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Abstract. Detector networks that measure environmental ra-
diation serve as radiological surveillance and early warning
networks in many countries across Europe and beyond. Their
goal is to detect anomalous radioactive signatures that indi-
cate the release of radionuclides into the environment. Often,
the background ambient dose equivalent rate H*(10) is pre-
dicted using meteorological information. However, in dense
detector networks, the correlation between different detectors
is expected to contain markedly more information. In this
work, we investigate how the joint observations by neigh-
bouring detectors can be leveraged to predict the background
H *(10). Treating it as a stochastic vector, we show that its
distribution can be approximated as multivariate normal. We
reframe the question of background prediction as a Bayesian
inference problem including priors and likelihood. Finally,
we show that the conditional distribution can be used to make
predictions. To perform the inferences we use PyMC. All in-
ferences are performed using real data for the nuclear sites
in Doel and Mol, Belgium. We validate our calibrated model
on previously unseen data. Application of the model to a case
with known anomalous behaviour — observations during the
operation of Belgian Reactor 1 (BR1) in Mol — highlights the
relevance of our method for anomaly detection and quantifi-
cation.

1 Introduction

Networks that measure environmental radiation are opera-
tional in countries across Europe and beyond. Such networks
monitor the environment for aberrant radioactivity that could,
for example, indicate the anomalous release of radionuclides

from a nuclear facility. Within Europe, observations of na-
tional networks are collected on the EUropean Radiologi-
cal Data Exchange Platform, EURDEP (European Commis-
sion, 2024; Sangiorgi et al., 2020), including those of the
Belgian radiological surveillance network and early warning
system TELERAD (Sonck et al., 2010). Some stations come
equipped with gamma-spectrometric capabilities that allow
for observing the contributing gamma energies, which can be
used to tease out the responsible radionuclides. More often,
however, stations use Geiger—Miiller tubes to measure the
ambient gamma dose equivalent rate (nSv h~1), denoted as
H*(10). A difficulty with detecting and quantifying anoma-
lies based on H*(10) is that gamma radiation also occurs nat-
urally and varies as a function of time. To distinguish anoma-
lous from normal behaviour using these detectors, therefore,
one must establish what normal really means.

Under normal conditions, terrestrial radiation contributes
significantly to H*(10). Potassium-40 is abundant in nature,
as are the radionuclides in the uranium and thorium decay
chains. When those decay chains reach radon (radon-222)
and thoron (radon-220), both noble gases, exhalation occurs
from the soil to the atmosphere. Radon is usually domi-
nant over thoron due to its much longer decay time (3.8d
versus 565s). Only radon is long-lived enough for it to be
able to be transported over considerable distances through
air. During precipitation events, radon daughters (lead-214
and bismuth-214) are deposited on the ground again via wet
scavenging (Sportisse, 2007), which accounts for increased
H*(10) (Mercier et al., 2009; Livesay et al., 2014). Besides
natural radionuclides, anthropogenic contributions also exist.
Caesium-137 fallout from the atmospheric nuclear weapons
tests of the 1950s and early 1960s, with some as late as 1980
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(Bergan, 2002), and of the Chornobyl accident in 1986 still
contributes to H*(10) due to its long half-life of 30.8 years
according to a complex spatial pattern (European Commis-
sion et al., 1998). Other anthropogenic sources (e.g. medical
or industrial) also contribute to the inventory of environmen-
tal radionuclides (Maurer et al., 2018) although these will
usually be too small to affect H*(10). Finally, cosmic radia-
tion, at ground level mainly muons, contributes significantly
to the background H *(10). We refer to the sum of these pro-
cesses as background radiation. In the rest of this work, we
will exclusively refer to background radiation to mean these
normally occurring processes and anomalous radiation to be
everything other than these normally occurring processes.

Our ability to identify and quantify anomalous radiation
hinges on our ability to predict the behaviour of the back-
ground. This is relevant not only for the aforementioned
detector networks, but also for mobile measurement cam-
paigns which were used, for example, in the aftermath of the
Fukushima nuclear accident (Querfeld et al., 2020; Nomura
et al., 2015). Even without factoring in unknown sources, the
background is a complex function of space and time gov-
erned by, for example, geological properties of the soil, land
use, and (space) weather. The multifaceted nature of envi-
ronmental radioactivity precludes first-principles modelling,
which makes predicting the background a difficult prob-
lem. In lieu of comprehensive first-principles approaches,
a rich variety of data-driven solutions exist. Various ma-
chine learning approaches have been investigated to forecast
background radiation based on dose rate time series (Arah-
mane et al., 2024; Breitkreutz et al., 2023). Recently, long
short-term memory networks (LSTMs) have shown promise
in predicting background radiation based on meteorologi-
cal parameters like temperature, humidity, and wind speed
(Liu and Sullivan, 2019; Breitkreutz et al., 2023). When the
goal is spatial interpolation rather than temporal prediction,
kriging methods have been successfully employed to con-
struct, for example, national maps based on (airborne) radi-
ation measurements (Chernyavskiy et al., 2016; Folly et al.,
2021). Bayesian approaches to background estimation exist
predominantly in the context of source localisation, using ei-
ther spectral data (Howarth et al., 2022) or gross count rates
(Michaud et al., 2021; Brennan et al., 2005). Often, such ap-
proaches do not resolve full posterior distributions, instead
relying on more computationally efficient maximum likeli-
hood estimation (MLE). MLE approaches have also been
used to discriminate between spatial background inhomo-
geneity in the built environment and temporal inhomogeneity
due to precipitation (Liu et al., 2018).

In the current work, we present a Bayesian inference
framework for the estimation of the background ambient
dose equivalent rate observed in densely packed local de-
tector networks. We assume that the processes that drive
changes in the background occur at a scale that is larger than
the typical scale of the local networks under consideration,
and we model the response to such an external driver by
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looking at the effect that it has on all detectors. What sets
our work apart from other work is the fact that we allow for
correlations between the different detectors in the network,
so the external driver does not necessarily affect all detectors
equally. The Bayesian approaches mentioned in the previous
paragraph all assume that the different observations are inde-
pendent so that the likelihood given a large set of data sim-
ply becomes the product of the likelihoods of the individual
data points. Doing so simplifies sampling the posterior sig-
nificantly. In allowing for correlations, we add significantly
to the dimensionality of the Bayesian inference problem —
because it requires the estimation of a correlation matrix be-
tween the detectors in the network — but we get a more truth-
ful parameterisation. Using this model, we can estimate inde-
pendent means for each detector, the variance that is intrinsic
to each detector due to a combination of counting statistics
and measurement noise, and the collective response of the
network to meteorological drivers.

The rest of this paper is structured as follows. In Sect. 2,
the data and methods are described. Starting from an intro-
duction of the TELERAD detector network, specifically the
sub-networks around two nuclear facilities in Belgium, we
derive a Bayesian inference problem and describe how to
solve it. Additionally, we describe how the Bayesian infer-
ence problem can be extended to also allow for predictive
modelling. In Sect. 3, we describe calibration and verification
of our Bayesian model using various subsets of TELERAD
data. In Sect. 4, we show how calibrated models can be lever-
aged to make predictions. Finally, in Sect. 5, we study a case
that is relevant in an operational context. Using the detectors
from one nuclear site (Doel) to predict the dose rate at de-
tectors from another nuclear site (Mol) while an atmospheric
release is ongoing at the latter shows how our work can be
useful in anomaly detection.

2 Data and methods
2.1 The TELERAD detector network

We first present the detector network that we try to model.
TELERAD, the radiological surveillance network and early
warning system in Belgium (Sonck et al., 2010), measures
the extent of radiological contamination both in air and soil
and in water using a variety of techniques. For atmospheric
measurements using gamma dosimetry, three sub-networks
exist. The Immission Monitor for National area (IMN) cov-
ers the entire Belgian territory, the Immission Monitor for
Agglomeration area (IMA) covers only those populated ar-
eas within several kilometres of nuclear facilities, and the Im-
mission Monitor for Ring area (IMR) covers the immediate
vicinity of nuclear facilities. Such a network is not unique
to Belgium, as described in the Introduction (see Sect. 1),
but the Belgian network is among the densest networks in
the world. Hourly values for the IMN and IMA, dating back
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many years, are also publicly available on a Belgian national
platform (Federal Agency for Nuclear Control, 2024) similar
to EURDEP (European Commission, 2024).

