
Geosci. Model Dev., 17, 7915–7962, 2024
https://doi.org/10.5194/gmd-17-7915-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odelevaluation

paperDo data-driven models beat numerical models in forecasting
weather extremes? A comparison of IFS HRES,
Pangu-Weather, and GraphCast
Leonardo Olivetti1,2,3 and Gabriele Messori1,2,4

1Department of Earth Sciences, Uppsala University, 75236 Uppsala, Sweden
2Swedish Centre for Impacts of Climate Extremes (climes), Uppsala University, 75236 Uppsala, Sweden
3Centre of Natural Hazards and Disaster Science (CNDS), Uppsala University, 75236 Uppsala, Sweden
4Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden

Correspondence: Leonardo Olivetti (leonardo.olivetti@geo.uu.se)

Received: 5 April 2024 – Discussion started: 10 April 2024
Revised: 16 August 2024 – Accepted: 7 September 2024 – Published: 7 November 2024

Abstract. The last few years have witnessed the emergence
of data-driven weather forecast models capable of competing
with – and, in some respects, outperforming – physics-based
numerical models. However, recent studies have questioned
the capability of data-driven models to provide reliable fore-
casts of extreme events. Here, we aim to evaluate this claim
by comparing the performance of leading data-driven mod-
els in a semi-operational setting, focusing on the predic-
tion of near-surface temperature and wind speed extremes
globally. We find that data-driven models mostly outperform
ECMWF’s physics-based deterministic model in terms of
global RMSE for forecasts made 1–10 d ahead and that they
can also compete in terms of extreme weather predictions in
most regions. However, the performance of data-driven mod-
els varies by region, type of extreme event, and forecast lead
time. Notably, data-driven models appear to perform best for
temperature extremes in regions closer to the tropics and at
shorter lead times. We conclude that data-driven models may
already be a useful complement to physics-based forecasts
in regions where they display superior tail performance but
note that some challenges still need to be overcome prior to
operational implementation.

1 Introduction

The first deep learning models for weather applications date
back to the 1990s (Schizas et al., 1991; Hall et al., 1999),
but it is only in recent years that deep learning models have
become competitive as self-standing medium-range forecast-
ing tools. Since 2022, at least eight different research groups
(Pathak et al., 2022; Bi et al., 2023; Keisler, 2022; Lam
et al., 2023; Chen et al., 2023a; Nguyen et al., 2023; Chen
et al., 2023b; Lang et al., 2024) have claimed to have de-
veloped deep learning models capable of producing more
accurate deterministic forecasts compared to those from the
state-of-the-art physics-based models of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) across
a range of atmospheric variables over multiple lead times.
Recent independent studies (Rasp et al., 2024; Bouallègue
et al., 2024) support these claims, showing how data-driven
models can outperform physics-based models across a wide
range of parameters and metrics. In particular, WeatherBench
2 (Rasp et al., 2024) provides comprehensive global and re-
gional scorecards for comparing forecast models in terms of
RMSE while also making all test predictions produced freely
available to the public.

However, the studies conducted so far have focused on
the average skill of the forecasts, without any special treat-
ment of extreme events. Even though some cases studies
have been conducted – for instance, on cyclone tracking
(Charlton-Perez et al., 2024; Bi et al., 2023; Lam et al.,
2023; Chen et al., 2023b) and surface temperature extremes
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(Bouallègue et al., 2024; Lam et al., 2023) – these are too
limited to allow for a fair assessment of the capacity of data-
driven models to forecast weather extremes globally. The
timely and reliable forecasting of weather extremes plays a
key role in disaster management and risk mitigation (World
Meteorological Organization, 2022; Merz et al., 2020), as
well as in crucial socio-economic functions, such as those
of the energy and insurance sectors (e.g. Kron et al., 2019).
We thus argue that greater emphasis should be placed on un-
derstanding whether data-driven models can provide reliable
forecasts of weather extremes before such models are imple-
mented operationally (Watson, 2022).

In addition, recent studies (Watson, 2022; Olivetti and
Messori, 2024; de Burgh-Day and Leeuwenburg, 2023) prob-
lematise the assumption that strong performance in standard
metrics of average skill should translate by default into an
equally strong performance in the tails of the distribution.
Indeed, there may be several reasons for an asymmetry be-
tween average skill and skill for extremes, including the in-
trinsic sparsity of extreme events in training datasets (Wat-
son, 2022), the use of symmetric loss functions that are inad-
equate for extremes (Xu et al., 2024; Olivetti and Messori,
2024), and the multi-task and multi-step optimisation ap-
proaches used in leading deep learning architectures (e.g. Bi
et al., 2023; Lam et al., 2023). These issues are further exac-
erbated by the fact that the current generation of data-driven
models published in peer-reviewed journals provide deter-
ministic predictions, even though a number of promising ap-
proaches for providing uncertainty estimates for these pre-
dictions exist for older data-driven models (e.g. Scher and
Messori, 2021; Clare et al., 2021) and are currently being ex-
plored for state-of-the-art models (e.g. Price et al., 2024; Hu
et al., 2023; Bi et al., 2023; Zhang et al., 2023; Cisneros et al.,
2023; Guastavino et al., 2022; Kashinath et al., 2021).

This article aims to evaluate whether deep learning models
can provide skilful forecasts of extreme weather by provid-
ing a pragmatic comparison between physics-based and data-
driven models in a semi-operational setting. Specifically, it
compares the performance of ECMWF’s IFS HRES with that
of leading global deep learning models in forecasting near-
surface temperature and wind speed extremes 1–10 d ahead
when provided with the same set of inputs, namely the output
of IFS HRES at time 0. To do so, it makes use of the freely
available forecast data provided by ECMWF and the Weath-
erBench 2 dataset (Rasp et al., 2024). The methods for the
comparisons between models are largely based on the guide-
lines for the evaluation of tail performance provided by Wat-
son (2022): (i) comparisons are given in terms of a standard
metric (RMSE) computed on data beyond extreme quantiles
only, (ii) visual assessment of performance is conducted on
extremes for specific regions/grid points, and (iii) quantile–
quantile plots of extreme quantiles are used to identify pos-
sible inconsistencies in tail estimation. All comparisons are
performed at multiple timescales (1–10 d) and for the whole

globe, with separate metrics for each region following the
ECMWF operational scorecards (ECMWF, 2024).

In the next two sections, we provide an introduction to
the models included in the evaluation and the methods em-
ployed for the comparison. Then, we outline the results of
the comparison for all the variables and regions of interest.
Lastly, we reflect on the results of these comparisons and on
how they may affect the operational implementation of data-
driven models. Additional results for models using ERA5 re-
analysis data (Hersbach et al., 2020) as input are included in
Appendix D.

