Articles | Volume 18, issue 11
https://doi.org/10.5194/gmd-18-3241-2025
https://doi.org/10.5194/gmd-18-3241-2025
Model description paper
 | 
02 Jun 2025
Model description paper |  | 02 Jun 2025

Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators

Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton

Related authors

Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022,https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary

Related subject area

Biogeosciences
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025,https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary
Development and assessment of the physical–biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
Geosci. Model Dev., 18, 3941–3964, https://doi.org/10.5194/gmd-18-3941-2025,https://doi.org/10.5194/gmd-18-3941-2025, 2025
Short summary
Estimation of above- and below-ground ecosystem parameters for DVM-DOS-TEM v0.7.0 using MADS v1.7.3
Elchin E. Jafarov, Hélène Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev., 18, 3857–3875, https://doi.org/10.5194/gmd-18-3857-2025,https://doi.org/10.5194/gmd-18-3857-2025, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary

Cited articles

Andre, B., Molins, S., Johnson, J., and Steefel, C.: Alquimia, U.S. Department of Energy Office of Scientific and Technical Information, https://doi.org/10.11578/DC.20210416.49, 2013. a, b
Andre, B., Molins, S., Johnson, J., and Steefel, C. I.: Alquimia, GitHub, https://github.com/LBL-EESA/alquimia-dev (last access: 25 May 2025), 2015. a
Balos, C. J., Day, M., Esclapez, L., Felden, A. M., Gardner, D. J., Hassanaly, M., Reynolds, D. R., Rood, J. S., Sexton, J. M., Wimer, N. T., and Woodward, C. S.: SUNDIALS time integrators for exascale applications with many independent systems of ordinary differential equations, Int. J. High Perform. C., 39, 123–146, https://doi.org/10.1177/10943420241280060, 2025. a
Bao, C., Li, L., Shi, Y., and Duffy, C.: Understanding watershed hydrogeochemistry: 1. Development of RT?Flux?PIHM, Water Resour. Res., 53, 2328–2345, https://doi.org/10.1002/2016WR018934, 2017. a
Bartlett, R., Demeshko, I., Gamblin, T., Hammond, G., Heroux, M. A., Johnson, J., Klinvex, A., Li, X., McInnes, L. C., Moulton, J. D., Osei-Kuffuor, D., Sarich, J., Smith, B., Willenbring, J., and Yang, U. M.: xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit, Supercomputing Frontiers and Innovations, 4, 69–82, https://doi.org/10.14529/jsfi170104, 2017. a, b
Download
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Share