We use data from IMR stations at two nuclear sites: the
Belgian Nuclear Research Centre (SCK CEN) in Mol and the
nuclear power plant (NPP) in Doel. The layouts of the detec-
tor networks at Doel and Mol, as well as their locations in
Belgium, are shown in Fig. 1. Characteristic of the Doel site
are the river Scheldt bordering it to the east and the flat farm-
land bordering it in other directions. Eighteen IMR stations,
DO1 through D18, sit along its perimeter. Characteristic of
the Mol site is the largely forested area. IMR detectors are
set up more complicatedly than in Doel owing to the pres-
ence of several nuclear facilities. Stations M07 through M13
surround Belgian Reactor 1 (BR1); detectors MO1 through
MO04, M14, and M 15 surround Belgian Reactor 2 (BR2); and
stations M05, M06, and M16 are south of Belgian Reactor 3
(BR3). BR1 and BR2 are still operational today; BR3 has
been decommissioned and is being dismantled. Of these de-
tectors, we exclude M12 from further analysis because of
several corrupted entries in the database.

In this work, we analyse four different combinations of
IMR stations. Case BR1 includes those IMR stations that
form a ring around BR1. Case MOL includes all IMR sta-
tions at SCK CEN. Case DOEL includes all IMR stations
at Doel NPP. Finally, case DOEL-BR1 includes a subset of
IMR stations at Doel NPP and the IMR station included in
case BR1. Details are listed in Table 1.

All IMR stations measure the 10 min averaged ambient
dose equivalent rate H *(10), which is measured in nanosiev-
erts per hour (nSvh~!). According to the definition by the
ICRP (2020), “the dose H*(d), at a point in a radiation field,
is the dose equivalent that would be produced by the corre-
sponding expanded and aligned field in the ICRU sphere at a
depth, d, on the radius opposing the direction of the aligned
field”. The ambient dose equivalent rate is the time derivative
of the ambient dose equivalent evaluated at a depth of d =
10mm. Many IMR stations also have gamma-spectrometric
capabilities, and at low dose rates the ambient dose rate is
actually calculated as the accumulated spectrum rather than
measured using the Geiger—Miiller detector. In this work,
we only look at dose rate data. Data from three periods are
used: 6 August through 13 August 2022, 30 August through
1 September 2022, and 10 through 12 September 2022. Se-
lection of these data was subject to BR1 non-operation and
no precipitation. BR1 is not operated for a while during July—
August, and we found the period from 6 through 13 Au-
gust to also be without precipitation. The other two periods
were chosen to be several weeks later than this initial pe-
riod to check the temporal stability of the calibration, one re-
quiring reactor non-operation (30 August through 1 Septem-
ber) and the other requiring reactor operation (10 through
12 September). Data for all three periods are available on
Zenodo (Frankemolle et al., 2024a).
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To supplement the data, we use source monitoring data
for BR1 and precipitation data. The former are necessary be-
cause BR1 is an air-cooled reactor, the operation of which
causes a noticeable artificial increase in on-site H *(10). This
is not the case for the other facilities. Source term data are ob-
tained from an in-stack monitor (Frankemolle et al., 2022b).
Precipitation data are taken from nearby precipitation mon-
itoring stations in Retie, approximately 2km northwest of
SCK CEN, and Melsele, approximately 10 km south of Doel
NPP (Vlaamse Milieumaatschappij, 2023).

2.2 Modelling background radiation using Bayesian
inference

To model measurements by the TELERAD sub-networks, we
introduce a stochastic representation in Sect. 2.2.1 that we
use to formulate a Bayesian inference problem in Sect. 2.2.2.
In Sect. 2.2.3, we introduce the posterior predictive distribu-
tion to validate our Bayesian model.

2.2.1 Background radiation as a continuous stochastic
vector

Consider the ambient dose equivalent (nSv) accumulated
over a period 7' (equal to 10 min in the current study) as mea-
sured in our network:

M=H+E, (1)

with M =[M;,...,M;]T denoting the measurements re-
ported in each sensor (1,...,k), H =[H,..., Hi]" the real
accumulated ambient dose equivalent in each sensor, and
E =[E\,...,Ex]" the sensor measurement errors. We note
that, typically, a dose rate is reported that corresponds to
M/T (nSvh™h).

We represent the measured dose as a continuous stochas-
tic (random) vector, which is driven by the real ambient
dose equivalent, and the instrument error, both of which are
stochastic processes themselves. We discuss the parameter-
isation of their distributions, which eventually leads to the
parameterisation of the distribution of M.

Firstly, E represents the measurement noise. We can
safely assume that errors are statistically independent be-
tween sensors. We further make the stronger assumption
that the errors are normally distributed with zero mean,
s0 E ~ N (0, X g) with X g = diag [o g]1diag [o ], where
OF = [015,1,...,015,1{]T denotes the standard deviations of
the different sensor errors, which we infer in the Bayesian
framework later. We note that the assumption of zero bias
makes sense if instruments are properly calibrated, but val-
idation of the Bayesian framework itself can also point to
inconsistencies between sensor data which could point to the
need for recalibration.

Secondly, we consider the real dose H. It is the accumu-
lation of photons arising from the decay of a range of ra-
dionuclides that are present in the background around the
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Figure 1. Maps of the TELERAD stations at the (a) Doel and (b) Mol sites. (¢) The locations of Doel and Mol in Belgium. The Cartopy
package (Elson et al., 2024) was used to generate the maps using aerial footage from Agentschap Digitaal Vlaanderen (2016) and geographic

vector data from Natural Earth (2024).

Table 1. The four different combinations of IMR stations that are examined in this study.

Case name Description Included IMR stations

BR1 IMR stations in a ring around BR1 M07-M11, M13

MOL All IMR stations at SCK CEN in Mol MO1-M11, M13-M16

DOEL All IMR stations at Doel NPP D01-D18

DOEL-BR1 Low-variance IMR stations at Doel NPP and D02, D04, D06, D08, D10, D12, D14, D16,

IMR stations in a ring around BR1

D18, M07-M11, M13

sensor network. This is a process that is driven not only by
the weather and other environmental phenomena, but also by
the counting error resulting from the relatively low number
of photons that hit the sensor. The latter can be approximated
by a Gaussian distribution, but the former is much less triv-
ial to describe. For lack of any detailed information on this
distribution and to arrive at an elegant overall framework, we
also presume the radionuclides’ distribution to be Gaussian,
but unlike E, we expect a large spatial correlation over the
sensor network (although some aspects, such as the count-
ing error or small-scale terrain effects, will not be correlated
between sensors). With some further assumptions about the
variabilities in both processes, we arrive at a Gaussian pro-
cess for H as well, so H ~ N (u, X g), and consequently,

M~Ni (. Za+XE) . )

At this point, we do not know the covariance matrices X g
and X g — in Sect. 2.2.2 we use Bayesian inference to train
possible distributions of their elements. We have
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Zim = XH,lm + XE Im

{ 12é01%”+0}%” ifl=m,

3)

010 Rim otherwise,

where R with elements Ry, is the correlation matrix that we
introduce here for later use. Thus, defining the diagonal ma-
trix S = diag [o'] (with elements o7 on the diagonal), we can
also express ¥ = SRS (Barnard et al., 2000).

Given k sensors and since R is symmetric, we have 3k +
k(k —1)/2 unknowns (in u, X g, X g, and R), which we will
train using Bayesian inference and a large dataset of mea-
surements. However, given only measurements M and no
additional information on the measurement errors, it is im-
possible to obtain separate information on o g and o g. Only
o can be determined, so in fact 2k + k(k — 1)/2 unknowns
remain.
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2.2.2 Training the mean vector and covariance matrix
using Bayesian inference

Given a dataset M = [M, ..., M y], with M an N x k ma-
trix of measurements by the entire network of k detectors
described in Sect. 2.1 at N different points in time, and given
the stochastic variables of interest described in Sect. 2.2.1,
we can write down Bayes’s theorem (see Appendix A) for
the posterior distribution f(u, S, R|M). In terms of the like-
lihood f(M|u, S, R), the prior f(p, S, R), and the evidence
f (M), this posterior is given as

M, S, R) f(r,S,R)
,S,R = ) 4
fp |M) M) “4)

Strictly speaking, subscripts are required to indicate that
Eq. (4) involves four different distributions. Instead, we de-
note all four distribution functions — of the posterior, likeli-
hood, prior, and evidence — as f to avoid cluttering the equa-
tions. Their varying arguments are, after all, sufficient to tell
them apart.