2 Models and methodology

The rationale behind the choice of models and the method-
ology employed is to make the comparison between data-
driven models and physics-based models as fair as possible.
For this reason, we include in the main text only those data-
driven models from WeatherBench 2 that are able to take the
same set of initial conditions as IFS HRES, ECMWF’s high-
resolution deterministic forecasting system. All the models
discussed in the main text therefore take IFS HRES at time
0 as input and are able to produce 6-hourly forecasts of 2 m
temperature and 10 m wind, the variables according to which
the models are evaluated in this paper. These outputs are, in
turn, compared to the same ground truth, ERA5 (Hersbach
et al., 2020), at a 1.5° horizontal resolution, as in Weather-
Bench 2 (Rasp et al., 2024). Indeed, models taking reanaly-
sis data as input present a conceptual difference from opera-
tional models as they are based on input data that are avail-
able with a considerable time delay and thus cannot be used
in an operational setting.

Two data-driven models fit the criteria established above:
the operational Pangu-Weather (Bi et al., 2023) and Graph-
Cast (Lam et al., 2023) models. We believe these models may
reasonably represent the overall performance of determinis-
tic data-driven models since they display performance simi-
lar to that of other data-driven models across a range of atmo-
spheric and surface variables over multiple lead times (Rasp
et al., 2024). Furthermore, these models employ the two
leading architectures for deterministic data-driven weather
forecasting, namely vision transformers (Dosovitskiy et al.,
2020) and graph neural networks (Scarselli et al., 2009). Yet,
recognising that some subtle differences may be lost by not
including a more diverse range of data-driven models in our
comparison, we present in Appendix D a comparison be-
tween IFS HRES and reanalysis-based deep learning models
– specifically, reanalysis-based Pangu-Weather and Graph-
Cast models, as well as FuXi (Chen et al., 2023b). These are
currently regarded as the best deterministic data-driven mod-
els in terms of RMSE for medium–long-range forecasting
(Rasp et al., 2024).

In this section, we first provide a brief description of each
of the models included in the comparison in the main text and
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then outline the criteria on which the comparison is based.
For a complete description of the models, including a full list
of inputs and outputs, we refer the reader to Rasp et al. (2024)
and Olivetti and Messori (2024), as well as to the original
papers introducing the models described in Sect. 2.1–2.3.

2.1 IFS HRES

IFS HRES is ECMWF’s flagship deterministic high-
resolution model and is widely regarded as one of the
best physics-based numerical-weather-forecast models in the
world (Rasp et al., 2020, 2024). All the parameters included
in the model, as well as its regular updates and improve-
ments, are thoroughly documented on ECMWF’s website
(Blanchonnet, 2022). Currently, IFS HRES takes a much
larger set of inputs than any of the data-driven models. It
also produces hourly forecasts for a very large set of out-
puts and does so at a 0.1° horizontal resolution across 137
pressure levels. The inputs forming IFS HRES’s initial con-
ditions (IFS HRES at time 0) are a mix of in situ observa-
tions from the 3 h surrounding the forecast and model outputs
from the previous IFS HRES run. IFS HRES is included here
as the baseline to which the performance of the data-driven
models is compared. All IFS HRES forecasts were generated
with the operational version of the model used at the time
of the forecast (Rasp et al., 2024), i.e. the model configura-
tion Cy46r1 for forecasts initiated before 30 June 2020 and
Cy47r1 for forecasts initiated after that date.

2.2 Pangu-Weather

Pangu-Weather (Bi et al., 2023) is a data-driven deep learn-
ing model using a vision transformer architecture (Dosovit-
skiy et al., 2020). First developed in 2022 (Bi et al., 2022)
and published in 2023 (Bi et al., 2023), it is the oldest data-
driven model among those included in the comparison. It is
trained on ERA5 reanalysis data from 1979 to 2017 and uses
2018–2019 for validation. It takes as input five upper-air vari-
ables from 13 atmospheric levels and four surface variables,
and it produces forecasts of these variables for the next atmo-
spheric state 6 h ahead in a sequential manner. The output of
the model can then be fed in again as input to obtain forecasts
at longer lead times. In this way, it is possible to obtain fore-
casts up to 10 d ahead at a 0.25° resolution. In its operational
version, analysed in the main text here, Pangu-Weather takes
IFS HRES at time 0 as input, while the version included in
Appendix D takes ERA5 as an initial state. The operational
and reanalysis-based versions of Pangu-Weather are other-
wise identical.

2.3 GraphCast

GraphCast (Lam et al., 2023) is a deep learning model us-
ing a graph-based architecture (Scarselli et al., 2009). First
developed in late 2022 (Lam et al., 2022) and published in
Lam et al. (2023), it builds on earlier work by Keisler (2022).

It is trained on ERA5 reanalysis data from 1979 to 2019
and, in the operational version, is additionally fine-tuned on a
smaller sample of IFS HRES data. It takes as input six atmo-
spheric variables from 37 atmospheric levels, as well as nu-
merous surface variables and masks. GraphCast aims to fore-
cast the next state of the atmosphere as a function of its two
previous states in a sequential manner. Like Pangu-Weather,
it produces 6-hourly forecasts up to 10 d ahead at a 0.25°
resolution. The main difference between the operational ver-
sion analysed in the main text and the version included in
Appendix D is that the operational version does not require
precipitation as input, thus allowing for the use of IFS HRES
at time 0 as input.

2.4 Criteria for model comparison

The comparison between models is based on their perfor-
mance in forecasting cold and hot extremes in 2 m tem-
perature and 10 m wind speed extremes globally. Following
WeatherBench 2 (Rasp et al., 2024), the models are tasked
with making forecasts with a time step of 6 h or less, and all
comparisons are based on a spatial resolution of 1.5°. Fore-
casts are initiated every 12 h (00:00 and 12:00 UTC) for the
period from 1 January 2020 to 16 December 2020, thus pro-
viding 702 comparable forecasts for each lead time and grid
point. Comparisons are performed globally and for regions
included in the ECMWF operational scorecards (ECMWF,
2024), as defined in Table 1.

For the sake of conciseness, we focus our comparison here
on forecasts for 1, 3, 5, 7, and 10 d ahead. We evaluate the
performance of the models based on three different criteria,
largely based on the recommendations for the evaluation of
extreme event forecasts provided by Watson (2022). The cri-
teria are as follows:

1. Accuracy in determining the magnitude of the most ex-
treme data points is assessed globally or within a given
region. To define the extremes, we pool together all
data points for 2020 for the region of choice and set
a threshold based on a quantile of choice from all the
data points. We then consider all data points exceeding
this threshold to be extreme. Accordingly, we allow any
number of global and regional extremes to come from
a specific grid point or time. The number of data points
used for evaluation in each region is thus calculated by
multiplying 702 (the data points at each grid point) by
the number of grid points within the specific region and
then multiplying the result by the percentage of data
points exceeding the chosen quantile-based threshold.
For example, if the top 5 % of events were considered,
the number of data points for evaluation would be calcu-
lated by multiplying 702 by the number of grid points in
the region and then multiplying the result by 0.05. Ac-
curacy is measured in terms of RMSE (lower values are
better), as defined below:
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Table 1. Regions for forecast performance evaluation, in accordance with ECMWF’s operational scorecards (ECMWF, 2024).
AusNZ: Australia and New Zealand.

