Articles | Volume 17, issue 20
https://doi.org/10.5194/gmd-17-7423-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-7423-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
Saeed Harati-Asl
CORRESPONDING AUTHOR
Roger Tomlinson Laboratory, Department of Geography, McGill University, Montréal, H3A 0B9, Canada
Liliana Perez
Laboratory of Environmental Geosimulation (LEDGE), Department of Geography, Université de Montréal, Montréal, H2V 0B3, Canada
Roberto Molowny-Horas
Centro de Investigación Ecològica i Aplicaciones Forestales (CREAF), Bellaterra, Cerdanyola de Vallès, 08193, Spain
Related authors
No articles found.
Navid Mahdizadeh Gharakhanlou and Liliana Perez
Adv. Cartogr. GIScience Int. Cartogr. Assoc., 5, 20, https://doi.org/10.5194/ica-adv-5-20-2025, https://doi.org/10.5194/ica-adv-5-20-2025, 2025
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-3141-2021, https://doi.org/10.5194/nhess-21-3141-2021, 2021
Short summary
Short summary
Wildfires are an integral part of ecosystems worldwide, but they also pose a serious risk to human life and property. To further our understanding of wildfires and allow experimentation without recourse to live fires, this study presents an agent-based modelling approach to combine the complexity possible with physical models with the ease of computation of empirical models. Model calibration and validation show bottom-up simulation tracks the core elements of complexity of fire across scales.
Phillipe Gauvin-Bourdon, James King, and Liliana Perez
Earth Surf. Dynam., 9, 29–45, https://doi.org/10.5194/esurf-9-29-2021, https://doi.org/10.5194/esurf-9-29-2021, 2021
Short summary
Short summary
Arid ecosystem health is a complex interaction between vegetation and climate. Coupled with impacts from grazing, it can result in quick changes in vegetation cover. We present a wind erosion and vegetation health model with active grazers over 100-year tests to find the limits of arid environments for different levels of vegetation, rainfall, wind speed, and grazing. The model shows the resilience of grass landscapes to grazing and its role as an improved tool for managing arid landscapes.
Cited articles
Anderson, C., Hildreth, J. A. D., and Howland, L.: Is the desire for status a fundamental human motive? A review of the empirical literature, Psychol. Bull., 141, 574–601, https://doi.org/10.1037/a0038781, 2015.
Axelrod, R.: An evolutionary approach to norms, Am. Polit. Sci. Rev., 80, 1095–1111, 1986.
Barbier, E. B.: The Concept of Sustainable Economic Development, Environ. Conserv., 14, 101–110, https://doi.org/10.1017/S0376892900011449, 1987.
Batty, M. and Torrens, P. M.: Modelling and prediction in a complex world, Futures, 37, 745–766, https://doi.org/10.1016/j.futures.2004.11.003, 2005.
Batty, M., Xie, Y., and Sun, Z.: Modeling urban dynamics through GIS-based cellular automata, Comput. Environ. Urban Syst., 23, 205–233, https://doi.org/10.1016/S0198-9715(99)00015-0, 1999.
BC Ministry of Forests: British Columbia's Forests And Their Management, 24 pp., https://www.for.gov.bc.ca/hfd/pubs/docs/mr/mr113/BC_Forest_Management.pdf (last access: 25 March 2024), 2003.
BC Ministry of Forests: BC MPB Observed Cumulative Kill – vol. 12 [data set], https://www.for.gov.bc.ca/ftp/HRE/external/!publish/web/BCMPB/Year12/ (last access: 19 September 2019), 2015.
Berkes, F. and Folke, C.: Linking social and ecological systems for resilience and sustainability, in: Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience, edited by: Berkes, F., Folke, C., and Colding, J., Cambridge University Press, 1–26, ISBN-10: 0521785626, ISBN-13: 978-0521785624, 2000.
Blundell, A. G. and Gullison, R. E.: Poor regulatory capacity limits the ability of science to influence the management of mahogany, Forest Policy Econ., 5, 395–405, https://doi.org/10.1016/S1389-9341(03)00038-8, 2003.
Bone, C., Dragicevic, S., and Roberts, A.: A fuzzy-constrained cellular automata model of forest insect infestations, Ecol. Modell., 192, 107–125, https://doi.org/10.1016/j.ecolmodel.2005.09.013, 2006.