Here, we define the right-hand side of Eq. (4). The likeli-
hood follows straightforwardly from Eqs. (2) and (3) as

1
S,R)=——
f(Mlﬂ ) (Zﬂ)k/2|z|1/2
ul 1
xnexp[—E(M,'—IL)TZ_I(Mi—IL)], 4)

i=1

where X = SRS with |X| being its determinant and > lits
inverse. While Eq. (5) implies M; and M ; are independent
of each other for i # j, we should be careful not to take
that at face value. Rather, this is a consequence of using the
marginal distribution of some unknown higher-dimensional
distribution that includes time. Since we are not interested in
time, we marginalise the distribution; i.e. we “integrate out”
the time. This is allowed even in the extreme case that E = 0
and H is perfectly correlated in time. Marginalisation relates
to drawing random samples from the time series, and so the
only assumption that we actually make is that the time series
is sufficiently long for it to cover the realisations of M.

The likelihood can be evaluated for any combination of
I, S, and R to determine how likely the observations M are
given that combination. This difference is particularly impor-
tant when considering the evidence. For given observations
M, the evidence f (M) is just a number that normalises the
posterior. Since we are only interested in the shape of the
posterior rather than exact values, we can safely neglect it.

Finally, we consider the priors. The joint prior distribution
f(m,S,R) can be simplified by assuming independence be-
tween i, S, and R; i.e.

J(.S.R) = f(w) f(S)f(R) . (©)

For f(m), we choose a weakly informative prior by fol-
lowing the principle of maximum entropy, which yields the
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least informative priors given certain bounds on the support
and statistical moments (Park and Bera, 2009). We know that
[ is always equal to or larger than zero. Furthermore, we ex-
pect it to be centred on the time-averaged background level.
The least informative prior with support [0, co) and a given
mean is the exponential distribution

k
faw =[Trw. (7

=1

where f(x) = A;jexp[—A;x] and %1 = %ZL]MH-
For f(S), we choose the half-normal distribution (Gel-
man, 2006)

k
f&=T1ren, ®)
=1

where f(x) = é@exp[—g—i] for x > 0.

Finally, we formulate f (R).X This is not trivial because not
every combination of factors Ry, yields a matrix that is sym-
metric and positive semi-definite. To this end, we employ
the LKJ correlation distribution (Lewandowski et al., 2009)
over all possible correlation matrices. The advantage of the
LKIJ distribution is that it can be used as a prior for the cor-
relation matrix R, allowing us to give a separate prior for
the diagonalised scale vector S, as opposed to, for example,
the inverse-Wishart distribution, which can only be used as
a prior for the full covariance matrix (Gelman et al., 2013).
We need the LKJ distribution, in effect, to work with the de-
composition ¥ = SRS (Barnard et al., 2000) that was intro-
duced in Sect. 2.2.1. To be complete, here we reproduce from
Lewandowski et al. (2009) the LKJ distribution function as

fR) =cR", 9)

with |R| being the determinant of the k x k correlation matrix
R; n being the sole shape parameter of the distribution; and
ci being the normalising constant, which only depends on
the dimensionality k, as

o= 225;1‘ @n—2+4k—1)(k—1)

k—1 1 1 k—1
><E[B(n+2(k—l—1),n+2(k—l—1)>] . (10)

Here B is the beta function, defined for two complex num-
bers z1 and z» with positive real numbers, given as

1

B (z1,22) =/z11—‘(1 —n27l4r . (11)
0

The shape parameter n governs the probability of off-
diagonal elements. For n > 1, the mode of the distribution
is the identity matrix (i.e. not favouring correlations); for
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0 < n < 1, there is a dip in the distribution at the identity
matrix (i.e. favouring correlations); and for n =1, all cor-
relation matrices are equally likely. In this work, we select
n = 1, which is a special case where the dependence on R
drops out; i.e.

fR) =R’

k—1 k—I
- —11-1
:ckzzzfﬂlz]‘[[g (ITITH .12

=1

Combining Eqgs. (4)—(12), we obtain the full posterior dis-
tribution. In a network of k detectors, there are k means, 2k
scale parameters, and k x (k — 1)/2 off-diagonal elements so
that the dimensionality of the posterior scales as k%/2. As
a result, brute-force computation of the posterior is gener-
ally not possible. Therefore, we will employ a Markov chain
Monte Carlo (MCMC) technique instead.

The posterior is calculated using the No-U-Turn Sampler
(NUTS) (Hoffman and Gelman, 2014) in PyMC (v5.13.1),
a Python-based framework for Bayesian inference using
MCMC (Abril-Pla et al., 2023; Wiecki et al., 2024). To check
for convergence, PyMC samples several independently ini-
tialised chains and then calculates the R convergence metric
(Gelman and Rubin, 1992; Vehtari et al., 2021), since it is
in general not feasible to check the traces of all different pa-
rameters. For the actual implementation of this convergence
check and many other postprocessing features (e.g. summary
statistics, advanced plotting), PyMC relies on ArviZ (Kumar
et al., 2019; Martin et al., 2024). All computations are per-
formed on a Lenovo ThinkPad with an 11th-generation In-
tel Core 15-1135G7 (four cores, eight threads, 2.4 GHz base
clock, and 4.2 GHz maximum turbo frequency) and 8 GB of
RAM.

2.2.3 Validating the calibrated model using the
posterior predictive distribution

It is important to realise that a posterior distribution is contin-
gent on the choice of parameterisation for the likelihood and
priors. Should the choice of parameterisation be poor, so are
the results. Intuitively, we expect that, if we draw new sam-
ples from our posterior and use these to generate new “obser-
vations”, the distribution of those new observations should be
the same as that of the original dataset. The posterior predic-
tive distribution formalises this as

FOM) = f FMUR.S,R) f (. S. RIM)dpdSdR . (13)
Q

where M represents the new observations. Here
fM|r,S,R) is the likelihood over all new samples
given a set of governing parameters and f(u,S,R|M)
is the posterior of those governing parameters given the
original data M. By integrating the product over the
entire sample space 2 of possible values for the governing
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parameters, the posterior predictive distribution f (.//\\/lIM)
is obtained. A good match between the posterior predictive
distribution and the distribution of the original dataset shows
the choice for the parameterisation of the likelihood and
priors is a good one.

2.3 Estimating the 10 min background using Bayesian
inference

While the foregoing stochastic representation is interesting
in its own right to understand the behaviour of the back-
ground radiation in a detector network, there are other poten-
tial applications of Bayesian inference for background mod-
elling. For one, might we hope to estimate the noise-free
background vector H from the noisy measurements M ? This
is a different question from the one encapsulated in Eq. (4).
Moreover, since Bayesian inference is also used for data im-
putation (Holt and Nguyen, 2023), we could think of a use
case with missing observations. Here, missing can actually
mean missing — one or more detectors could be broken — or it
might just mean compromised. In the latter case, the connec-
tion with anomaly detection is readily made: in case of a local
radiation source that impacts a limited number of detectors
in the network, we can use the remaining detectors to pre-
dict what background these detectors should have measured
in lieu of the anomaly and within what uncertainty bounds.
That in turn allows us to quantify the size of the anomaly.

This does, however, still require “expert knowledge” in the
sense that the model itself does not know which detectors
are affected. Physics-wise, this is related to the fact that the
model is, by construction, time-independent (see Sect. 2.2.2).
Correlations in time of the individual detectors, a strong drop
in which could point at atypical excursions of the dose rate
(like the ones discussed later in Sect. 5), are not taken into ac-
count. While there may be engineering solutions even within
the frame of the currently discussed method that could allow
for this method to autonomously detect anomalies, consider-
ation of those is beyond the scope of this work.