Region Definition

Northern Hemisphere (extra-tropics) lat ≥ 20°
Southern Hemisphere (extra-tropics) lat ≤−20°
Tropics −20° ≤ lat ≤ 20°
Extra-tropics |lat| ≥ 20°
Arctic lat ≥ 60°
Antarctic lat ≤−60°
Europe 35° ≤ lat ≤ 75°, −12.5° ≤ long ≤ 42.5°
North America 25° ≤ lat ≤ 60°, −120° ≤ long ≤−75°
North Atlantic 25° ≤ lat ≤ 60°, −70° ≤ long ≤−20°
North Pacific 25° ≤ lat ≤ 60°, 145° ≤ long ≤−130°
East Asia 25° ≤ lat ≤ 60°, 102.5° ≤ long ≤ 150°
AusNZ −45° ≤ lat ≤−12.5°, 120° ≤ long ≤ 175°

– For hot and wind speed extremes,

RMSEt

=

√√√√ 1
T IJ

T∑
t

I∑
i

J∑
j

w(i)1ot>Q(o)(ŷt,i,j − ot,i,j )
2. (1)

– For cold extremes,

RMSEt

=

√√√√ 1
T IJ

T∑
t

I∑
i

J∑
j

w(i)1ot<Q(o)(ŷt,i,j − ot,i,j )
2, (2)

where 1,2,3, . . .,T represents the available num-
ber of time points for the given forecast lead time
(T is 702 in our case). Moreover, 1,2,3, . . ., I rep-
resents the number of points of latitude included in
the region of interest; 1,2,3, . . .,J represents the
number of points of longitude included in the re-
gion of interest; ŷ is the forecasted value of the
variable of interest; o is the observed value of the
variable of interest (from ERA5 in our case); and
1ot>Q(o) is an indicator function that takes a value
of 1 for data points above the chosen quantile of the
variable of interest in the given region and takes a
value of 0 otherwise. For cold extremes, 1ot<Q(o)

so that the indicator function takes a value of 1 for
data points below the chosen quantile and takes a
value of 0 otherwise. Differences in performance
between models are assessed for significance at the
5 % level using a paired t test with cluster-robust
standard errors (Liang and Zeger, 1986; Arellano,
1987; Cameron and Miller, 2015), which accounts
for the spatial and temporal clustering of extreme
events. The test is conducted in a two-sided man-
ner when comparing data-driven models with IFS
HRES and in a one-sided manner when specifically

assessing whether the best individual model signif-
icantly outperforms the second-best model within a
specific region.

2. Accuracy in determining the magnitude of grid-point
extremes is considered. Extremes are defined as in cri-
terion 1 (but at the grid-point level) by defining a dif-
ferent threshold and set of extremes for each grid point.
The RMSE is computed according to Eqs. (1) and (2),
with a redefined indicator function. For hot extremes,
the indicator function is given by 1ot,i,j≥Q(oi,j ), taking a
value of 1 for data points above or equal to the quantile
of interest at the given point of latitude and longitude
and taking a value of 0 otherwise. For cold extremes,
the indicator function becomes 1ot,i,j≤Q(oi,j ). Thus, the
number of data points available at each grid point is cal-
culated by multiplying 702 by the percentage of data
points exceeding the chosen quantile.

Grid-point-level differences in performance between
the best data-driven model and IFS HRES are assessed
for significance using the same approach as that used
in criterion 1. The obtained p values are corrected for
multiple testing by applying global false-discovery rates
(Benjamini and Hochberg, 1995; Wilks, 2016) using a
global significance level of 0.1. This corresponds to an
approximate significance level of 0.05 in the presence of
strongly spatially correlated events (Wilks, 2016), such
as near-surface temperature extremes.

3. Calibration of extreme quantiles, where quantile be-
haviour closer to the ground truth (ERA5) is consid-
ered superior to quantile behaviour further away from
it, is assessed. We evaluate extreme quantile behaviour
by considering quantiles between 90 and 99.9 for hot
and wind extremes and quantiles between 10 and 0.1 for
cold extremes. We then produce quantile–quantile plots
in which the extreme quantiles from the forecasts are
plotted against the corresponding quantiles from ERA5.
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The three criteria jointly provide an overall picture
of the performance of the models in forecasting near-
surface temperature and wind extremes at both global
and regional levels (criterion 1), as well as at the local
level (criterion 2), along with insights into the tail be-
haviour of the models when confronted with values at
the edges or beyond the limits of the training distribu-
tion (criterion 3).

3 Results

In this section, we report the results of the model compari-
son performed according to the criteria outlined in Sect. 2.4.
The aim here is both to provide a comprehensive compar-
ison between data-driven and physics-based models and to
identify relevant differences between the data-driven models
themselves.

We start by providing an overview of the performance
of different models globally and in individual regions, con-
sidering all data points – both extreme and non-extreme.
For all models, performance differences between regions are
small, especially for 10 m wind speed (Fig. 1). Both data-
driven models perform significantly better than ECMWF’s
IFS HRES globally and in most regions. Most impressively,
GraphCast significantly outperforms IFS HRES across all re-
gions and lead times.

The difference between GraphCast and Pangu-Weather is
smaller overall, with the largest differences observed in 2 m
temperature forecasts at longer lead times. Notably, Graph-
Cast consistently outperforms Pangu-Weather across all re-
gions in these longer-range forecasts, with differences in the
range of 5 % to 20 % for 10 d forecasts of 2 m temperature.
The strong performance of GraphCast may partly depend
on its training scheme, which assigns additional weight to
surface and lower-tropospheric variables at the expense of
higher atmospheric levels (Lam et al., 2023).

The performance of the data-driven models, especially that
of Pangu-Weather, appears to deteriorate at a faster rate than
that of IFS HRES at longer lead times. This might be a sign
that data-driven models suffer from “blurring” (Bonavita,
2024; Price et al., 2024) – namely, the tendency to revert to
the climatology and produce progressively less skilful fore-
casts with increasing lead time. While this problem applies
to both physical and data-driven models, it has recently been
shown to be prominent among data-driven models (Bonavita,
2024).

Figure 2 provides RMSE comparisons for the most ex-
treme 5 % of data points globally and in each region, in ac-
cordance with criterion 1 (Sect. 2.4). Globally, GraphCast
significantly outperforms IFS HRES across all three cat-
egories over most lead times, with the largest differences
noted for hot and windy extremes. Pangu-Weather performs
more similarly to IFS HRES, with statistically significant im-
provements in performance observed only for hot extremes at

shorter lead-times (1–3 d ahead) and worse performance than
IFS HRES noted for hot and windy extremes at longer lead
times.

Similar to the trends observed for all data, the performance
of both data-driven models on extremes degrades compared
to that of IFS HRES for longer forecast lead times. This is
particularly notable for predictions made 10 d ahead. This
is perhaps not surprising given that the 10 d predictions are
close to the limits of skilful forecasting for extremes. How-
ever, this may also be interpreted as an additional sign of
blurring. The fact that the data-driven models incorporate the
iterative feeding of the most recent atmospheric states to gen-
erate one-step-ahead forecasts may also play a role in this
respect. Indeed, this approach may contribute to the accumu-
lation of small errors over time, which become more relevant
for extreme weather forecasts at longer lead times (Bonavita,
2024).

