Articles | Volume 18, issue 11
https://doi.org/10.5194/gmd-18-3175-2025
https://doi.org/10.5194/gmd-18-3175-2025
Model description paper
 | 
02 Jun 2025
Model description paper |  | 02 Jun 2025

Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models

Oxana Drofa

Related authors

Three-model ensemble wind prediction in southern Italy
Rosa Claudia Torcasio, Stefano Federico, Claudia Roberta Calidonna, Elenio Avolio, Oxana Drofa, Tony Christian Landi, Piero Malguzzi, Andrea Buzzi, and Paolo Bonasoni
Ann. Geophys., 34, 347–356, https://doi.org/10.5194/angeo-34-347-2016,https://doi.org/10.5194/angeo-34-347-2016, 2016
Short summary
Heavy rainfall episodes over Liguria in autumn 2011: numerical forecasting experiments
A. Buzzi, S. Davolio, P. Malguzzi, O. Drofa, and D. Mastrangelo
Nat. Hazards Earth Syst. Sci., 14, 1325–1340, https://doi.org/10.5194/nhess-14-1325-2014,https://doi.org/10.5194/nhess-14-1325-2014, 2014

Related subject area

Atmospheric sciences
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025,https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025,https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025,https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025,https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary

Cited articles

Arduini, G., Balsamo, G., Dutra, E., Day, J. J., Sandu, I., Boussetta, S., and Haiden T.: Impact of a multi-layer snow scheme on near-surface weather forecasts, J. Adv. Model. Earth Sy., 11, 4687–4710, https://doi.org/10.1029/2020MS002144, 2019. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 
Beyrich, F.: BALTEX: Lindenberg Flux Data Set, Version 1.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.26023/RF6P-MAW6-RZ00, 2011a. 
Beyrich, F.: BALTEX: Lindenberg Meteorological Tower Data Set, Version 1.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.26023/PYX0-DADQ-JX08, 2011b. 
Beyrich, F.: BALTEX: Lindenberg Soil Temperature and Soil Moisture Data Set, Version 1.0, UCAR/NCAR – Earth Observing Laboratory [data set], https://doi.org/10.26023/3CW0-8QTT-7F04, 2011c. 
Download
Short summary
This paper presents the result of many years of effort of the author, who developed an original mathematical numerical model of heat and moisture exchange processes in soil, vegetation, and snow. The author relied on her 30 years of research experience in atmospheric numerical modelling. The presented model is the fruit of the author's research on physical processes at the surface–atmosphere interface and their numerical approximation and aims at improving numerical weather forecasting and climate simulations.
Share