To estimate the distribution of the background radiation
vector H of a given 10 min time interval, for which data M
are available and using the distribution for X (e.g. obtained
using the method described in Sect. 2.2) as prior information,
we write down a different inference problem from Eq. (4).
Here, we are interested in the posterior f(H|M), which is
equal, by Bayes’s theorem (see Appendix A), to

f(M|H) f(H)
JHIM) = ————— . (14)
J (M)
Neglecting the evidence as before, we can fill in the
likelihood and priors which follow from the discussion in
Sect. 2.2.1 to obtain
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f(H|M) exp —%(H e M)]

1 Ty 1
XCXP[—E(H—IL) Xy (H—IL)]

1
o exp —E(H -z (H - M)

1
—E(H—IL)T(SRS—ZE)_I(H—IL)] , (15)

where in the second step we use X g = SRS — X g. We ob-
serve that the argument of the exponent in Eq. (15) is equal to
the cost function associated with the Kalman filter (Evensen
etal., 2022, p. 67), where in the current case the measurement
operator is the identity matrix I. Clearly, the above relation
can only be used meaningfully if we can estimate o g. For
this, extra data are needed since we only have knowledge of
S from the calibration described in Sect. 2.2.2.

We now elaborate on a particular scenario that is of interest
to anomaly detection. We presume that we know X g either
because we have extra information o g or because measure-
ment errors in the calibration data are small, i.e. |0 g <
o g, sothat ¥ g ~ SRS = X. For the spectroscopic detectors
at least, which have counting-statistics-driven uncertainties
on the order of 0.5nSvh™! while typical excursions due to
meteorological drivers (captured by H') are much larger, this
assumption is very acceptable.

Let us further assume that in the current 10 min time in-
terval, we do not use measurements from all sensors, e.g.
because they are not available or we do not trust them. What-
ever the reason, we are limited to a subset of observations
M. Thus, we split the detector network into an observed part
and an unobserved part, and we reorder the sensors and back-
grounds at these detectors such that H = [H, H o]7. Then
Egs. (14) and (15) are reduced to

f(M,|H) f(H)
f (M)

1 _
o exp [—5<H0 — M) 3; (Ho— M)

f(HIM,) =

1 _
—;H—m) Ty (H—M)} : (16)
We now introduce the block matrices
_ 2:H,uu 2;H,uo
ZH - |:ZH,0u 2;H,oo i| (17)

and partition the mean vector as g = [ft, #,]' . This allows
us to split the inference problem into two parts. The first one
is for the sensors that are observed and gives

1 _
f(Ho|Mo) oexp [—5<Ho —Mo) 25 (Ho— M)
1 Ty -1
— 5 (Ho— o) Ty o (Ho = 1o) |
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(18)

which can be calculated first. A second inference problem
follows from applying the chain rule in two different ways:

f(H M) = f(H|M,)f(M,) , (19)
fH, M) = f(HyHo, M) f(HoMo) f(Mo) . (20)
This gives us two known distributions (see Eqs. 16 and 18)
and two unknown distributions: f(Hy|H,, M,) and f(M,).
By equating Eqgs. (19) and (20), we can eliminate the latter
unknown to finally obtain

f(HIM,)

F(Ho|M,)

1 Tyl
X exp [—E(H—u) Xy (H—u)]

f(Hu|H07M0) =

1
x exp[5<Ho — 1) 2 oo (Ho —uoﬂ - @21

Given Eq. (21), a closed form of f(Hy|H,, M,) can in
fact be found. Using the block matrices described in Eq. (17),
it can be shown (Holt and Nguyen, 2023) that the posterior
is normally distributed: N, (fyj, Zulo), Where

Hoto = Moy + ZH.uw0Z g 0o (Ho — o) (22)
Tuo=ZHuw— ZHuoZ g 00X H.ou - (23)

These are the mean vector and covariance matrix, respec-
tively, of the unobserved part of the network conditional on
the observed part of the network (Holt and Nguyen, 2023).
It is tempting at this point to insert the maximum a posteri-
ori (MAP) estimates of p and X to calculate MAP estimates
of my, and Xyo. However, since the posterior distributions
of p and X are actually available (see Sect. 2.2), we choose
to construct the full posterior distributions of g, and Xy,
instead.

3 Calibration and verification

For the calibration of u, S, and R, we select an 8d period
in the summer of 2022, 6 August through 13 August. We
check that BR1 is not operational in this period and there is
no rain. We calibrate our model for the four different cases
described in Table 1. In all cases, the NUTS algorithm is set
up to discard the first 1000 samples (the “burn-in”) and then
to take another 1000 samples that are used to construct the
posterior. To test whether the calibrated models adequately
describe the data, we calculate posterior predictive checks.
Posterior predictive distributions, plotted in Fig. 2, are a
powerful tool to test the quality of Bayesian models. In all
four cases, the close agreement between the black lines (ob-
servations) and orange lines (model) shows that the multi-
variate normal distribution is an excellent parameterisation
for the distribution of the ambient dose equivalent rate vector
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M/ T. It shows that even if some detectors experience much
higher local dose rates — the rightmost peak for the MOL
case (Fig. 2b) corresponds to detector M06, which is adja-
cent to radioactive waste storage — the way that they covary
can still be captured with a multivariate normal distribution.
Likewise, it does not matter that some detectors are of a dif-
ferent make — the much wider central peak for the DOEL
case (Fig. 2¢) is due to the larger intrinsic variance of some
of the detectors.

The quality of the Bayesian model also becomes clear us-
ing the predictive formalism described in Sect. 2.3. Using
the original training data but leaving out one or more detec-
tors, the conditional distribution can be used to “predict” the
observations by the excluded detectors. Here, we show the
results for two cases: BR1 and DOEL. For the BR1 case,
we predict the observations by M13 using observations by
MO7 through M11. Results of these “predictions” versus ac-
tual observations are plotted in Fig. 3. Again, the agreement
is excellent. The calibrated model correctly captures not only
the offset and the diurnal variations but also the generally
rising trend. Moreover, the 1o (68 % confidence) and 2o
(95 % confidence) intervals predicted by the model match
the spread of the observations very well. This shows that the
model captures not only the trends but also remaining uncer-
tainties.

For the DOEL case, we predict the observations by D01
through D09 using observations by D10 through D18. These
results are plotted in Fig. 4. The even-numbered stations
have similar characteristics to the detectors around BRI.
While offsets vary, the diurnal fluctuations, rising trend,
and approximate uncertainties do not vary much between
these detectors and their BR1 counterparts. Meanwhile, the
odd-numbered detectors have almost an order of magnitude
more uncertainty compared to the even-numbered detectors
— likely owing to considerably worse counting statistics — in
their model predictions, which is in excellent agreement with
the actual spread in the TELERAD time traces, as evidenced
by the fact that the shaded areas in Fig. 4 (which represent
the uncertainty in the measurements) are much larger for the
odd-numbered than for the even-numbered detectors. There
is no evidence of diurnal variations or the rising trend any
more, as these are dwarfed by the uncertainty inherent in the
detectors. We observe that the predictions by the Bayesian
algorithm are not impacted. The algorithm simply sets S; of
those detectors to high values while setting R;;;, to low values
so that the covariance with other detectors, S;.S,, R;;,, remains
low.

4 Predictions using the conditional distribution

Using the calibrated models described in Sect. 3, trained on
data between 6 and 13 August 2022, we now make predic-
tions using data that were obtained at a different point in time
in order to validate our Bayesian model. Here, we present the

Geosci. Model Dev., 18, 1989-2003, 2025

results for two cases, MOL and DOEL, for 10-12 September
2022. We start with the former. Similarly to the BR1 case, we
exclude detector M13 and try to predict observations made
by that detector using the other detectors as inputs. We then
compare the prediction to the actual observations. The re-
sults can be found in Fig. 5. Focusing first on days two and
three (from time index 150 onwards), the calibrated model
predicts both the baseline dose rate and the peaks (around
200 and 350, so around dawn) quite well, while the variance
appears to be slightly overestimated over the entire period.
This is confirmed by comparing the mean of the 1 h running
variances of the TELERAD data, (0.1540.10) nSv?2 h=2, to
the mean of the predicted variances, (0.21 £ 0.01)nSv?h—2
(excluding time indices smaller than 100 because of the rain
peak).