Regional comparisons between models largely confirm
the aforementioned patterns while also revealing some addi-
tional details. Overall, data-driven models demonstrate bet-
ter performance relative to IFS HRES in the Northern Hemi-
sphere than in the Southern Hemisphere, particularly for cold
extremes. Notably, IFS HRES significantly outperforms both
data-driven models in AusNZ (Australia and New Zealand)
and Antarctica with respect to cold extremes, as well as in
East Asia, North America, and Antarctica with respect to hot
extremes. The comparatively poor performance of the data-
driven models in Antarctica may be attributed to the lower
quality of reanalysis data for this region, which is the basis
on which the data-driven models are trained.

Conversely, GraphCast outperforms IFS HRES in the trop-
ics and the North Pacific across all variables over all lead
times and outperforms IFS HRES in the Arctic with respect
to temperature extremes. We speculate that some of these
regional differences may be attributed to the lack of input
variables relevant to near-surface extremes (e.g. soil mois-
ture and snow and ice cover) in the training of data-driven
models; these variables might play a more prominent role in
certain regions than in others (e.g. soil moisture with respect
to hot extremes in continental North America and East Asia
(Coronato et al., 2020; Liu et al., 2014)).

Additionally, we observe that in most regions, data-driven
models perform better for temperature than for wind ex-
tremes relative to IFS HRES. A possible reason for this might
be the lack of specific training on 10 m wind speed for Graph-
Cast and Pangu-Weather, which are instead trained on u- and
v-wind components separately. This approach may be subop-
timal for wind speed extremes as the non-linear relationship
between errors in the individual wind components and the re-
sultant total wind speed can lead to large errors in wind speed
forecasts. Even a small underestimation in one wind compo-
nent can result in a substantial underestimation of total wind
speed under strong wind conditions.

Figure 3 repeats the analysis presented in Fig. 2 but in-
stead considers the most extreme 1 % of data points in each
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Figure 1. RMSE scorecards for 2 m temperature (a) and 10 m wind speed (b) at global and regional scales, computed on all test data
points. Blue shades indicate performance better than that of IFS HRES, while red shades indicate worse performance. Black borders indicate
significantly different performance compared to IFS HRES (at the 5 % level). AusNZ: Australia and New Zealand.
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Figure 2. RMSE scorecards for (a) cold, (b) hot, and (c) wind extremes at global and regional scales, computed on (a) the lowest 5 % of
data points for 2 m temperature, (b) the highest 5 % of data points for 2 m temperature, and (c) the highest 5 % of data points for 10 m wind
speed. Black borders indicate statistically significant differences in performance compared to IFS HRES (at the 5 % level).

region. The conclusions drawn from Fig. 3 largely hold for
wind and hot extremes but not necessarily for cold extremes.
Specifically, there is a noticeable decline in the performance
of data-driven models, particularly GraphCast, with respect
to cold extremes, both globally and in the extra-tropics. How-
ever, it is important to consider that our approach to selecting
extremes may result in a higher proportion of global cold ex-
tremes originating from Antarctica in Fig. 3 than in Fig. 2.
This could explain the worse performance of the data-driven
models, given their relatively weak performance in this re-
gion.

Additionally, we observe larger regional differences in
Fig. 3 than in previous figures. This may be the result of the
smaller sample size and the larger variability associated with
a smaller number of extreme events. The difference in perfor-
mance between the Northern and Southern hemispheres be-
comes more evident for cold events, while hemispheric dif-
ferences for hot and windy events are often not statistically
significant and largely depend on lead time. Notably, we ob-
serve significant performance differences for cold extremes
in East Asia at shorter lead times, where Pangu-Weather out-
performs other models by up to 40 %. For hot extremes, IFS
HRES significantly outperforms data-driven models in North
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America, East Asia, and AusNZ at longer lead times, while
Pangu-Weather is clearly outperformed by other models. The
strong performance of Pangu-Weather with respect to cold
extremes, combined with its weaker performance relating to
hot extremes, suggests a possible cold bias in some regions.

In terms of regional wind extremes, few results are sta-
tistically significant, and those that are mostly confirm the
performance patterns already discussed: notably, the data-
driven models outperform the physical model in the trop-
ics and tend to show better performance over short rather
than long lead times. The strong performance of the data-
driven models in the tropics for both the top 5 % and top
1 % of events may be related to the use of latitude-based
weights, which drive the best performance towards the Equa-
tor. In terms of mid-latitude performance, the three models
perform similarly overall, with differences between models
being mostly dependent on lead time and rarely statistically
significant.

A summary scorecard of Figs. 1–3 is provided in Fig. 4,
showing which of the three models is best at forecasting
cold, hot, and wind speed extremes, as well as 2 m temper-
ature and 10 m wind speed overall. The summary scorecard
confirms the patterns observed so far, suggesting that data-
driven models are generally superior to IFS HRES in fore-
casting 10 m wind and 2 m temperature when considering
all data points. However, the summary scorecard also shows
that the performance of data-driven models degrades relative
to IFS HRES when considering extreme quantiles, with IFS
HRES being overall superior in forecasting cold extremes in
AusNZ and Antarctica and mostly outperforming data-driven
models in forecasting hot extremes in Europe, North Amer-
ica, and East Asia. Nevertheless, IFS HRES and data-driven
models display comparable performance when forecasting
other types of extremes in these regions. Additionally, the
summary scorecard highlights the progressive deterioration
in the performance of data-driven models compared to IFS
HRES for extremes at longer lead times, likely connected to
the above-mentioned blurring.

Figures 5 and 6 apply criterion 2 (Sect. 2.4) to the com-
parison between models to evaluate grid-point-level differ-
ences in RMSE between IFS HRES and the best data-driven
model for each grid point. The data-driven models are bet-
ter than IFS HRES in terms of overall RMSE in most lo-
cations, with one exception concerning 1 d 2 m temperature
forecasts, where the performance of the models is highly
latitude-dependent. This latitude-dependent pattern can be
observed, to a lesser extent, in all other subfigures, where
data-driven models consistently perform at their best near
the tropics while displaying performance more similar to that
of IFS HRES in the extra-tropics. This supports the above-
mentioned thesis that the latitude-based weights used by the
data-driven models may drive the best performance towards
low-latitude areas (see also Figs. 2 and 3).

Figure 6 provides complementary information by high-
lighting the magnitude of the differences between models,

independent of their statistical significance. As in previous
cases, data-driven models become progressively worse com-
pared to IFS HRES at longer lead times, further supporting
the above-mentioned blurring thesis. Moreover, we notice,
especially for temperature extremes, a tendency for data-
driven models to perform better on the west side of the Pa-
cific and Atlantic oceans and worse on the east side. While
this pattern is not as evident as the latitude-dependent and
lead-time-dependent performance, it is likely tied to the lack
of information on ocean processes and sea-surface temper-
atures as inputs for the data-driven models. This omission
may, for instance, lead to underestimating the effects of
underwater currents and upwelling in regions where these
processes play an important role in defining local climates
(e.g. Abrahams et al., 2021; Jacox et al., 2015; Lemos and
Pires, 2004). The lack of information on sea-surface temper-
atures might also be connected to the subpar performance
of data-driven models regarding 10 m wind speed in specific
areas within the Intertropical Convergence Zone, such as
the Democratic Republic of Congo and northwestern South
America (Chiang et al., 2002).

