Articles | Volume 17, issue 21
https://doi.org/10.5194/gmd-17-7915-2024
https://doi.org/10.5194/gmd-17-7915-2024
Model evaluation paper
 | 
07 Nov 2024
Model evaluation paper |  | 07 Nov 2024

Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast

Leonardo Olivetti and Gabriele Messori

Related authors

Advances and prospects of deep learning for medium-range extreme weather forecasting
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358, https://doi.org/10.5194/gmd-17-2347-2024,https://doi.org/10.5194/gmd-17-2347-2024, 2024
Short summary

Cited articles

Abrahams, A., Schlegel, R. W., and Smit, A. J.: Variation and Change of Upwelling Dynamics Detected in the World’s Eastern Boundary Upwelling Systems, Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.626411, 2021. a
Arellano, M.: PRACTITIONERS’ CORNER: Computing Robust Standard Errors for Within-groups Estimators, Oxford B. Econ. Stat., 49, 431–434, https://doi.org/10.1111/j.1468-0084.1987.mp49004006.x, 1987. a
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. R. Stat. Soc. B, 57, 289–300, https://www.jstor.org/stable/2346101 (last access: 28 October 2024​​​​​​​), 1995. a
Beucler, T., Pritchard, M., Gentine, P., and Rasp, S.: Towards Physically-Consistent, Data-Driven Models of Convection, in: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, 26 September–2 October 2020, Waikoloa, HI, USA, online, 3987–3990, https://doi.org/10.1109/IGARSS39084.2020.9324569, 2020. a
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast, arXiv [preprint], https://doi.org/10.48550/arXiv.2211.02556, 2022. a
Download
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
Share