Articles | Volume 17, issue 21
https://doi.org/10.5194/gmd-17-7815-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-7815-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
Ha Thi Minh Ho-Hagemann
CORRESPONDING AUTHOR
Institute of Coastal Research, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Vera Maurer
Deutscher Wetterdienst, Offenbach, Germany
Stefan Poll
Institute of Bio and Geosciences Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
CASA-SDL Terrestrial Systems, Jülich Supercomputing Centre (JSC), Jülich, Germany
Irina Fast
German Climate Computing Center (DKRZ), Hamburg, Germany
Related authors
Vera Maurer, Wibke Düsterhöft-Wriggers, Rebekka Beddig, Janna Meyer, Claudia Hinrichs, Ha Thi Minh Ho-Hagemann, Joanna Staneva, Birte-Marie Ehlers, and Frank Janssen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3407, https://doi.org/10.5194/egusphere-2025-3407, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
With CORDEX-CMIP6, ensembles of regional climate projections enable analyses on regional climate change. We present a regional coupled ocean-atmosphere model setup for Europe, tailored to provide consistent climate change information for the North and Baltic Seas. The simulation effectively captures the mean climate, variability, and extremes such as storm surges and marine heatwaves. Using this setup, we will contribute climate projections to EURO-CORDEX.
Stefan Hagemann, Thao Thi Nguyen, and Ha Thi Minh Ho-Hagemann
Ocean Sci., 20, 1457–1478, https://doi.org/10.5194/os-20-1457-2024, https://doi.org/10.5194/os-20-1457-2024, 2024
Short summary
Short summary
We have developed a methodology for the bias correction of simulated river runoff to force ocean models in which low, medium, and high discharges are corrected once separated at the coast. We show that the bias correction generally leads to an improved representation of river runoff in Europe. The methodology is suitable for model regions with a sufficiently high coverage of discharge observations, and it can be applied to river runoff based on climate hindcasts or climate change simulations.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Vera Maurer, Wibke Düsterhöft-Wriggers, Rebekka Beddig, Janna Meyer, Claudia Hinrichs, Ha Thi Minh Ho-Hagemann, Joanna Staneva, Birte-Marie Ehlers, and Frank Janssen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3407, https://doi.org/10.5194/egusphere-2025-3407, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
With CORDEX-CMIP6, ensembles of regional climate projections enable analyses on regional climate change. We present a regional coupled ocean-atmosphere model setup for Europe, tailored to provide consistent climate change information for the North and Baltic Seas. The simulation effectively captures the mean climate, variability, and extremes such as storm surges and marine heatwaves. Using this setup, we will contribute climate projections to EURO-CORDEX.
Stefan Hagemann, Thao Thi Nguyen, and Ha Thi Minh Ho-Hagemann
Ocean Sci., 20, 1457–1478, https://doi.org/10.5194/os-20-1457-2024, https://doi.org/10.5194/os-20-1457-2024, 2024
Short summary
Short summary
We have developed a methodology for the bias correction of simulated river runoff to force ocean models in which low, medium, and high discharges are corrected once separated at the coast. We show that the bias correction generally leads to an improved representation of river runoff in Europe. The methodology is suitable for model regions with a sufficiently high coverage of discharge observations, and it can be applied to river runoff based on climate hindcasts or climate change simulations.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Cited articles
Bauer, T. P., Holtermann, P., Heinold, B., Radtke, H., Knoth, O., and Klingbeil, K.: ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM, Geosci. Model Dev., 14, 4843–4863, https://doi.org/10.5194/gmd-14-4843-2021, 2021.
Bechtold, P., Kohler, M., Jung, T., Leutbecher, M., Rodwell, M., Vitart, F., and Balsamo, G.: Advances in predicting atmospheric variability with the ECMWF model, 2008: From synoptic to decadal time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008.
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Model. Softw., 61, 249–265, https://doi.org/10.1016/j.envsoft.2014.04.002, 2014
Copernicus Climate Change Service, Climate Data Store: ORAS5 global ocean reanalysis monthly data from 1958 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://cds.climate.copernicus.eu/datasets (last access: October 2024), 2021.
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017.
Daewel, U. and Schrum, C.: Simulating long-term dynamics of the coupled North Sea and Baltic Sea ecosystem with ECOSMO II: Model description and validation, J. Marine Syst., 119–120, 30–49, 2013.