Figures 7 and 8 correspond to Figs. 5 and 6 but focus
only on extreme events, namely the 5 % most extreme data
points at each grid point during the test period. Fewer differ-
ences between models are statistically significant when look-
ing specifically at extremes, likely due to the smaller sample
size (n= 36) and the fact that IFS HRES and the data-driven
models perform more similarly overall. We observe, in par-
ticular, only a few significant differences between IFS HRES
and the data-driven models regarding wind speed extremes,
where the high variance in the magnitude of these wind speed
extremes may affect the size of the test statistic and prevent
the achievement of statistical significance, even in the pres-
ence of large absolute differences in performance.

Despite this, it is still possible to identify some clear pat-
terns. Once more, data-driven models perform best in the
tropics overall and worse closer to the poles. This is partic-
ularly true for hot extremes, with IFS HRES clearly outper-
forming data-driven models near the Arctic and in vast ocean
areas of the southern extra-tropics. This is largely in line with
the findings shown in Figs. 1–4 and is likely ascribable to
the same reasons. Additionally, in line with what was previ-
ously found in the above-mentioned plots, we find evidence
of blurring, especially for cold extremes.

When examining the magnitude of differences between
the models (Fig. 8), we observe significant discrepancies
in terms of temperature extremes, primarily near the poles
and over the oceans. Specifically, for hot extremes, data-
driven models tend to perform worse on the eastern sides
of ocean basins, consistent with the findings in Fig. 6. Re-
garding wind speed extremes, the overall poorer performance
of data-driven models may again be attributed to the lack of
separate training for u- and v-wind components, which can
lead to amplified errors for extremes. Additionally, we ob-
serve that IFS HRES consistently outperforms data-driven
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Figure 3. RMSE scorecards for (a) cold, (b) hot, and (c) wind extremes at global and regional scales, computed on (a) the lowest 1 % of
data points for 2 m temperature, (b) the highest 1 % of data points for 2 m temperature, and (c) the highest 1 % of data points for 10 m wind
speed. Black borders indicate statistically significant differences in performance compared to IFS HRES (at the 5 % level).

models in many densely populated regions, including parts
of the US, China, and northern India. Although these differ-
ences are mostly not statistically significant, they nonethe-
less highlight the need for caution when considering the op-
erationalisation of data-driven models for forecasting wind
speed extremes.

Lastly, we compare the models on the basis of criterion
3 (Sect. 2.4), namely on the ability of different models to
reproduce the tail behaviour of ERA5. As in the previous
cases, we start by looking at global extremes at multiple lead
times (Fig. 9) in order to assess the tail behaviour of the fore-

casts. Figure 9 suggests that all models appear to be well cali-
brated in forecasting global cold extremes, while data-driven
models tend to underestimate the magnitude of hot and wind
speed extremes, especially at longer lead times. This increas-
ing underestimation of extremes at longer lead times by data-
driven models is in line with previous findings in this paper
related to blurring.

As in previous cases, regional patterns reveal further com-
plexities pertaining to the behaviour of the three models. Fig-
ure 10 suggests that all models tend to underestimate cold
extremes in the Arctic and North Pacific. Additionally, data-
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Figure 4. (a–f) Best models in terms of tail RMSE, computed on (a) the lowest 5 % of data points for 2 m temperature, (b) the highest 5 % of
data points for 2 m temperature, (c) the highest 5 % of data points for 10 m wind speed, (d) the lowest 1 % of data points for 2 m temperature,
(e) the highest 1 % of data points for 2 m temperature, and (f) the highest 1 % of data points for 10 m wind speed. (g–h) Best models in
terms of overall RMSE for (g) 2 m temperature and (h) 10 m wind speed. Black borders indicate statistically significantly better performance
compared to the other models (at the 5 % level).

driven models tend to underestimate cold extremes in the
Antarctic, and IFS HRES and GraphCast also do so in Eu-
rope. The largest underestimation occurs in the Arctic, where
the data points corresponding to the coldest temperatures are
underestimated by 2–3 K on average across all models. This
is in line with previous findings suggesting that data-driven
models struggle more with extreme forecasts further away
from the tropics. Moreover, we find that the underestimation
of cold extremes is, in many cases, more severe for Graph-
Cast than for Pangu-Weather, reinforcing the impression that
Pangu-Weather might have a cold bias compared to Graph-
Cast.

This thesis is also supported by Fig. 11, which con-
versely shows a more severe underestimation of hot extremes
for Pangu-Weather and better tail reliability for GraphCast.
However, even in this case, IFS HRES displays the best

tail reliability overall, while both data-driven models tend to
underestimate extremes in several regions, including North
America, East Asia, Europe, the tropics, and the North Pa-
cific. AusNZ appears to be the only region where some of
the models (IFS HRES and GraphCast) overestimate the av-
erage magnitude of the extremes, a finding for which we do
not have an immediate explanation. Once more, data-driven
models seem to suffer from a more severe lack of calibration
in regions further away from the Equator, with the largest un-
derestimations occurring in North America, where the data-
driven models underestimate the data points corresponding
to the warmest temperatures by around 2 K on average.

Much like it does for temperature extremes, IFS HRES
displays almost perfect tail behaviour for wind extremes
(Fig. 12), whereas data-driven models tend to slightly under-
estimate wind speed extremes in all regions. The differences
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Figure 5. Single-grid-point RMSE comparison for all data points of 2 m temperature and 10 m wind speed. The blue colour indicates that the
best data-driven deep learning (DL) model at the corresponding grid point is significantly better than IFS HRES at the 5 % level, while the
red colour indicates that IFS HRES is better. The grey colour indicates no statistically significant differences. Shown are (a–b) 1 d forecasts,
(c–d) 3 d forecasts, (e–f) 5 d forecasts, (g–h) 7 d forecasts, and (i–j) 10 d forecasts.
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Figure 6. Magnitude of single-grid-point RMSE differences between IFS HRES and the best data-driven model at each grid point for all data
points of (a) 2 m temperature and (b) 10 m wind speed. Blue shades indicate better performance demonstrated by the data-driven model, while
red shades indicate better performance demonstrated by IFS HRES. Shown are (a–b) 1 d forecasts, (c–d) 3 d forecasts, (e–f) 5 d forecasts,
(g–h) 7 d forecasts, and (i–j) 10 d forecasts.
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Figure 7. As in Fig. 5 but for cold, hot, and wind speed extremes. The extremes are defined as in Fig. 2 but for individual grid points. Shown
are (a–c) 1 d forecasts, (d–f) 3 d forecasts, (g–i) 5 d forecasts, (j–l) 7 d forecasts, and (m–o) 10 d forecasts. The number of data points per
grid point is 36.

https://doi.org/10.5194/gmd-17-7915-2024 Geosci. Model Dev., 17, 7915–7962, 2024



7928 L. Olivetti and G. Messori: Do data-driven models beat numerical models in forecasting weather extremes?

Figure 8. As in Fig. 6 but for cold, hot, and windy extremes. The extremes are defined as in Fig. 2 but for individual grid points. Shown are
(a–c) 1 d forecasts, (d–f) 3 d forecasts, (g–i) 5 d forecasts, (j–l) 7 d forecasts, and (m–o) 10 d forecasts. The number of data points per grid
point is 36.
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between the models – especially between GraphCast and
Pangu-Weather – are, however, smaller overall. The largest
difference in tail reliability between GraphCast and Pangu-
Weather occurs in the tropics, where, as shown in Figs. 2 and
3, GraphCast appears to outperform Pangu-Weather.

