Articles | Volume 18, issue 6
https://doi.org/10.5194/gmd-18-1989-2025
https://doi.org/10.5194/gmd-18-1989-2025
Development and technical paper
 | 
27 Mar 2025
Development and technical paper |  | 27 Mar 2025

A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks

Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers

Related authors

An inter-comparison study on the impact of atmospheric boundary layer height on gigawatt-scale wind plant performance
Stefan Ivanell, Warit Chanprasert, Luca Lanzilao, James Bleeg, Johan Meyers, Antoine Mathieu, Søren Juhl Andersen, Rem-Sophia Mouradi, Eric Dupont, Hugo Olivares-Espinosa, and Niels Troldborg
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-88,https://doi.org/10.5194/wes-2025-88, 2025
Preprint under review for WES
Short summary
A large-eddy simulation analysis of collective wind farm axial-induction set points in the presence of blockage
Théo Delvaux and Johan Meyers
Wind Energ. Sci., 10, 613–630, https://doi.org/10.5194/wes-10-613-2025,https://doi.org/10.5194/wes-10-613-2025, 2025
Short summary
Turbine- and farm-scale power losses in wind farms: an alternative to wake and farm blockage losses
Andrew Kirby, Takafumi Nishino, Luca Lanzilao, Thomas D. Dunstan, and Johan Meyers
Wind Energ. Sci., 10, 435–450, https://doi.org/10.5194/wes-10-435-2025,https://doi.org/10.5194/wes-10-435-2025, 2025
Short summary
Effect of blockage on wind turbine power and wake development
Olivier Ndindayino, Augustin Puel, and Johan Meyers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-6,https://doi.org/10.5194/wes-2025-6, 2025
Revised manuscript under review for WES
Short summary
Source reconstruction via deposition measurements of an undeclared radiological atmospheric release
Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo
EGUsphere, https://doi.org/10.5194/egusphere-2024-4057,https://doi.org/10.5194/egusphere-2024-4057, 2025
Short summary

Related subject area

Atmospheric sciences
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025,https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary
HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025,https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models
Oxana Drofa
Geosci. Model Dev., 18, 3175–3209, https://doi.org/10.5194/gmd-18-3175-2025,https://doi.org/10.5194/gmd-18-3175-2025, 2025
Short summary
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025,https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025,https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary

Cited articles

Abril-Pla, O., Andreani, V., Carroll, C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar, R., Lao, J., Luhmann, C. C., Martin, O. A., Osthege, M., Vieira, R., Wiecki, T., and Zinkov, R.: PyMC: a modern, and comprehensive probabilistic programming framework in Python, PeerJ Computer Science, 9, e1516, https://doi.org/10.7717/peerj-cs.1516, 2023. a
Agentschap Digitaal Vlaanderen: Orthofotomozaïek, grootschalig, winteropnamen, kleur, 2013–2015, Vlaanderen, https://www.vlaanderen.be/datavindplaats/catalogus/ orthofotomozaiek-grootschalig-winteropnamen-kleur-2013-2015-vlaanderen, (last access: 25 March 2025), 2016. a
Arahmane, H., Dumazert, J., Barat, E., Dautremer, T., Carrel, F., Dufour, N., and Michel, M.: Statistical approach for radioactivity detection: A brief review, J. Environ. Radioactiv., 272, 107358, https://doi.org/10.1016/j.jenvrad.2023.107358, 2024. a
Barnard, J., McCulloch, R., and Meng, X.-L.: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage, Stat. Sinica, 10, 1281–1311, 2000. a, b
Bergan, T. D.: Radioactive fallout in Norway from atmospheric nuclear weapons tests, J. Environ. Radioactiv., 60, 189–208, https://doi.org/10.1016/S0265-931X(01)00103-5, 2002. a
Download
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known anomalous event.
Share