Most striking in Fig. 5 is the larger peak between time in-
dices 25 and 75. It coincides with a period of precipitation
measured by the station in Retie (Vlaamse Milieumaatschap-
pij, 2023), which is known to coincide which rising dose
rates (Mercier et al., 2009; Livesay et al., 2014). While our
model was not trained on precipitation data, the match is
nonetheless quite good. It appears that over the extent of the
Mol site, precipitation has the same effect as other meteo-
rological drivers (e.g. pressure), which cause the variations
over time observed in Figs. 3 and 4. However, that does not
mean that our choice of parameterisation is ideal in precipi-
tating conditions: part of the variance in such cases might be
driven by, for example, fluctuations in the precipitation rate,
which may not necessarily be Gaussian. Moreover, that our
model can describe the effect of precipitation has a downside
in an operational context. A plume (cloud) of radioactivity
that is released far enough from the site is homogeneously
distributed over the site and cannot be distinguished from
other background effects by on-site detectors. Our model is
thus only useful to spot aberrant radioactivity at a typical
scale that is smaller than that of the network, i.e. local re-
leases.

Next, we present the DOEL case. Based on the observa-
tions made by detectors D10 through D18, the calibrated
model predicts the observations by DO1 through D09. The
results are plotted in Fig. 6. Overall, the same conclusions
can be drawn as for the MOL case. The precipitation peak,
although a fair bit more jagged than before, is still resolved
well. Some limited drift on the mean vector p is present, and
small under- or overestimations are present for some of the
detectors. The fluctuations in the dose rates are still captured
well however. That there should be a drift in the vector of
means is interesting and suggests the involvement of a pro-
cess that causes decorrelation in time. Such a process cannot
be modelled under the assumptions presented in our work be-
cause we have chosen to neglect temporal correlations. Mov-
ing from a temporally independent model into, for example,
a first-order Markov system would increase the dimensional-
ity of the joint probability density function (pdf) from k? to
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(a) Case BR1
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Figure 2. Posterior predictive distributions for all four analysed cases. Solid blue lines represent predicted distributions of observations.
Each line is made by randomly drawing a set of parameters from the posterior distributions of parameters. Dashed orange lines represent the
mean predicted distributions. Finally, the distribution of actual observations is represented in black — a kernel is used for interpolation to a

continuous distribution.

78

Mean prediction

77 1-sigma prediction
2-sigma prediction
Observation
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Time index (x 10 min)

Ambient dose equivalent rate (nSv h?)

Figure 3. A prediction of detector M13 based on observations by
MO7 through M11. Time indices denote consecutive 10 min periods
starting at 00:00 CEST on 6 August 2022 and ending at 00:00 CEST
on 14 August 2022.

(2k)*. This would have significant computational repercus-
sions and may not be feasible.

In the special case of the multivariate normal distribution
presented in this work, solutions might exist (e.g. Kalman fil-
tering). However, by moving to the Kalman filter approach,
one loses the option to move away from the normality as-
sumption at a later stage — this could be a problem, poten-
tially, when introducing the effect of precipitation. An al-
ternative that would not necessitate moving away from the
Bayesian inference method would be to serve the calibrated
coefficients of the background model as a prior in the predic-
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tive step and to allow small posterior updates to the vector of
means to correct for drift.

5 Predictions during operation of BR1

Finally, we present simulations for the DOEL-BR1 case be-
tween 30 August and 1 September 2022. To expedite the
calibration and prediction steps, we only include the even-
numbered detectors in Doel. As can be seen in Figs. 4 and
6, these detectors have a considerably higher dose rate reso-
lution than their odd-numbered counterparts and hence con-
tain much more information. The results are shown in Fig. 7.
The match between the background prediction and the ac-
tual observations is poor during several intervals which co-
incide with operation of BR1. BR1 was operational between
approximately 09:00 and 16:00 CEST in this 3 d period (time
indices 54-96, 198-240, and 342-384). Outside of those in-
tervals, the predictions by our model and the observations
match very well.

It is perfectly possible to describe the effect that BR1 —
which is an air-cooled reactor that emits argon-41 during op-
eration — has on the detectors using atmospheric dispersion
modelling (Frankemolle et al., 2022b). However, because it
is an effect that varies over a characteristic length scale that
is much smaller than that of the network (ca. 50 km here), it
cannot be captured by our background model. This is exactly
where our background modelling can be useful for spotting
anomalies. To quantify the size of the anomaly, a good esti-
mate of the background level can be crucial, particularly for
smaller atmospheric releases. While small errors in the mean

Geosci. Model Dev., 18, 1989-2003, 2025
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Figure 4. Predictions for the Doel detectors D01 through D09 based on observations by D10 through D18. Time indices denote consecutive
10 min periods starting at 00:00 CEST on 6 August 2022 and ending at 00:00 CEST on 14 August 2022.
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Figure 5. Prediction of the dose rate measured by detector M13
based on observations by the other detectors on the SCK CEN
site. Time indices denote consecutive 10min periods starting at
00:00 CEST on 10 September 2022 and ending at 00:00 CEST on
13 September 2022, so three diurnal cycles are included in the pre-
diction. The larger peak between time index 25 and 75 coincided
with a period of precipitation.
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and the intrinsic variance of the background are largely irrel-
evant for large anomalies (e.g. M08), they are relevant in sit-
uations where both effects are of the same order (e.g. M11).
When release levels are even lower and occur during a much
shorter interval — as was the case for the selenium-75 inci-
dent at SCK CEN for example (Frankemolle et al., 2022a) —
a good understanding of the background becomes even more
critical.

6 Conclusions and outlook

In this work, we presented a Bayesian inference framework
for background estimation in densely packed local detector
networks. We treated the background ambient dose equiva-
lent rate observed in a dense detector network as a multivari-
ate stochastic vector. We derived a physics-informed likeli-
hood — a multivariate normal distribution — and priors and
used these to calculate the posterior pdf’s of several param-
eters of interest. Using data from the Immission Monitor for
the Ring area (IMR) sub-network, part of the TELERAD net-
work (Sonck et al., 2010), on the sites of the Belgian Nuclear
Research Centre in Mol (SCK CEN) and the Doel nuclear
power plant (NPP) in Belgium, we then put the Bayesian
framework to the test.

In Sect. 3, we validated the suitability of our chosen
parameterisation. That this parameterisation was a suitable
choice became clear from the posterior predictive checks.
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Figure 6. Prediction of the dose rate measured by detectors DO1 through D09 based on observations by detectors D10 through D18. Time
indices denote consecutive 10 min periods starting at 00:00 CEST on 10 September 2022 and ending at 00:00 CEST on 13 September 2022,
so three diurnal cycles are included in the prediction.
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Figure 7. Prediction of the dose rate measured by the BR1 ring detectors (M07 through M11 and M13) using as inputs measurement by the
even-numbered Doel detectors. Time indices denote consecutive 10 min periods starting at 00:00 CEST on 30 August 2022 and ending at
00:00 CEST on 2 September 2022, so three diurnal cycles were included in the prediction. During this period, BR1 was turned on for 3d on
end, which is apparent from the three large peaks that are not described by the background model prediction.

The actual distribution of the observations matched very well tional data in combination with a model that was calibrated
with the modelled distribution of observations. Moreover, using month-old training data. While the model predictions
leave-one-out and leave-many-out checks, which leveraged had drifted away slightly from the actual observations, the
the conditional distribution, were successfully used to recon- calibration overall proved to be rather stable. Diurnal fluc-
struct the training data. In Sect. 4, actual leave-one-out and tuations were reproduced well, and the short-term variance
leave-many-out predictions were made using new observa- was matched decently. Finally, Sect. 5 showed an application
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of our model where detectors at Doel NPP were used to pre-
dict the observations by detectors at SCK CEN during oper-
ation of BR1. This application demonstrates the relevance of
our work in the field of anomaly detection and, importantly,
quantification.

Looking at the model from an operational perspective, the
slow drift of the mean vector away from its calibration pre-
cludes usage of year-old calibrated models. However, the
drift within a month is only very limited, so if the Bayesian
model were recalibrated every week using the latest available
data — which is possible thanks to the limited computational
cost — the drift should not be a problem. In fact, the model
itself could be used to automatically determine whether next
week’s data are suitable for recalibration (which amounts to
checking whether no anomalies are present). Of course, in
the specific case of SCK CEN - with regular anomalies due
to BR1 - finding non-anomalous data can be problematic.
In this case, coupling to a near-range atmospheric dispersion
model is likely necessary. This would also require extending
the Bayesian framework to include additional uncertainties
arising from the dispersion modelling. Ideally, a similar pro-
vision would be made for precipitation, which — as discussed
in this work — might come with its own temporal and spatial
uncertainties.