4 Discussion and conclusions

This paper analyses the performance of ECMWF’s IFS
HRES, GraphCast, and Pangu-Weather in forecasting near-
surface temperature and wind speed extremes up to 10 d
ahead in a semi-operational setting. Following Watson
(2022), the models were evaluated with the help of three cri-
teria (Sect. 2.4), assessing forecast performance (criteria 1
and 2) and the calibration of the forecasts in the tails of the
distribution (criterion 3). The results suggest that data-driven
models are superior to IFS HRES in forecasting 2 m tempera-
ture and 10 m wind speed on average in most regions (Fig. 4),
especially in the tropics (Figs. 1 and 5). Notable exceptions
include the eastern side of ocean basins for 2 m temperature
and selected areas within the Intertropical Convergence Zone
for 10 m wind speed. The weaker performance of data-driven
models in these areas might be attributed to the lack of infor-
mation related to ocean dynamics and the omission of sea-
surface temperature among their input variables.

In terms of extremes, the performance of the data-driven
models is comparable overall with that of IFS HRES, es-
pecially with regard to 10 m wind speed (Fig. 7). For tem-
perature extremes, the data-driven models generally outper-
form IFS HRES in the tropics while exhibiting comparatively
weaker performance at higher latitudes. Throughout our eval-
uation, we observe a pronounced meridional behaviour in the
quality of the data-driven forecasts, with a gradual deteriora-
tion of performance noted towards higher latitudes. We spec-
ulate that this may partly depend on the use of latitude-based
weights in the training of the data-driven models, which
pushes these models towards the minimisation of large er-
rors closer to the Equator at the expense of performance at
higher latitudes.

Our results for 10 m wind speed provide additional ar-
guments for exercising caution in the operationalisation of
data-driven models. IFS HRES outperforms the data-driven
models in several densely populated land areas, including
Europe, the US, and southeastern Asia (Fig. 8). This may
partially depend on the stronger spatial heterogeneity of ex-
tremes over land regions, where the larger number of vari-
ables and the physics-based framework of IFS HRES provide
an advantage. The overall weaker performance of the data-
driven models for wind speed extremes, compared to tem-
perature extremes, may also depend on the separate training
of u- and v-wind components employed by GraphCast and
Pangu-Weather.

A more general finding is that the data-driven models per-
form best in relative terms at shorter lead times, whereas IFS

HRES performs best in relative terms at longer lead times
(Figs. 1–3). We attribute this behaviour to the phenomenon of
blurring, which has been highlighted as a problem faced by
deterministic data-driven models in recent studies (Bonavita,
2024; Price et al., 2024). As lead time and uncertainty in-
crease, data-driven models tend to revert to the climatology
to minimise large errors. Although this behaviour is common
to all weather models, it is more pronounced in determinis-
tic data-driven models than in numerical models. However,
probabilistic data-driven models that are currently under de-
velopment (e.g. Price et al., 2024; Lang et al., 2024; Os-
karsson et al., 2024) show promise in addressing this issue.
Preliminary results indicate that these models perform better
at longer lead times and have a rate of performance decline
more similar to that of IFS ENS than to that of deterministic
data-driven models (Price et al., 2024).

IFS HRES also appears to be the overall best in terms of
tail calibration (Figs. 9–12), even though the differences be-
tween IFS HRES and the data-driven models are small for
forecasts of global extremes, especially at shorter lead times
(Fig. 9). Differences between the two data-driven models are
also small overall, with GraphCast oftentimes performing
better in the tropics and Pangu-Weather performing better
at mid-latitudes (Figs. 4 and 10–12). Additionally, Pangu-
Weather appears to be better for cold extremes, while Graph-
Cast performs better for hot extremes.

In the main text, we compare the semi-operational versions
of the data-driven models, taking IFS HRES at time 0 as in-
put, with IFS HRES, using ERA5 as the ground truth for all
the models. In Appendix D, we shift the focus to comparing
reanalysis-based data-driven models with IFS HRES, utilis-
ing different ground truths: ERA5 for the data-driven models
and IFS HRES at time 0 for the physics-based model. The
findings in Appendix D generally support those in the main
text (Figs. D1–D7). As noted in the main text, the data-driven
models show an improvement over the physics-based model
in terms of average skill, with the exception of short-term 2 m
temperature forecasts (Figs. D1 and D4), Additionally, the
data-driven models are competitive in forecasting extreme
events (Figs. D2–D4), with a few exceptions. Specifically,
IFS HRES continues to outperform all data-driven models
in forecasting cold spells over short lead times, though this
might partially be a consequence of the different ground
truths used for IFS HRES and the data-driven models. At
the grid-point level (Figs. D5–D12), the data-driven models
are highly competitive in terms of average skill (Fig. D5),
with FuXi standing out due to its remarkable performance in
forecasting 2 m temperature at longer lead times. In terms of
extremes (Fig. D7), IFS HRES remains superior over land for
shorter lead times, but the data-driven models progressively
close the gap in the medium range (Fig. D12).

As suggested in the previous literature, some additional
challenges need to be addressed before data-driven models
can be fully implemented operationally. These challenges in-
clude the lack of uncertainty information provided by the de-
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Figure 9. QQ (quantile–quantile) plots of the most extreme 10 % of values for 2 m temperature (cold and hot) and 10 m wind speed forecasts
vs. ground truth (ERA5; dashed grey line). Shown are (a–c) 1 d forecasts, (d–f) 3 d forecasts, (g–i) 5 d forecasts, (j–l) 7 d forecasts, and
(m–o) 10 d forecasts.
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Figure 10. Regional QQ plots of 5 d forecasts for the coldest 10 % of 2 m temperature data points, based on ERA5 2 m temperature data.

terministic forecasts (Molina et al., 2023; de Burgh-Day and
Leeuwenburg, 2023; Scher and Messori, 2021; Clare et al.,
2021) and the lack of physical constraints in the forecasts
generated by the models (Kashinath et al., 2021; Beucler
et al., 2020). Moreover, with the exception of GraphCast,
none of the data-driven models that we analysed here can
forecast precipitation, which, in extreme cases, is a key me-
teorological hazard. Finally, further evaluations of extreme

forecast behaviour may be necessary. Our analysis is limited
to a narrow range of near-surface extremes and, due to cur-
rent data availability, to extremes that occurred in 2020. This
limits our ability to draw conclusions about long-term perfor-
mance. The short time period considered also exposes our re-
sults to sensitivity regarding low-frequency modes of climate
variability, which modulate the occurrence of extreme events
and may also affect their predictability (Goddard and Ger-
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Figure 11. As in Fig. 10 but for the hottest 10 % of 2 m temperature data points, based on ERA5 2 m temperature data.

shunov, 2020; Luo and Lau, 2020; Chartrand and Pausata,
2020). We therefore encourage more comprehensive evalu-
ations in the near future as more data become available and
deep-learning models are extended to produce forecasts of
other relevant variables for weather extremes (e.g. wind gusts
and precipitation).

