Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Stephen Björn Wirth,Johanna Braun,Jens Heinke,Sebastian Ostberg,Susanne Rolinski,Sibyll Schaphoff,Fabian Stenzel,Werner von Bloh,Friedhelm Taube,and Christoph Müller
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic Agriculture, Kiel University, Hermann-Rodewald-Str. 9, 24118 Kiel, Germany
Johanna Braun
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Werner von Bloh
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Friedhelm Taube
Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic Agriculture, Kiel University, Hermann-Rodewald-Str. 9, 24118 Kiel, Germany
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
We present a new approach to modelling biological nitrogen fixation (BNF) in the...