Bonnell, T. R., Campennì, M., Chapman, C. A., Gogarten, J. F., Reyna-Hurtado, R. A., Teichroeb, J. A., Wasserman, M. D., and Sengupta, R.: Emergent Group Level Navigation: An Agent-Based Evaluation of Movement Patterns in a Folivorous Primate, PLoS One, 8, e78264, https://doi.org/10.1371/journal.pone.0078264, 2013.
Bourceret, A., Amblard, L., and Mathias, J. D.: Governance in social-ecological agent-based models: A review, Ecol. Soc., 26, https://doi.org/10.5751/ES-12440-260238, 2021.
Braun, D. and Guston, D. H.: Principal-agent theory and research policy: An introduction, Sci. Public Policy, 30, 302–308, https://doi.org/10.3152/147154303781780290, 2003.
Brown, B. J., Hanson, M. E., Liverman, D. M., and Merideth, R. W.: Global sustainability: Toward definition, Environ. Manage., 11, 713–719, https://doi.org/10.1007/BF01867238, 1987.
Brundtland, G. H.: Report of the World Commission on environment and development: “our common future”, World Commission on Environment and Development (WCED). Our Common Future. Oxford and New York: Oxford University Press, 383 pp., ISBN 0 19 282080 X, 1987.
Castle, C. and Crooks, A.: Principles and concepts of agent-based modelling for developing geospatial simulations, Centre for Advanced Spatial Analysis (UCL), London, UK, ISSN 1467-1298, 2006.
Cialdini, R. B., Reno, R. R., and Kallgren, C. A.: A Focus Theory of Normative Conduct: Recycling the Concept of Norms to Reduce Littering in Public Places, J. Pers. Soc. Psychol., 58, 1015–1026, https://doi.org/10.1037/0022-3514.58.6.1015, 1990.
Clarke, K. C., Hoppen, S., and Gaydos, L.: A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area, Environ. Plan. B Plan. Des., 24, 247–261, https://doi.org/10.1068/b240247, 1997.
Cosens, B., Ruhl, J. B., Soininen, N., Gunderson, L., Belinskij, A., Blenckner, T., Camacho, A. E., Chaffin, B. C., Craig, R. K., Doremus, H., Glicksman, R., Heiskanen, A.-S., Larson, R., and Similä, J.: Governing complexity: Integrating science, governance, and law to manage accelerating change in the globalized commons, P. Natl. Acad. Sci. USA, 118, e2102798118, https://doi.org/10.1073/pnas.2102798118, 2021.
Crawford, S. E. and Ostrom, E.: A grammar of institutions, Am. Polit. Sci. Rev., 89, 582–600, 1995.
Daily, G. C.: Management objectives for the protection of ecosystem services, Environ. Sci. Policy, 3, 333–339, https://doi.org/10.1016/S1462-9011(00)00102-7, 2000.
de Almeida, C. M., Batty, M., Monteiro, A. M. V., Câmara, G., Soares-Filho, B. S., Cerqueira, G. C., and Pennachin, C. L.: Stochastic cellular automata modeling of urban land use dynamics: Empirical development and estimation, Comput. Environ. Urban Syst., 27, 481–509, https://doi.org/10.1016/S0198-9715(02)00042-X, 2003.
De Young, R.: New ways to promote proenvironmental behavior: Expanding and evaluating motives for environmentally responsible behavior, J. Soc. Issues, 56, 509–526, https://doi.org/10.1111/0022-4537.00181, 2000.
Farrow, K., Grolleau, G., and Ibanez, L.: Social Norms and Pro-environmental Behavior: A Review of the Evidence, Ecol. Econ., 140, 1–13, https://doi.org/10.1016/j.ecolecon.2017.04.017, 2017.
Feeny, D., Berkes, F., McCay, B. J., and Acheson, J. M.: The Tragedy of the Commons: Twenty-two years later, Hum. Ecol., 18, 1–19, https://doi.org/10.1007/BF00889070, 1990.
Filotas, E., Parrott, L., Burton, P. J., Chazdon, R. L., Coates, K. D., Coll, L., Haeussler, S., Martin, K., Nocentini, S., Puettmann, K. J., Putz, F. E., Simard, S. W., and Messier, C.: Viewing forests through the lens of complex systems science, Ecosphere, 5, 1–23, https://doi.org/10.1890/ES13-00182.1, 2014.
Forest Practices Board: Tree Species Harvested In Areas Affected By Mountain Pine Beetles, https://www.bcfpb.ca/wp-content/uploads/2016/04/SR33-Tree-Species-Harvested-in-Areas-Affected-by-MPB.pdf (last access: 25 March 2024), 2007.