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta, M., and Brdar, S.: Large eddy simulation using the general circulation model ICON, J. Adv. Model. Earth Syst., 7, 963–986, https://doi.org/10.1002/2015MS000431, 2015.
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vogel, G.: A Description of the Nonhydrostatic Regional COSMO-Model Part II Physical Parameterizations. Tech. Rep., Deutscher Wetterdienst, Offenbach, Germany, 177 pp., https://doi.org/10.5676/DWD_pub/nwv/cosmo-doc_6.00_II, 2021.
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, J. Atmos. Ocean. Technol., 19, 183-204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002
Farkas, C. and Skarbøvik, E.: OSPAR Contracting Parties' RID 2019 Data Report, NIBIO – Norwegian Institute for Bioeconomy Research, 57 pp., https://www.ospar.org/documents?v=46559 (last access: 18 October 2024), 2021.
Forge: svn – Revision 15814: /NEMO/releases/release-3.6/NEMOGCM, forge [code], http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/releases/release-3.6/NEMOGCM (last access: October 2017), 2024.
Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., Hohenegger, C., Kornblueh, L., Köhler, M., Manzini, E., Mauritsen, T., Nam, C., Raddatz, T., Rast, S., Reinert, D., Sakradzija, M., Schmidt, H., Schneck, R., Schnur, R., Silvers, L., Wan, H., Zängl, G., and Stevens, B.: ICON-A, the atmosphere component of the ICON EarthSystem Model: I. Model description, J. Adv. Model. Earth Syst., 10, 1613–1637, https://doi.org/10.1002/2017MS001242, 2018.
Gitlab: icon, Release export icon-2.6.6-rc based on tag tags/icon-2.6.6, Gitlab [code], https://gitlab.dkrz.de/icon/icon (last access: May 2023), 2023.
Gitlab: icon-model, Release export ICON 2024.10 based on tag tags/icon-2024.10, Gitlab [code], https://gitlab.dkrz.de/icon/icon-model/-/releases/icon-2024.10-public (last access: October 2024), 2024.
Good, S., Fiedler, E., Mao, C., Martin, M.J., Maycock, A., Reid, R., Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses, Remote Sens., 12, 720, https://doi.org/10.3390/rs12040720, 2020.
Hagemann, S. and Dümenil, L.: A parametrization of the lateral waterflow for the global scale, Clim. Dynam., 14, 17–31, https://doi.org/10.1007/s003820050205, 1998.
Hagemann, S. and Ho-Hagemann, H. T. M.: The Hydrological Discharge Model – a river runoff component for offline and coupled model applications (5.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.4893099, 2021.
Hagemann, S., Stacke, T., and Ho-Hagemann, H. T. M.: High resolution discharge simulations over Europe and the Baltic Sea catchment, Front. Earth Sci., 8, 12, https://doi.org/10.3389/feart.2020.00012, 2020.
Hagemann, S. and Stacke, T.: Complementing ERA5 and E-OBS with high-resolution river discharge over Europe, Oceanologia, 65, 230–248, https://doi.org/10.1016/j.oceano.2022.07.003, 2022.
Hagemann, S., Ho-Hagemann, H. T. M., and Hanke, M.: The Hydrological Discharge Model – a river runoff component for offline and coupled model applications (5.2.2), Zenodo [code], https://doi.org/10.5281/zenodo.10405875, 2023.
Hagemann, S., Nguyen, T. T., and Ho-Hagemann, H. T. M.: A three-quantile bias correction with spatial transfer for the correction of simulated European river runoff to force ocean models, Ocean Sci., accepted, https://doi.org/10.5194/egusphere-2024-1774, 2024.
Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0: new aspects for coupling software in Earth system modelling, Geosci. Model Dev., 9, 2755–2769, https://doi.org/10.5194/gmd-9-2755-2016, 2016.
Haylock, M., Hofstra, N., Klein Tank, A., Klok, E., Jones, P., and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O., Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C., Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S., Deneke,H., Di Girolamo,P., Evaristo, R., Fischer, J., Frank, C., Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A., Hege, H-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S., Knippertz, P., Kuhn, A., van Laar, T., Macke, A., Maurer, V., Mayer, B., Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F., Pospichal, B., Röber,N., Scheck, L., Seifert, A., Seifert, P., Senf, F., Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M.,Wulfmeyer, V., Zängl, G., Zhang, D., and Quaas, J.: Large-eddy simulations over Germany using ICON: A comprehensive evaluation, Q. J. Roy. Meteor. Soc., 143, 69–100, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E. a., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999-2049. https://doi.org/10.1002/qj.3803, 2020.
