Articles | Volume 18, issue 24
https://doi.org/10.5194/gmd-18-10185-2025
https://doi.org/10.5194/gmd-18-10185-2025
Methods for assessment of models
 | 
19 Dec 2025
Methods for assessment of models |  | 19 Dec 2025

Estimation of local training data point densities to support the assessment of spatial prediction uncertainty

Fabian Lukas Schumacher, Christian Knoth, Marvin Ludwig, and Hanna Meyer

Related authors

Investigating Moran’s I Properties for Spatial Machine Learning: A Preliminary Analysis
Jakub Nowosad and Hanna Meyer
AGILE GIScience Ser., 6, 40, https://doi.org/10.5194/agile-giss-6-40-2025,https://doi.org/10.5194/agile-giss-6-40-2025, 2025
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
DEVELOPING TRANSFERABLE SPATIAL PREDICTION MODELS: A CASE STUDY OF SATELLITE BASED LANDCOVER MAPPING
M. Ludwig, J. Bahlmann, E. Pebesma, and H. Meyer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 135–141, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-135-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-135-2022, 2022

Cited articles

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., and Crowther, T. W.: The global tree restoration potential, Science, 365, 76–79, https://doi.org/10.1126/science.aax0848, 2019. a
Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., and Li, S.: FNN: Fast Nearest Neighbor Search Algorithms and Applications, r package version 1.1.3.2, https://CRAN.R-project.org/package=FNN (last access: 17 March 2024), 2023. a
Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., Singh, B. K., and Fierer, N.: A global atlas of the dominant bacteria found in soil, Science, 359, 320–325, https://doi.org/10.1126/science.aap9516, 2018. a
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, International Journal of Climatology, 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017. a
Hengl, T., Jesus, J. M. d., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017. a
Download
Short summary
Machine learning is increasingly used in environmental sciences for spatial predictions, but its effectiveness is challenged when models are applied beyond the areas they were trained on. We propose a Local Training Data Point Density (LPD) approach that considers how well a model's environment is represented by training data. This method provides a valuable tool for evaluating model applicability and uncertainties, crucial for broader scientific and practical applications.
Share