Finally, future work could include a temporal correlation
to the parameterisation of the background vector, but care
should be taken that the computational complexity does not
get out of hand. Should the multivariate normal distribution
that was used in this work remain the best fit for the job, then
recasting this work into a Kalman filter formulation might do
much to alleviate these issues. Conversely, rather than taking
the calibration as fixed, the vector of means might be updated
as part of the prediction process, i.e. formalising the recali-
bration process described in the previous paragraph. The pos-
terior obtained by calibration on training data then becomes
a prior for the prediction data.

Appendix A: Bayesian inference

To describe the detector networks, we use statistical infer-
ence. Statistical inference is the process of inferring the prop-
erties of a population from a limited sample or, in other
words, the process of determining the probability distribution
of a stochastic (random) variable (SV) from a limited num-
ber of observations of that SV. Statistical inference comes in
two flavours: the Bayesian and the frequentist. Bayesian ap-
proaches treat the properties of a population as intrinsically
random SVs in turn, whose distributions are constrained by
the available observations and by a subjective belief, while
frequentist approaches treat them as fixed values that can be
determined up to some uncertainty threshold based solely on
the available data (Pishro-Nik, 2014). In our work, we take
the former perspective. The simplest form of Bayes’s theo-
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rem, which can be found in statistics handbooks (e.g. Pishro-
Nik, 2014; Hogg et al., 2018), is

Py x (y|x) Px (x)
Py (y)

which defines the posterior probability mass function
Px|y(x|y) as the product of the likelihood function
Py|x(y|x) and the prior probability mass function Px(x)
over the marginal likelihood function Py (y). They are usu-
ally simply referred to as the posterior, likelihood, prior, and
evidence. The subscripts X and Y are SVs, and X = x and
Y =y are realisations of those SVs. When dealing with mul-
tiple unknowns, SVs generalise to stochastic (random) vec-
tors whose elements are SVs. Rather than with X and Y,
we then deal with X = [X1,..., X;]" and Y =[V1,..., ¥;]T
with realisations x = [x1,...,x¢]" and y= [yl,...,yk]T.
Moreover, when dealing with continuous rather than discrete
SVs, probability mass functions P (pmf’s) become probabil-
ity density functions f (pdf’s). The multivariate formulation
of Bayes’s theorem for continuous stochastic vectors finally
reads

Pxy(x|y) = , (A1)

fr(y) ’

where the posterior, likelihood, prior, and evidence are now
joint pdf’s. Since, in the current work, we are always dealing
with joint pdf’s, we often refer to them as joint distributions
or even simply as distributions.

Formally, we should always distinguish between stochas-
tic variables and vectors (X and X) and their realisations (x
and x). However, this makes notation cumbersome and does
not always add much in the way of clarity, so in the main text
we often ignore the difference.

fxiy(xly) = (A2)
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at https://doi.org/10.5281/zenodo.12581795 (Frankemolle et al.,
2024a).

Author contributions. JPKWEF: conceptualisation, methodology,
validation, formal analysis, data curation, writing (original draft).
JC: conceptualisation, writing (review and editing), supervision.
PDM: formal analysis, writing (review and editing), supervision.
JM: conceptualisation, formal analysis, writing (review and edit-
ing), supervision.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/gmd-18-1989-2025


https://doi.org/10.5281/zenodo.12644422
https://doi.org/10.5281/zenodo.12581795

J. P. K. W. Frankemodlle et al.: Predicting environmental background radiation 2001

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors thank Frangois Menneson from
FANC-AFCN for providing access to the TELERAD data,
users of PyMC Discourse for valuable insights into working
with PyMC (https://discourse.pymc.io/t/calculating-conditional-
posterior-predictive-samples-in-high-dimensional-observation-
spaces/12450, last access: 25 March 2025), and the reviewers of
the preprint via the associated Geoscientific Model Development
interactive discussion for taking the time to study and give feedback
on our work.

Review statement. This paper was edited by Dan Lu and reviewed
by two anonymous referees.

References

Abril-Pla, O., Andreani, V., Carroll, C., Dong, L., Fonnesbeck,
C. J., Kochurov, M., Kumar, R., Lao, J., Luhmann, C. C., Mar-
tin, O. A., Osthege, M., Vieira, R., Wiecki, T., and Zinkov,
R.: PyMC: a modern, and comprehensive probabilistic program-
ming framework in Python, Peer] Computer Science, 9, e1516,
https://doi.org/10.7717/peerj-cs. 1516, 2023.

Agentschap Digitaal Vlaanderen: Orthofotomozaiek,
grootschalig, winteropnamen, kleur, 2013-2015, Vlaan-
deren, https://www.vlaanderen.be/datavindplaats/catalogus/

orthofotomozaiek-grootschalig-winteropnamen-kleur-2013-
2015-vlaanderen, (last access: 25 March 2025), 2016.

Arahmane, H., Dumazert, J., Barat, E., Dautremer, T., Carrel, F.,
Dufour, N., and Michel, M.: Statistical approach for radioactivity
detection: A brief review, J. Environ. Radioactiv., 272, 107358,
https://doi.org/10.1016/j.jenvrad.2023.107358, 2024.

Barnard, J., McCulloch, R., and Meng, X.-L.: Modeling covariance
matrices in terms of standard deviations and correlations, with
application to shrinkage, Stat. Sinica, 10, 1281-1311, 2000.

Bergan, T. D.: Radioactive fallout in Norway from atmospheric
nuclear weapons tests, J. Environ. Radioactiv., 60, 189-208,
https://doi.org/10.1016/S0265-931X(01)00103-5, 2002.

Breitkreutz, H., Mayr, J., Bleher, M., Seifert, S., and Stoh-
Iker, U.: Identification and quantification of anomalies in
environmental gamma dose rate time series using artifi-
cial intelligence, J. Environ. Radioactiv., 259-260, 107082,
https://doi.org/10.1016/j.jenvrad.2022.107082, 2023.

Brennan, S., Mielke, A., and Torney, D.: Radioactive source de-
tection by sensor networks, IEEE T. Nucl. Sci., 52, 8§13-819,
https://doi.org/10.1109/TNS.2005.850487, 2005.

Chernyavskiy, P., Kendall, G., Wakeford, R., and Little, M.:
Spatial prediction of naturally occurring gamma radiation
in Great Britain, J. Environ. Radioactiv., 164, 300-311,
https://doi.org/10.1016/j.jenvrad.2016.07.029, 2016.

https://doi.org/10.5194/gmd-18-1989-2025

Elson, P, Sales de Andrade, E., Lucas, G., May, R., Hat-
tersley, R., Campbell, E., Comer, R., Dawson, A., Lit-
tle, B., Raynaud, S., scmc72, Snow, A. D., Igolston,
Blay, B., Killick, P, Ibdreyer, Peglar, P, Wilson, N., An-
drew, Szymaniak, J., Berchet, A., Bosley, C., Davis, L.,
Filipe, Krasting, J., Bradbhury, M., stephenworsley, and
Kirkham, D.: SciTools/cartopy: REL: v0.24.1, Zenodo [code],
https://doi.org/10.5281/zenodo.13905945, 2024.

European Commission: EUropean Radiological Data Ex-
change Platform, https://remon.jrc.ec.europa.eu/About/
Rad-Data-Exchange (last access: 25 March 2025), 2024.

European Commission, Directorate-General for Research and
Innovation, De Cort, M., Dubois, G., Fridman, S., Ger-
menchuk, M., Izrael, Y., Janssens, A., Jones, A., Kelly, G.,
Kvasnikova, E., Matveenko, I., Nazarov, 1., Pokumeiko,
Y., Sitak, V., Stukin, E., Tabachny, L., Tsaturov, Y., and
Avdyushin, S.: Atlas of caesium deposition on Europe
after the Chernobyl accident, Publications Office of the
European  Union,  https://op.europa.eu/publication-detail/-/
publication/110b15f7-4df8-49a0-856f-be8f681ae9fd (last
access: 25 March 2025), 1998.