We also note that all forecast evaluation metrics, includ-
ing those used here, suffer from limitations: for criteria 1 and

2, the RMSE is also the objective function of the machine
learning (ML) models, which means that evaluating against
RMSE is not a fully independent benchmark. Additionally,
criteria 1 and 2 are not proper or consistent scores, meaning
that it would be possible to design a data-driven model that
optimises for tail RMSE that outperforms all other models
while ignoring other aspects of performance (Taggart, 2022;
Lerch et al., 2017). We note, however, that this limitation ap-
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Figure 12. Regional QQ plots of 5 d forecasts for the windiest 10 % of data points, based on ERA5 10 m wind speed data.

plies to most metrics of tail performance used by determin-
istic models found in the previous literature, including the
widely popular precision–recall curves. Similarly, criterion
3 is only a measure of tail calibration, which can be max-
imised using post-processing schemes that place greater em-
phasis on tail behaviour than on the rest of the distribution.
For this reason, inference based on any of these measures
alone is not meaningful, and any tail comparison between

models should be integrated with comparisons for the en-
tire distribution of the variables, such as those presented in
Figs. 1 and 5, and with more qualitative measures of perfor-
mance. Additionally, as highlighted by Watson (2022), raw
measures of performance and QQ (quantile–quantile) plots
should also be complemented by a careful study of weather
charts from case studies. In particular, we emphasise that bet-
ter performance in just one of the three criteria used in this
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paper should not be interpreted in isolation as evidence of the
overall superiority of one model over the others.

To strengthen our results, we include, in Appendix B and
C, two additional metrics of tail performance that cannot be
hedged by data-driven models in the same way that crite-
ria 1 and 2 can. The results there are mostly in line with
what is shown in the main text, suggesting that none of the
data-driven models included in this paper have hedged the
tail RMSE metrics included in our main analysis. However,
the metrics presented in Appendix B and C suffer from a
fundamental limitation: they select either part of or all of
their extreme samples based on forecasts rather than on an
independent ground truth. This leads to a progressive deteri-
oration in the selection criteria for extremes with lead time,
thus introducing a fundamental issue regarding the validity of
the sample. Moreover, the fact that the sample becomes in-
creasingly less representative of the ground truth extremes at
longer lead times tends to favour data-driven models, which,
as shown by WeatherBench 2 (Rasp et al., 2024) and in this
paper, are mostly superior in terms of standard metrics based
on the overall distribution of near-surface variables.

We conclude that data-driven models can already com-
pete with physics-based models in the forecasting of near-
surface temperature and wind extremes. However, the per-
formance of data-driven models varies by region, type of
extreme event, and forecast lead time. The main challenges
holding data-driven models back appear to be blurring, poor
performance at high latitudes, and a lack of some key input
variables. As solutions to blurring appear to be in sight, we
argue that more attention should be given to loss functions
and input variables. We therefore encourage more studies in
this direction, particularly to investigate whether removing
latitude-based weights from the training routine might lead
to better performance with regard to extremes at higher lati-
tudes.

As of now, we can already envisage a hybrid approach
using both physics- and data-driven models to forecast ex-
tremes, with physics-based models supplemented by data-
driven models in areas where data-driven models have been
shown to be superior in terms of tail performance, such as in
the tropics. This hybrid usage could take the form of a fully
hybrid model, such as the recent neural general circulation
model NeuralGCM (Kochkov et al., 2024), or even the form
of simple post-processing schemes based on weighted aver-
ages of physics-based and data-driven forecasts.
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Appendix A: Pixel-by-pixel comparisons including
individual data-driven models

This section includes figures complementary to Figs. 5–8,
displaying which of the models performs best at each pixel
(Figs. A1 and A2) and the magnitude of corresponding dif-
ferences (Figs. A3 and A4).

Figure A1. Single-grid-point RMSE comparison for all data points of 2 m temperature and 10 m wind speed. Shown are (a–b) 1 d forecasts,
(c–d) 3 d forecasts, (e–f) 5 d forecasts, (g–h) 7 d forecasts, and (i–j) 10 d forecasts.
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Figure A2. Single-grid-point RMSE comparison for cold, hot, and wind speed extremes. Shown are (a–c) 1 d forecasts, (d–f) 3 d forecasts,
(g–i) 5 d forecasts, (j–l) 7 d forecasts, and (m–o) 10 d forecasts.
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Figure A3. Magnitude of single-grid-point RMSE differences between the two best models at each grid point for all data points of 2 m
temperature and 10 m wind speed. Shown are (a–c) 1 d forecasts, (d–f) 3 d forecasts, (g–i) 5 d forecasts, (j–l) 7 d forecasts, and (m–o) 10 d
forecasts.
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Figure A4. As in Fig. A3 but for cold, hot, and wind speed extremes.
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Appendix B: Comparison of consistent scores
emphasising tail performance

We report here the results of additional evaluations of tail
performance based on the Taggart (2022) mean-squared-
error (MSE) decomposition (Eqs. 1 and 2 in Taggart, 2022),
where we emphasise performance in the tails by means of
a rectangular partition, with the cutoff values determined by
extreme quantiles of all ground truth (ERA5) data points for
the given region. In Figs. B1 and B2, we only include the
scores for the part of the decomposition emphasising tail per-
formance (S1 for cold extremes and S2 for hot and wind
speed extremes). Since S is the MSE in this case, it can be
easily computed by squaring the values reported in Fig. 1.
Since S = S1+ S2, the remaining part of the decomposition
not displayed here can be obtained by subtracting the results
reported below from the MSE (S).

Figure B1. Scorecards for (a) cold, (b) hot, and (c) windy extremes based on rectangular partitions, with the (a) 5th and (b–c) 95th quantiles
of all test data points in the given region presented as cutoff values. Blue shades indicate performance better than that of IFS HRES, while
red shades indicate worse performance.
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Figure B2. Scorecards for (a) cold, (b) hot, and (c) windy extremes based on rectangular partitions, with the (a) 1st and (b–c) 99th quantiles
of all test data points in the given region presented as cutoff values. Blue shades indicate performance better than that of IFS HRES, while
red shades indicate worse performance.
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Appendix C: Comparison of extremes selected based on
the IFS HRES forecasts

We report here the results of additional evaluations of tail
performance, where we select the extremes based on the IFS
HRES forecast and respective quantile thresholds instead of
the ground truth, i.e. the ERA5 reanalysis. This approach has
the advantage of preventing the risk of hedging caused by
data-driven models, but it has the fundamental disadvantage
of introducing validity issues into the extreme sample since
the quality of the forecasts – and, therefore, the quality of the
selection of the extremes – decreases with lead time.

