-3 SAM observations for various power plants. Comparison with the
reported annual emissions of the corresponding power plants (dashed red lines). Boxes span the quartiles (25th to 75th percentiles), whiskers
extend to the last points within 1.5× IQR (interquartile range), and points beyond the whiskers represent outliers

crepancies between extreme reported emissions and CNN
predictions.

Figure 9 shows the predictions of a randomly selected
CNN model from the ensemble for eight specific OCO-3
SAM images. These images were chosen after a thorough in-
spection of all 39 snapshots in our dataset to illustrate the key
patterns that we identified. For each OCO-3 SAM image, we
show a sensitivity map obtained by the integrated-gradient
method, which computes the gradient of the model’s out-
put (the emissions) relative to its input pixels, indicating how
emissions are expected to increase or decrease with changes
in pixel values (see Dumont Le Brazidec et al., 2024a, for
details). Assuming that emission estimates are directly cor-
related with the detection of plume pixels, the integrated-
gradient maps are anticipated to highlight a collection of pos-
itive pixels that effectively reconstruct the plume.

Figure 9a, b, c, and d are four instances of clear identi-
fication of the plume by the CNN. The integrated-gradient
method in each of these cases reveals collections of positive
pixels forming a discernible plume shape. These positive pix-
els are encircled by negatives, suggesting that if the surround-
ing pixels intensified to match the plume’s pixel values, the
CNN would be less likely to recognize these as plume pixels,
interpreting the aggregate as elevated background values in-
stead. Predictions closely match reported emissions in each
scenario, barring the anomaly of Intermountain. This dis-
crepancy is logical, given that the Intermountain plume is vi-
sually detectable in the image, whereas plumes correspond-
ing to emissions of 5Mtyr−1 in the SMARTCARB dataset
are typically obscured by the background.

Figure 9e and f illustrate scenarios where clouds obscure
the central portion of the image, thereby concealing a major

part of the plume. These examples allow us to investigate
how the CNN adapts to such conditions, making inferences
based on the limited information available. In Fig. 9e, the
CNN identifies a plume adjacent to the obscured area and
bases its emission estimate on this collection of pixels. In
Fig. 9g, the CNN interprets a significant cluster of high-value
pixels as the tail end of the concealed plume and calculates
emissions based on this inferred section of the plume.

Figure 9g and h shed light on a primary cause of the sup-
posed overestimation of emissions from low-emission power
plants. These images feature barely discernible plumes
alongside significant patterns (potentially systematic satellite
errors) appearing on the left side of the images in both cases.
The CNN mistakenly identifies these patterns as part of a
plume in each case. Consequently, the model infers dispro-
portionately high emissions based on this noise, leading to
a substantial overestimation of the emissions of these power
plants.

In Fig. 10, we propose a first possible explanation for the
underestimation of high-emission plumes by the CNN. Three
observed high-emission plumes – one from Bełchatów and
two from Tuoketuo – are compared against SMARTCARB
plumes at the Bełchatów- or Tuoketuo-reported emission lev-
els. Specifically, the SMARTCARB simulations are chosen
to represent emissions of 37 and 29.5 Mt yr−1, aligning with
the reported emissions for Bełchatów and Tuoketuo, respec-
tively, and have comparable ERA5 wind speeds to those
of the Bełchatów or Tuoketuo snapshot OCO3 SAM im-
ages. The simulated plumes appear more pronounced against
the background than their real counterparts, suggesting a
higher emission magnitude. This observation might account
for the model’s tendency to estimate lower emissions than
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Figure 9. Analysis of the predictions of a CNN (chosen randomly from the ensemble) on eight specific OCO-3 SAM images. Each of the
images is presented alongside the resulting map (on its right) from the application of the integrated-gradient method and the reported and
predicted emissions in megatonnes per year (Mtyr−1). The power plant is indicated by a brown star. The CO2 concentration fields on the left
are shown in parts per million by volume (ppmv). The integrated-gradient images on the right represent dimensionless scores that indicate
the contribution of each pixel to the predicted concentration.

Bełchatów- and Tuoketuo-reported emissions. Further vali-
dation comes from the integrated-gradient analysis, indicat-
ing accurate plume contour predictions by the model and af-
firming that the relevant information was used for its estima-
tions.

Another reason for the CNN underestimating high-
emission plumes could be regression towards the mean in
scenarios with high cloud levels. To show this, we train a
CNN with a dataset of power plants with uniformly dis-
tributed emissions between 0 and 40 Mt yr−1 and a low cloud
cover (< 25% of the image covered with clouds). In Fig. 10,
we plot the distribution of the predictions of the CNN for syn-
thetic images of the Dolna Odra power plant with uniformly

distributed emissions against the truth at different levels of
cloud cover.