Hill, C., DeLuca, C., Balaji, Suarez, M., and Da Silva, A.: The architecture of the Earth System Modeling Framework, Comput. Sci. Eng., 6, 18–28, https://doi.org/10.1109/MCISE.2004.1255817, 2004.
Hogan, R. J. and Bozzo, A.: A flexible and efficient radiation scheme for the ECMWF model, J. Adv. Model Earth Sys., 10, 1990–2008, 2018.
Ho-Hagemann, H. T. M.: The OASIS3-MCT Coupling Interface for ICON-CLM (1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5833118, 2022.
Ho-Hagemann, H. T. M.: Regional Earth system model GCOAST-AHOI v2.0 with ICON-CLM (1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.11057794, 2024.
Ho-Hagemann, H. T. M., Hagemann, S., and Rockel, B.: On the role of soil moisture in the generation of heavy rainfall during the Oder flood event in July 1997, Tellus A, 67, 28661, https://doi.org/10.3402/tellusa.v67.28661, 2015.
Ho-Hagemann, H. T. M., Gröger, M., Rockel, B., Zahn, M., Geyer, B., and Meier, H. E. M.: Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe, Clim. Dynam., 49, 3851–3876, https://doi.org/10.1007/s00382-017-3546-8, 2017.
Ho-Hagemann, H. T. M., Hagemann, S., Grayek, S., Petrik, R., Rockel, B., Staneva, J., Feser, F., and Schrum, C.: Internal model variability of the regional coupled system model GCOAST-AHOI, Atmosphere, 11, 227, https://doi.org/10.3390/atmos11030227, 2020.
Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crüger, T., De-Vrese, P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W. A., Nabel, J. E. M. S., Notz, D., Pohlmann, H., Putrasahan, D. A., Raddatz, T., Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., Von Storch, J.-S., Wachsmann, F., Wieners, K.-H., Ziemen, F., Stevens, B., Marotzke, J., and Claussen, M.: The ICON Earth System Model version 1.0, J. Adv. Model. Earth Syst., 14, e2021MS002813. https://doi.org/10.1029/2021MS002813, 2022.
Kinne, S.: Aerosol radiative effects with MACv2, Atmos. Chem. Phys., 19, 10919–10959, https://doi.org/10.5194/acp-19-10919-2019, 2019.
Korn, P.: Formulation of an unstructured grid model for global ocean dynamics, J. Comput. Phys., 339, 525–552, https://doi.org/10.1016/j.jcp.2017.03.009, 2017.
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research, https://doi.org/10.5065/D6KK98Q6, 2004.
Lewis, H. W., Castillo Sanchez, J. M., Siddorn, J., King, R. R., Tonani, M., Saulter, A., Sykes, P., Pequignet, A.-C., Weedon, G. P., Palmer, T., Staneva, J., and Bricheno, L.: Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf?, Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, 2019.
Lemmen, C., Hofmeister, R., Klingbeil, K., Nasermoaddeli, M. H., Kerimoglu, O., Burchard, H., Kösters, F., and Wirtz, K. W.: Modular System for Shelves and Coasts (MOSSCO v1.0) – a flexible and multi-component framework for coupled coastal ocean ecosystem modelling, Geosci. Model Dev., 11, 915–935, https://doi.org/10.5194/gmd-11-915-2018, 2018.
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine (Version v3.6-patch), Tech. rep., Pôle De Modélisation De L'institut Pierre-simon Laplace (IPSL), Zenodo [software], https://doi.org/10.5281/ZENODO.3248739, 2017.
Maisonnave, E. and Caubel, A.: LUCIA, load balancing tool for OASIS coupled systems, https://cerfacs.fr/wp-content/uploads/2018/10/GLOBC_TR_Maisonnave_lucia_arnaud_2014.pdf (last access: June 2021), 2014.
Pein, J., Eisele, A., Hofmeister, R., Sanders, T., Daewel, U., Stanev, E. V., van Beusekom, J., Staneva, J., and Schrum, C.: Nitrogen cycling in the Elbe estuary from a joint 3D-modelling and observational perspective, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2019-265, 2019.