Figure C1. RMSE scorecards for (a) cold, (b) hot, and (c) wind extremes at global and regional scales, computed on (a) the lowest 5 % of
data points for 2 m temperature, (b) the highest 5 % of data points for 2 m temperature, and (c) the highest 5 % of data points for 10 m wind
speed, selected on the basis of the IFS HRES forecast. Black borders indicate statistically significant differences in performance compared
to IFS HRES (at the 5 % level).
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Figure C2. RMSE scorecards for (a) cold, (b) hot, and (b) wind extremes at global and regional scales, computed on (a) the lowest 1 % of
data points for 2 m temperature, (b) the highest 1 % of data points for 2 m temperature, and (c) the highest 1 % of data points for 10 m wind
speed, selected on the basis of the IFS HRES forecast. Black borders indicate statistically significant differences in performance compared
to IFS HRES (at the 5 % level).
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Figure C3. (a–f) Best models in terms of tail RMSE, computed on (a) the lowest 5 % of data points for 2 m temperature, (b) the highest
5 % of data points for 2 m temperature, (c) the highest 5 % of data points for 10 m wind speed, (d) the lowest 1 % of data points for 2 m
temperature, (e) the highest 1 % of data points for 2 m temperature, and (f) the highest 1 % of data points for 10 m wind speed, selected on
the basis of the IFS HRES forecast. (g–h) Best models in terms of overall RMSE for (g) 2 m temperature and (h) 10 m wind speed. Black
borders indicate statistically significantly better performance compared to the other models (at the 5 % significance level).
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Figure C4. As in Fig. 7 but with the extremes selected on the basis of the IFS HRES forecast instead of the ground truth (ERA5).
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Figure C5. As in Fig. 8 but with the extremes selected on the basis of the IFS HRES forecast instead of the ground truth (ERA5).
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Appendix D: Comparison of reanalysis-based
data-driven models

Here, we provide global and regional scorecards and grid-
point-level comparisons for data-driven models using ERA5
reanalysis data as input. Following WeatherBench 2 (Rasp
et al., 2024), we attempt to make the comparison between
reanalysis-based data-driven models and IFS HRES as fair
as possible by using IFS HRES at t = 0, instead of ERA5, as
the ground truth for IFS HRES.

In this comparison, we also include FuXi (Chen et al.,
2023b), a recent data-driven model building upon the work
of Bi et al. (2023). Forecasts generated by FuXi are cur-
rently available only on WeatherBench 2 for the reanalysis-
based version of the model (Rasp et al., 2024), which is why
we include FuXi here but not in the comparisons presented
in the main text. FuXi is trained on ERA5 reanalysis data
from 1979 to 2017 and uses a vision transformer architec-
ture (Dosovitskiy et al., 2020). FuXi’s main innovation com-
pared to previous models is its cascading optimisation ap-
proach, through which different sub-models are developed
for different forecasting ranges, with the purpose of improv-
ing medium–long-range forecasts (Chen et al., 2023b).
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Figure D1. As in Fig. 1 but using ERA5 as the ground truth for the data-driven forecasts and IFS HRES at time 0 as the ground truth for the
IFS HRES forecasts.
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Figure D2. As in Fig. 2 but using ERA5 as the ground truth for the data-driven forecasts and IFS HRES at time 0 as the ground truth for the
IFS HRES forecasts.
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Figure D3. As in Fig. 3 but using ERA5 as the ground truth for the data-driven forecasts and IFS HRES at time 0 as the ground truth for the
IFS HRES forecasts.
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Figure D4. As in Fig. 4 but using ERA5 as the ground truth for the data-driven forecasts and IFS HRES at time 0 as the ground truth for the
IFS HRES forecasts.
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Figure D5. As in Fig. 5 but including FuXi among the possible data-driven models and using ERA5 as the ground truth for the data-driven
forecasts and IFS HRES at time 0 as the ground truth for the IFS HRES forecasts.
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Figure D6. As in Fig. 6 but including FuXi among the possible data-driven models and using ERA5 as the ground truth for the data-driven
forecasts and IFS HRES at time 0 as the ground truth for the IFS HRES forecasts.

Geosci. Model Dev., 17, 7915–7962, 2024 https://doi.org/10.5194/gmd-17-7915-2024



L. Olivetti and G. Messori: Do data-driven models beat numerical models in forecasting weather extremes? 7953

Figure D7. As in Fig. 7 but including FuXi among the possible data-driven models and using ERA5 as the ground truth for the data-driven
forecasts and IFS HRES at time 0 as the ground truth for the IFS HRES forecasts.
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Figure D8. As in Fig. 8 but including FuXi among the possible data-driven models and using ERA5 as the ground truth for the data-driven
forecasts and IFS HRES at time 0 as the ground truth for the IFS HRES forecasts.
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Figure D9. As in Fig. A1 but using ERA5 as the ground truth for the data-driven forecasts and IFS HRES at time 0 as the ground truth for
the IFS HRES forecasts.
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Figure D10. As in Fig. A2 but using ERA5 as the ground truth for the data-driven forecasts and IFS HRES at time 0 as the ground truth for
the IFS HRES forecasts.
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Figure D11. As in Fig. A3 but using ERA5 as the ground truth for the data-driven forecasts and IFS HRES at time 0 as the ground truth for
the IFS HRES forecasts.

https://doi.org/10.5194/gmd-17-7915-2024 Geosci. Model Dev., 17, 7915–7962, 2024



7958 L. Olivetti and G. Messori: Do data-driven models beat numerical models in forecasting weather extremes?

Figure D12. As in Fig. A4 but using ERA5 as the ground truth for the data-driven forecasts and IFS HRES at time 0 as the ground truth for
the IFS HRES forecasts.
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Code and data availability. The forecasts generated by all models
are freely available through WeatherBench 2 (Rasp et al., 2024).
All the data-driven models are trained using the ERA5 reanalysis
dataset (Hersbach et al., 2020), which is freely available through the
Copernicus Climate Change Service via https://doi.org/10.24381/
cds.adbb2d47 (Hersbach et al., 2023a) and https://doi.org/10.24381/
cds.bd0915c6 (Hersbach et al., 2023b), as well as through Weath-
erBench 2 (Rasp et al., 2024). The code used to train the data-
driven models included in the comparison is provided by the au-
thors of the models themselves, and details on how to access the
code and pre-trained models are provided in the respective papers
(Bi et al., 2023; Lam et al., 2023; Chen et al., 2023b). The code
developed by the authors of this paper to perform the compar-
isons and generate the plots included here is available on Zenodo at
https://doi.org/10.5281/zenodo.13329880 (Olivetti, 2024), as well
as on the GitHub page (https://github.com/LeonardoOlivetti, last
access: 28 October 2024) of the corresponding author, Leonardo
Olivetti.
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