We observe a convergence to average values correlated
with cloud cover intensity. When the CNN lacks sufficient
information in the image to infer emissions, it tends to aver-
age its predictions to minimize loss. A second observation is
that, even for low cloud cover, the CNN struggles with emis-
sion levels higher than 33 Mt yr−1, while it is trained with
emissions uniformly distributed between 0 and 40 Mt yr−1

(note that the CNNs trained in previous sections were trained
for emission levels between 0 and 45 Mt yr−1). Increasing
the number of high-emission plumes in the training dataset
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Figure 10. Analysis of the predictions of a CNN (chosen randomly from the ensemble) for three high-emission plumes. One plume from
Bełchatów and two from Tuoketuo (b, e, h) are compared against equivalent high-emission plumes from the SMARTCARB dataset (a, d,
g). For each OCO-3-SAM-based plume, the integrated-gradient approach is applied and presented in panels (c), (f), and (i). To ensure a fair
comparison between columns 1 and 2, identical colour bars have been used. Power plants are indicated by a brown star.

Figure 11. Distribution of the predictions of a CNN trained with uniformly distributed emissions for synthetic images of the Dolna Odra
power plant with uniformly distributed emissions against the truth at different levels of cloud cover.

would likely reduce the CNN’s bias towards emissions near
the upper limit defined in the training data.

5 Discussions and limitations

The ability of CNNs to estimate CO2 emissions from power
plant plumes was validated on synthetic satellite images.
The presence of cloud cover does not significantly affect the
CNNs performance, except in instances of substantial cloud

presence. CNNs demonstrate adaptability, leveraging resid-
ual information to accurately estimate emissions under heav-
ily clouded conditions. The inclusion of NO2 data proves
slightly beneficial, enhancing the CNN efficacy under all-sky
conditions.

Once trained on simulated XCO2 images, the CNNs can be
directly applied to real-world data with high accuracy, unlike
traditional methods, which struggle to detect plumes and dis-
tinguish them from the background due to the low signal-to-
noise ratio of CO2 plumes. Nevertheless, it is observed that
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the spread of the CNN predictions is lower than the spread of
the OCO3-SAM-reported emissions. Predictions are signifi-
cantly higher for low-emission power plants, due to the pres-
ence of systematic errors in the image that are falsely iden-
tified as plumes, and significantly lower for high-emission
power plants. Furthermore, predictions are lower than the
reported annual emissions for high-emission power plants.
This is likely due to regression towards the mean in weakly
informative images and/or discrepancies between the train-
ing and evaluation datasets. Finally, it is acknowledged that
comparing instantaneous emissions measured during satellite
overpasses with reports of annual average emissions from the
EPA and E-PRTR inventories presents challenges, owing to
the variability and intermittent nature of power production
and CO2 emissions.

The divergence between the distributions of real XCO2 ob-
servations and those of the simulations observed in Sect. 4.2,
particularly in terms of systematic satellite errors, creates a
domain shift between training and test conditions that likely
leads to systematic errors in CNN predictions, necessitating
CNN adaptation. To account for systematic satellite errors,
a promising approach involves mingling real and simulated
data during the training phase, such as overlaying a sim-
ulated plume of known emissions onto a real background.
This method would introduce systematic errors typical of real
satellite data while maintaining a controlled environment for
supervised learning.

6 Conclusions and perspectives

In this paper, we improve the CNN model for the inversion of
CO2 plumes from Dumont Le Brazidec et al. (2024a) through
the introduction of a novel data augmentation strategy and a
dedicated approach to deal with clouds. This methodology
was validated using the synthetic CO2M observations from
the SMARTCARB dataset, demonstrating its efficacy in han-
dling cloud-covered scenarios. Our findings indicate that, on
average, clouds do not pose a significant challenge for CNNs,
which maintain high performance levels under both sparse-
and dense-cloud conditions. An exception is observed in the
case of the Turów power plant, where performance signif-
icantly drops. This decline is likely attributable to Turów’s
relatively low emission levels, which result in its plumes be-
ing inherently less distinguishable from the background.

Following its validation, the methodology is applied to
OCO-3 SAM observations. In total, 39 observations across
nine power plants, adjusted for resolution and shape to match
CNN input requirements, are analysed. For each observation,
an ensemble of predictions is produced by CNNs trained on
the SMARTCARB synthetic dataset. The results are promis-
ing, exhibiting a relative difference with the reported emis-
sions only slightly superior to the relative error observed
with the synthetic dataset. Specifically, predicted emissions
for images from power plants with mid-level emissions, such

as Colstrip and Parish, correspond very accurately to reported
emissions. Moreover, through the application of integrated-
gradient techniques, it is demonstrated that the CNNs effec-
tively identify plumes in the OCO-3 SAM images and ac-
curately estimate emissions from the plumes’ physical loca-
tions.

However, we observed that images capturing low- and
high-emission power plants’ plumes are prone to overesti-
mation and underestimation, respectively, in comparison to
the reported emissions. Systematic satellite retrieval errors
are identified as a frequent cause of overestimation in the im-
ages of low-emission power plants. These errors, often non-
Gaussian and absent in the synthetic training dataset, lead to
significant inaccuracies.

This study demonstrates the feasibility of applying neural
networks to real satellite imagery of XCO2 following train-
ing on simulated datasets. Although we advocate for the in-
tegration of a hybrid training approach that incorporates both
real and simulated images in order to improve the robustness
and accuracy of the model, we provide a ready-to-use CNN
CO2 plume inversion tool based on satellite imagery.
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