Pfeifroth, U., Kothe, S., Müller, R., Trentmann, J., Hollmann, R., Fuchs, P., and Werscheck, M.: Surface Radiation Data Set – Heliosat (SARAH) – Edition 2, Satellite Application Facility on Climate Monitoring, https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002, 2017.
Pham, T. V., Steger, C., Rockel, B., Keuler, K., Kirchner, I., Mertens, M., Rieger, D., Zängl, G., and Früh, B.: ICON in Climate Limited-area Mode (ICON release version 2.6.1): a new regional climate model, Geosci. Model Dev., 14, 985–1005, https://doi.org/10.5194/gmd-14-985-2021, 2021.
Raupach, M. R. and Shaw, R. H.: Averaging procedures for flow within vegetation canopies, Bound.-Lay. Meteorol., 22, 79–90, https://doi.org/10.1007/BF00128057, 1982.
Raschendorfer, M.: The new turbulence parameterization of LM, in: COSMO Newsletter No. 1, edited by: Doms, G. and Schättler, U., 89–97 pp., 2001.
Reick, C., Gayler, V., Goll, D., Hagemann, S., Heidkamp, M., Nabel, J., Raddatz, T., Roeckner, E., Schnur, R., and Wilkenskjeld, S.: JSBACH 3 – The land component of the MPI Earth System Model: Documentation of version 3.2, Berichte zur Erdsystemforschung, 240, Max Planck Institute for Meteorology, Hamburg, https://doi.org/10.17617/2.3279802, 2021.
Renault, L., Masson, S., Oerder, V., Colas, F., and McWilliams, J. C.: Modulation of the oceanic mesoscale activity by the mesoscale thermal feedback to the atmosphere, J. Phys. Oceanogr., 53, 1651–1667, https://doi.org/10.1175/JPO-D-22-0256.1, 2023.
Rieger, D., Köhler, M., Hogan, R., Schäfer, S., Seifert, A., Lozar, A. D., and Zängl, G.: ecRad in ICON – Implementation Overview, Reports on ICON, Deutscher Wetterdienst, Offenbach, Germany, https://doi.org/10.5676/DWD_pub/nwv/icon_004, 2019.
Rockel, B. and Geyer, B.: SPICE (Starter Package for ICON-CLM Experiments) (2.1), Zenodo [code], https://doi.org/10.5281/zenodo.7298390, 2022.
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Russo, E., Geyer, B., Petrik, P., Keuler, K., Adinol, M., Feldmann, H., Goergen, K., Kerkweg, A., Khain, P., Ludwig, P., Mertens, M., Pothapakula, P., Raffa, M., Rockel, B., Schulz, J.-P., Sulis, M., Ho-Hagemann, H. T. M., Truhetz, H., Uzan, L., Voggenberger, U., and Steger, C.: CLM Community WG EVAL, COordinated Parameter Testing project 2 (COPAT2): COSMO-CLM 6.0 clm1 recommended model configuration, COSMO Technical Reports, No. 51, https://doi.org/10.5676/DWD_pub/nwv/cosmo-tr_51, 2024.
Schloen, J., Stanev, E. V., and Grashorn, S.: Wave-current interactions in the southern North Sea: The impact on salinity, Ocean Modell., 111, 19–37, https://doi.org/10.1016/j.ocemod.2017.01.003, 2017.
Schrodin, R. and Heise, E.: The multi-layer-version of the DWD soil model TERRA/LM. Consortium for Small-Scale Modelling (COSMO) Tech. Rep 2001, 2, 16, https://doi.org/10.5676/DWD_pub/nwv/cosmo-tr_2, 2001.
Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C.: A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow, Mon. Weather Rev., 142, 3466–3483, 2014.
Schulz, J.-P., Vogel, G., Becker, C., Kothe, S., Rummel, U., and Ahrens, B.: Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil Meteorol. Z., 25, 607–620, https://doi.org/10.1127/metz/2016/0537, 2016.
Schulz, J.-P. and Vogel, G.: Improving the processes in the land surface scheme TERRA: bare soil evaporation and skin temperature, Atmosphere, 11, p. 513, https://doi.org/10.3390/atmos11050513, 2020.
Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K., and Wirtz, K. W.: The large scale impact of offshore windfarm structures on pelagic primary production in the southern North Sea, Hydrobiologia, 845, 35, https://doi.org/10.1007/s10750-018-3653-5, 2019.