Evensen, G., Vossepoel, F. C., and van Leeuwen, P. J.: Kalman
Filters and 3DVar, in: Data Assimilation Fundamentals: A
Unified Formulation of the State and Parameter Estimation
Problem, Springer International Publishing, Cham, 63-71,
https://doi.org/10.1007/978-3-030-96709-3_6, 2022.

Federal Agency for Nuclear Control: Telerad, https://www.telerad.
be (last access: 25 March 2025), 2024.

Folly, C. L., Konstantinoudis, G., Mazzei-Abba, A., Kreis, C.,
Bucher, B., Furrer, R., and Spycher, B. D.: Bayesian spatial mod-
elling of terrestrial radiation in Switzerland, J. Environ. Radioac-
tiv., 233, 106571, https://doi.org/10.1016/j.jenvrad.2021.106571,
2021.

Frankemolle, J. P. K. W, Camps, J., De Meutter, P., An-
toine, P., Delcloo, A., Vermeersch, F., and Meyers, J.:
Near-range atmospheric dispersion of an anomalous
selenium-75 emission, J. Environ. Radioactiv., 255, 107012,
https://doi.org/10.1016/j.jenvrad.2022.107012, 2022a.

Frankemolle, J. P. K. W, Camps, J., De Meutter, P,
and Meyers, J.: Near-range Gaussian plume modelling
for gamma dose rate reconstruction, in: 21st Interna-
tional Conference on Harmonisation within Atmospheric
Dispersion Modelling for Regulatory Purposes, 27—
30 September 2022, Aveiro, Portugal, https://www.harmo.
org/Conferences/Proceedings/_Aveiro/publishedSections/
00514_172_h21-023-jens-peter-frankemolle.pdf (last access:
25 March 2025), 2022b.

Frankemolle, J. P. K. W., Camps, J., De Meutter, P., and Meyers,
J.: Accompanying dataset for: “A Bayesian Method for predict-
ing background radiation at environmental monitoring stations”,
Zenodo [data set], https://doi.org/10.5281/zenodo.12581795,
2024a.

Frankemdlle, J. P. K. W., Camps, J., De Meutter, P., and Meyers, J.:
Accompanying software for: “A Bayesian Method for predicting
background radiation at environmental monitoring stations”,
Zenodo  [code],  https://doi.org/10.5281/zenodo.12644422,
2024b.

Geosci. Model Dev., 18, 1989-2003, 2025


https://discourse.pymc.io/t/calculating-conditional-posterior-predictive-samples-in-high-dimensional-observation-spaces/12450
https://discourse.pymc.io/t/calculating-conditional-posterior-predictive-samples-in-high-dimensional-observation-spaces/12450
https://discourse.pymc.io/t/calculating-conditional-posterior-predictive-samples-in-high-dimensional-observation-spaces/12450
https://doi.org/10.7717/peerj-cs.1516
https://www.vlaanderen.be/datavindplaats/catalogus/orthofotomozaiek-grootschalig-winteropnamen-kleur-2013-2015-vlaanderen
https://www.vlaanderen.be/datavindplaats/catalogus/orthofotomozaiek-grootschalig-winteropnamen-kleur-2013-2015-vlaanderen
https://www.vlaanderen.be/datavindplaats/catalogus/orthofotomozaiek-grootschalig-winteropnamen-kleur-2013-2015-vlaanderen
https://doi.org/10.1016/j.jenvrad.2023.107358
https://doi.org/10.1016/S0265-931X(01)00103-5
https://doi.org/10.1016/j.jenvrad.2022.107082
https://doi.org/10.1109/TNS.2005.850487
https://doi.org/10.1016/j.jenvrad.2016.07.029
https://doi.org/10.5281/zenodo.13905945
https://remon.jrc.ec.europa.eu/About/Rad-Data-Exchange
https://remon.jrc.ec.europa.eu/About/Rad-Data-Exchange
https://op.europa.eu/publication-detail/-/publication/110b15f7-4df8-49a0-856f-be8f681ae9fd
https://op.europa.eu/publication-detail/-/publication/110b15f7-4df8-49a0-856f-be8f681ae9fd
https://doi.org/10.1007/978-3-030-96709-3_6
https://www.telerad.be
https://www.telerad.be
https://doi.org/10.1016/j.jenvrad.2021.106571
https://doi.org/10.1016/j.jenvrad.2022.107012
https://www.harmo.org/Conferences/Proceedings/_Aveiro/publishedSections/00514_172_h21-023-jens-peter-frankemolle.pdf
https://www.harmo.org/Conferences/Proceedings/_Aveiro/publishedSections/00514_172_h21-023-jens-peter-frankemolle.pdf
https://www.harmo.org/Conferences/Proceedings/_Aveiro/publishedSections/00514_172_h21-023-jens-peter-frankemolle.pdf
https://doi.org/10.5281/zenodo.12581795
https://doi.org/10.5281/zenodo.12644422

2002 J. P. K. W. Frankemodlle et al.: Predicting environmental background radiation

Gelman, A.: Prior distributions for variance parameters in
hierarchical models (comment on article by Browne and
Draper), Bayesian Anal., 1, 515-534, https://doi.org/10.1214/06-
BA117A, 2006.

Gelman, A. and Rubin, D. B.: Inference from Iterative Sim-
ulation Using Multiple Sequences, Stat. Sci., 7, 457-472,
https://doi.org/10.1214/ss/1177011136, 1992.

Gelman, A., Carlin, J. B, Stern, H. S., Dunson, D. B., Vehtari, A.,
and Rubin, D. B.: Bayesian Data Analysis, in: 3rd Edn., Chap-
man and Hall/CRC, https://doi.org/10.1201/b16018, 2013.

Hoffman, M. D. and Gelman, A.: The No-U-Turn Sampler: Adap-
tively Setting Path Lengths in Hamiltonian Monte Carlo, J.
Mach. Learn. Res., 15, 1593-1623, 2014.

Hogg, R., McKean, J., and Craig, A.: Introduction to Mathematical
Statistics, ib: 8th Edn., Pearson, ISBN 9780134686998, 2018.
Holt, W. and Nguyen, D.: Essential Aspects of Bayesian Data Im-

putation, https://doi.org/10.2139/ssrn.4494314, 2023.

Howarth, D., Miller, J. K., and Dubrawski, A.: Analyzing the
Performance of Bayesian Aggregation Under Erroneous En-
vironmental Beliefs, IEEE T. Nucl. Sci., 69, 1257-1266,
https://doi.org/10.1109/TNS.2022.3169990, 2022.

ICRP: Dose coefficients for external exposures to environ-
mental sources. ICRP Publication 144, Ann. ICRP, https://
www.icrp.org/publication.asp?id=ICRPPublication144 (last ac-
cess: 25 March 2025), 2020.

Kumar, R., Carroll, C., Hartikainen, A., and Martin, O.: ArviZ
a unified library for exploratory analysis of Bayesian mod-
els in Python, Journal of Open Source Software, 4, 1143,
https://doi.org/10.21105/joss.01143, 2019.

Lewandowski, D., Kurowicka, D., and Joe, H..: Generat-
ing random correlation matrices based on vines and ex-
tended onion method, J. Multivariate Anal., 100, 1989-2001,
https://doi.org/10.1016/j.jmva.2009.04.008, 2009.

Liu, Z. and Sullivan, C. J.: Prediction of weather in-
duced background radiation fluctuation with recurrent
neural networks, Radiat. Phys. Chem., 155, 275-280,
https://doi.org/10.1016/j.radphyschem.2018.03.005, 2019.

Liu, Z., Abbaszadeh, S., and Sullivan, C. J.: Spatial-
temporal modeling of  background radiation  us-
ing mobile sensor networks, PLoS One, 13, 1-14,
https://doi.org/10.1371/journal.pone.0205092, 2018.

Livesay, R., Blessinger, C., Guzzardo, T., and Hausladen, P.: Rain-
induced increase in background radiation detected by Radia-
tion Portal Monitors, J. Environ. Radioactiv., 137, 137-141,
https://doi.org/10.1016/j.jenvrad.2014.07.010, 2014.

Martin, O. A., Hartikainen, A., Abril-Pla, O., Carroll, C., Kumar,
R., Naeem, R., Arroyuelo, A. Gautam, P., rpgoldman, Banerjea,
A., Pasricha, N., Sanjay, R., Gruevski, P., Axen, S., Rochford,
A., Mahweshwari, U., Kazantsev, V., Zinkov, R., Phan, D.,
Matamoros, A. A., Arunava, Shekhar, M., Andorra, A., Car-
rera, E., Osthege, M., Munoz, H., Gorelli, M. E., Capretto, T.,
Kunanuntakij, T., and Sarina: ArviZ (v0.18.0), Zenodo [code],
https://doi.org/10.5281/zenodo.10929056, 2024.

Geosci. Model Dev., 18, 1989-2003, 2025

Maurer, C., Baré, J., Kusmierczyk-Michulec, J., Crawford, A., Es-
linger, P. W., Seibert, P., Orr, B., Philipp, A., Ross, O., Generoso,
S., Achim, P., Schoeppner, M., Malo, A., Ringbom, A., Saunier,
0., Quelo, D., Mathieu, A., Kijima, Y., Stein, A., Chai, T., Ngan,
F., Leadbetter, S. J., De Meutter, P., Delcloo, A., Britton, R.,
Davies, A., Glascoe, L. G., Lucas, D. D., Simpson, M. D., Vogt,
P., Kalinowski, M., and Bowyer, T. W.: International challenge to
model the long-range transport of radioxenon released from med-
ical isotope production to six Comprehensive Nuclear-Test-Ban
Treaty monitoring stations, J. Environ. Radioactiv., 192, 667—
686, https://doi.org/10.1016/j.jenvrad.2018.01.030, 2018.

Mercier, J.-F., Tracy, B., d’Amours, R., Chagnon, F., Hoffman, L.,
Korpach, E., Johnson, S., and Ungar, R.: Increased environmen-
tal gamma-ray dose rate during precipitation: a strong correlation
with contributing air mass, J. Environ. Radioactiv., 100, 527—
533, https://doi.org/10.1016/j.jenvrad.2009.03.002, 2009.

Michaud, I. J., Schmidt, K., Smith, R. C., and Mattingly, J.: A
hierarchical Bayesian model for background variation in radia-
tion source localization, Nucl. Instrum. Meth. A, 1002, 165288,
https://doi.org/10.1016/j.nima.2021.165288, 2021.

Natural Earth: Free vector and raster map data, https://www.
naturalearthdata.com (last access: 25 March 2025), 2024.

Nomura, S., Tsubokura, M., Hayano, R., Furutani, T., Yoneoka, D.,
Kami, M., Kanazawa, Y., and Oikawa, T.: Comparison between
Direct Measurements and Modeled Estimates of External Radia-
tion Exposure among School Children 18 to 30 Months after the
Fukushima Nuclear Accident in Japan, Environ. Sci. Technol.,
49, 1009-1016, https://doi.org/10.1021/es503504y, 2015.

Park, S. Y. and Bera, A. K.: Maximum entropy autoregressive con-
ditional heteroskedasticity model, J. Econometrics, 150, 219—
230, https://doi.org/10.1016/j.jeconom.2008.12.014, 2009.

Pishro-Nik, H.: Introduction to probability statistics,
and random processes, Kappa Research, LLC, https:
/Iwww.probabilitycourse.com/ (last access: 25 March 2025),
2014.

Querfeld, R., Hori, M., Weller, A., Degering, D., Shozu-
gawa, K., and Steinhauser, G.: Radioactive Games? Ra-
diation Hazard Assessment of the Tokyo Olympic Sum-
mer Games, Environ. Sci. Technol., 54, 11414-11423,
https://doi.org/10.1021/acs.est.0c02754, 2020.

Sangiorgi, M., Herndndez-Ceballos, M. A., Jackson, K., Cinelli,
G., Bogucarskis, K., De Felice, L., Patrascu, A., and De Cort,
M.: The European Radiological Data Exchange Platform (EUR-
DEP): 25 years of monitoring data exchange, Earth Syst. Sci.
Data, 12, 109-118, https://doi.org/10.5194/essd-12-109-2020,
2020.

Sonck, M., Desmedt, M., Claes, J., and Sombré, L.: TELERAD:
the radiological surveillance network and early warning sys-
tem in Belgium, in: 12th Congress of the International Radi-
ation Protection Association (IRPA12): Proceedings of a Con-
ference Held in Buenos Aires, Argentina, 19-24 October,
2008, Proceedings Series, International Atomic Energy Agency,
Vienna, https://www.iaea.org/publications/8450/12th-congress-
of-the-international-radiation-protection-association-irpal2 (last
access: 22 November 2021), 2010.

https://doi.org/10.5194/gmd-18-1989-2025


https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1201/b16018
https://doi.org/10.2139/ssrn.4494314
https://doi.org/10.1109/TNS.2022.3169990
https://www.icrp.org/publication.asp?id=ICRP Publication 144
https://www.icrp.org/publication.asp?id=ICRP Publication 144
https://doi.org/10.21105/joss.01143
https://doi.org/10.1016/j.jmva.2009.04.008
https://doi.org/10.1016/j.radphyschem.2018.03.005
https://doi.org/10.1371/journal.pone.0205092
https://doi.org/10.1016/j.jenvrad.2014.07.010
https://doi.org/10.5281/zenodo.10929056
https://doi.org/10.1016/j.jenvrad.2018.01.030
https://doi.org/10.1016/j.jenvrad.2009.03.002
https://doi.org/10.1016/j.nima.2021.165288
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://doi.org/10.1021/es503504y
https://doi.org/10.1016/j.jeconom.2008.12.014
https://www.probabilitycourse.com/
https://www.probabilitycourse.com/
https://doi.org/10.1021/acs.est.0c02754
https://doi.org/10.5194/essd-12-109-2020
https://www.iaea.org/publications/8450/12th-congress-of-the-international-radiation-protection-association-irpa12
https://www.iaea.org/publications/8450/12th-congress-of-the-international-radiation-protection-association-irpa12

J. P. K. W. Frankemodlle et al.: Predicting environmental background radiation 2003

Sportisse, B.: A review of parameterizations for modelling dry
deposition and scavenging of radionuclides, Atmos. Environ.,
41, 2683-2698, https://doi.org/10.1016/j.atmosenv.2006.11.057,
2007.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Biirkner,
P.-C.: Rank-Normalization, Folding, and Localization: An Im-
proved R for Assessing Convergence of MCMC (with Discus-
sion), Bayesian Anal., 16, 667-718, https://doi.org/10.1214/20-
BA1221, 2021.

Vlaamse Milieumaatschappij: Waterinfo, https://www.waterinfo.
be/ (last access: 25 March 2025), 2023.

https://doi.org/10.5194/gmd-18-1989-2025

Wiecki, T., Salvatier, J., Vieira, R., Kochurov, M., Patil, A., Os-
thege, M., Willard, B. T., Engels, B., Martin, O. A., Car-
roll, C., Seyboldt, A., Rochford, A., Paz, L., rpgoldman,
Meyer, K., Coyle, P., Abril-Pla, O., Gorelli, M. E., An-
dreani, V., Kumar, R., Lao, J., Yoshioka, T., Ho, G., Kluyver,
T., Andorra, A., Beauchamp, K., Pananos, D., Spaak, E.,
and larryshamalama: pymcdevs/pymc: v5.13.1, Zenodo [code],
https://doi.org/10.5281/zenodo.10973000, 2024.

Geosci. Model Dev., 18, 1989-2003, 2025


https://doi.org/10.1016/j.atmosenv.2006.11.057
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1214/20-BA1221
https://www.waterinfo.be/
https://www.waterinfo.be/
https://doi.org/10.5281/zenodo.10973000

	Abstract
	Introduction
	Data and methods
	The TELERAD detector network
	Modelling background radiation using Bayesian inference
	Background radiation as a continuous stochastic vector
	Training the mean vector and covariance matrix using Bayesian inference
	Validating the calibrated model using the posterior predictive distribution

	Estimating the 10min background using Bayesian inference

	Calibration and verification
	Predictions using the conditional distribution
	Predictions during operation of BR1
	Conclusions and outlook
	Appendix A: Bayesian inference
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