Staneva, J., Alari, V., Breivik, Ø., Bidlot, J.-R., and Mogensen, K.: Effects of wave-induced forcing on a circulation model of the North Sea, Ocean Dynam., 67, 81–101, https://doi.org/10.1007/s10236-016-1009-0, 2016.
Staneva, J., Schrum, C., Behrens, A., Grayek, S., Ho-Hagemann, H., Alari, V., Breivik, Ø., and Bidlot, J.-R.: A North Sea – Baltic Sea regional coupled models: atmosphere, wind, waves and ocean, in: Operational Oceanography serving Sustainable Marine Development, edited by: Buch, E., Fernández, V., Eparkhina, D., Gorringe, P., and Nolan, G., Proceedings of the Eight EuroGOOS International Conference, 516 pp., ISBN 978-2-9601883-3-2, 2018.
Stevens, B., Fiedler, S., Kinne, S., Peters, K., Rast, S., Müsse, J., Smith, S. J., and Mauritsen, T.: MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6, Geosci. Model Dev., 10, 433–452, https://doi.org/10.5194/gmd-10-433-2017, 2017.
Svendsen, L. M. and Gustafsson, B.: Waterborne nitrogen and phosphorus inputs and water flow to the Baltic Sea 1995–2018, https://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/ (last access: October 2024), 2022.
Tegen, I., Hollrigl, P., Chin, M., Fung, I., Jacob, D., and Penner, J.: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results, J. Geophys. Res., 102, 23895–23915, 1997.
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev., 117, 1779–1800, 1989.
Van den Besselaar, E., Haylock, M., Van der Schrier, G., and Klein Tank, A.: A European daily high-resolution observational gridded data set of sea level pressure, J. Geophys. Res.-Atmos., 116, D11110, https://doi.org/10.1029/2010JD015468, 2011.
Wahle, K., Staneva, J., Koch, W., Fenoglio-Marc, L., Ho-Hagemann, H. T. M., and Stanev, E. V.: An atmosphere–wave regional coupled model: improving predictions of wave heights and surface winds in the southern North Sea, Ocean Sci., 13, 289–301, https://doi.org/10.5194/os-13-289-2017, 2017.
Wiese, A., Staneva, J., Ho-Hagemann, H. T. M., Grayek, S., Koch, W., and Schrum, C.: Internal Model Variability of Ensemble Simulations with a Regional Coupled Wave-Atmosphere Model GCOAST, Front. Mar. Sci., 7, 596843, https://doi.org/10.3389/fmars.2020.596843, 2020.
Wiese, A., Stanev, E., Koch, W., Behrens, A., Geyer, B., and Staneva, J.: The Impact of the Two-Way Coupling between Wind Wave and Atmospheric Models on the Lower Atmosphere over the North Sea, Atmosphere, 2019, 10, 386, https://doi.org/10.3390/atmos10070386, 2019.
Will, A., Akhtar, N., Brauch, J., Breil, M., Davin, E., Ho-Hagemann, H. T. M., Maisonnave, E., Thürkow, M., and Weiher, S.: The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global earth system models using OASIS3-MCT: description and performance, Geosci. Model Dev., 10, 1549–1586, https://doi.org/10.5194/gmd-10-1549-2017, 2017.
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015.
Zhang, Y. and Perrie, W.: Feedback Mechanisms For The Atmosphere And Ocean Surface, Bound.-Lay. Meteorol., 100, 321–348, https://doi.org/10.1023/A:1018996505248, 2001.
Zhang, W., Wirtz, K., Daewel, U., Wrede, A., Kröncke, I., Kuhn, G., Neumann, A., Meyer, J., Ma, M., and Schrum, C.: The budget of macrobenthic reworked organic carbon – a modelling case study of the North Sea, J. Geophys. Res.-Biogeosci., 124, 1446–1471, https://doi.org/10.1029/2019JG005109, 2019.
Zhang, W., Porz, L., Yilmaz, R., Wallmann, K., Spiegel, T., Neumann, A., Holtappels, M., Kasten, S., Kuhlmann, J., Ziebarth, N., Taylor, B., Ho-Hagemann, H.T.M., Bockelmann, F.-D., Daewel, U., Bernhardt, L., and Schrum, C.: Impacts of bottom trawling on long-term carbon storage in shelf sea sediments, Nat. Geosci., https://doi.org/10.1038/s41561-024-01581-4, 2024.
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model...