Forest Practices Board: Biodiversity Conservation during Salvage Logging in the Central Interior of BC, https://www.bcfpb.ca/wp-content/uploads/2016/04/SR35-Salvage-Logging.pdf (last access: 25 March 2024), 2009.
Gaudreau, J., Perez, L., and Drapeau, P.: BorealFireSim: A GIS-based cellular automata model of wildfires for the boreal forest of Quebec in a climate change paradigm, Ecol. Inform., 32, 12–27, https://doi.org/10.1016/j.ecoinf.2015.12.006, 2016.
Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H. H., Weiner, J., Wiegand, T., and DeAngelis, D. L.: Pattern-oriented modeling of agent-based complex systems: Lessons from ecology, Science, 310, 987–991, https://doi.org/10.1126/science.1116681, 2005.
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe'er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U., and DeAngelis, D. L.: A standard protocol for describing individual-based and agent-based models, Ecol. Modell., 198, 115–126, https://doi.org/10.1016/j.ecolmodel.2006.04.023, 2006.
Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., and Railsback, S. F.: The ODD protocol: A review and first update, Ecol. Modell., 221, 2760–2768, https://doi.org/10.1016/j.ecolmodel.2010.08.019, 2010.
Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M.-S., Stillman, R. A., Thiele, J. C., and Ayllón, D.: The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism, J. Artif. Soc. Soc. Simul., 23, 7, https://doi.org/10.18564/jasss.4259, 2020.
Harati, S., Perez, L., and Molowny-Horas, R.: Integrating neighborhood effect and supervised machine learning techniques to model and simulate forest insect outbreaks in british columbia, canada, Forests, 11, 1215, https://doi.org/10.3390/f11111215, 2020.
Harati, S., Perez, L., and Molowny-Horas, R.: Promoting the emergence of behavior norms in a principal–agent problem – an agent-based modeling approach using reinforcement learning, Appl. Sci., 11, 8368, https://doi.org/10.3390/app11188368, 2021a.
Harati, S., Perez, L., Molowny-Horas, R., and Pontius, R. G.: Validating models of one-way land change: an example case of forest insect disturbance, Landsc. Ecol., 36, 2919–2935, https://doi.org/10.1007/s10980-021-01272-0, 2021b.
Harati-Asl, S., Perez, L., and Molowny-Horas, R.: Datasets for Model flipflopSEM, OSF [data set], https://doi.org/10.17605/OSF.IO/URJQ8, 2024.
Janssen, M. A. and Ostrom, E.: Empirically Based, Agent-based models, Ecol. Soc., 11, 37, https://www.jstor.org/stable/26265994 (last access: 25 March 2024), 2006a.
Janssen, M. A. and Ostrom, E.: Governing Social-Ecological Systems, in: Handbook of Computational Economics (vol. 2), edited by: Tesfatsion, L. and Judd, K. L., Elsevier, 1465–1509, https://doi.org/10.1016/S1574-0021(05)02030-7, 2006b.
Kaplan, S.: New ways to promote proenvironmental behavior: Human nature and environmentally responsible behavior, J. Soc. Issues, 56, 491–508, https://doi.org/10.1111/0022-4537.00180, 2000.
Katan, J. and Perez, L.: ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread, Nat. Hazards Earth Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-3141-2021, 2021.
Katzev, R. D. and Johnson, T. R.: Promoting Energy Conservation: An Analysis of Behavioral Research, Westview Press, ISBN 0813373379, 1987.
Kriebel, D., Tickner, J., Epstein, P., Lemons, J., Levins, R., Loechler, E. L., Quinn, M., Rudel, R., Schettler, T., and Stoto, M.: The precautionary principle in environmental science, Environ. Health Perspect., 109, 871–876, https://doi.org/10.1289/ehp.01109871, 2001.
Lambin, E. F. and Geist, H. (Eds.): Land-Use and Land-Cover Change, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/3-540-32202-7, 2006.
Lambin, E. F., Geist, H., and Rindfuss, R. R.: Introduction: Local Processes with Global Impacts, in: Land-Use and Land-Cover Change, edited by: Lambin, E. F. and Geist, H., Springer Berlin Heidelberg, Berlin, Heidelberg, 1–8, https://doi.org/10.1007/3-540-32202-7_1, 2006.
Lazaric, N., Le Guel, F., Belin, J., Oltra, V., Lavaud, S., and Douai, A.: Determinants of sustainable consumption in France: the importance of social influence and environmental values, J. Evol. Econ., 30, 1337–1366, https://doi.org/10.1007/s00191-019-00654-7, 2020.
Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H., and Taylor, W. W.: Complexity of Coupled Human and Natural Systems, Science, 317, 1513–1516, https://doi.org/10.1126/science.1144004, 2007.
Maclauchlan, L. E. and Brooks, J. E. (Eds.): Strategies and tactics for managing the mountain pine beetle Dendroctonus ponderosae, B.C. Forest Service, Kamloops Region Forest Health, Kamloops, BC, 60 pp., 1994.
Millennium Ecosystem Assessment: Ecosystems and their services, in: Ecosystems and Human Well-being: A Framework for Assessment, Island Press, Washington, DC, 49–70, ISBN 1-55963-403-0, 2003.
Mosler, H.-J.: Self-dissemination of environmentally-responsible behavior: The influence of trust in a commons dilemma game, J. Environ. Psychol., 13, 111–123, https://doi.org/10.1016/S0272-4944(05)80144-6, 1993.
Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., and Schwarz, N.: Describing human decisions in agent-based models – ODD + D, an extension of the ODD protocol, Environ. Model. Softw., 48, 37–48, https://doi.org/10.1016/j.envsoft.2013.06.003, 2013.
National Research Council: Advancing Land Change Modeling: Opportunities and Research Requirements, National Academies Press, Washington, D.C., https://doi.org/10.17226/18385, 2014.
Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein, N. J., and Griskevicius, V.: Normative Social Influence is Underdetected, Personal. Soc. Psychol. Bull., 34, 913–923, https://doi.org/10.1177/0146167208316691, 2008.
North, D. C.: Institutions, Institutional Change and Economic Performance, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511808678, 1990.
North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., and Sydelko, P.: Complex adaptive systems modeling with Repast Simphony, Complex Adapt. Syst. Model., 1, 3, https://doi.org/10.1186/2194-3206-1-3, 2013.
Nyborg, K., Anderies, J. M., Dannenberg, A., Lindahl, T., Schill, C., Schlüter, M., Adger, W. N., Arrow, K. J., Barrett, S., Carpenter, S., Chapin, F. S., Crépin, A.-S., Daily, G., Ehrlich, P., Folke, C., Jager, W., Kautsky, N., Levin, S. A., Madsen, O. J., Polasky, S., Scheffer, M., Walker, B., Weber, E. U., Wilen, J., Xepapadeas, A., and de Zeeuw, A.: Social norms as solutions, Science, 354, 42–43, https://doi.org/10.1126/science.aaf8317, 2016.
Omoto, A. M. and Snyder, M.: Sustained helping without obligation: Motivation, longevity of service, and perceived attitude change among AIDS volunteers, J. Pers. Soc. Psychol., 68, 671–686, https://doi.org/10.1037/0022-3514.68.4.671, 1995.
Ostrom, E.: Governing the commons: The evolution of institutions for collective action, Cambridge University Press, Cambridge, UK, ISBN-10: 0521405998, ISBN-13: 978-1933771779, 1990.
Ostrom, E.: A General Framework for Analyzing Sustainability of Social-Ecological Systems, Science, 325, 419–422, https://doi.org/10.1126/science.1172133, 2009.
O'Sullivan, D.: Complexity Science and Human Geography, Trans. Inst. Br. Geogr., 29, 282–295, https://doi.org/10.1111/j.0020-2754.2004.00321.x, 2004.
Parrott, L., Chion, C., Martins, C. C. A., Lamontagne, P., Turgeon, S., Landry, J. A., Zhens, B., Marceau, D. J., Michaud, R., Cantin, G., Ménard, N., and Dionne, S.: A decision support system to assist the sustainable management of navigation activities in the St. Lawrence River Estuary, Canada, Environ. Model. Softw., 26, 1403–1418, https://doi.org/10.1016/j.envsoft.2011.08.009, 2011.
Perez, L. and Dragicevic, S.: An agent-based approach for modeling dynamics of contagious disease spread, Int. J. Health Geogr., 8, 50, https://doi.org/10.1186/1476-072X-8-50, 2009.
Perez, L. and Dragicevic, S.: Modeling mountain pine beetle infestation with an agent-based approach at two spatial scales, Environ. Model. Softw., 25, 223–236, https://doi.org/10.1016/j.envsoft.2009.08.004, 2010.
Pooyandeh, M. and Marceau, D. J.: A spatial web/agent-based model to support stakeholders' negotiation regarding land development, J. Environ. Manage., 129, 309–323, https://doi.org/10.1016/j.jenvman.2013.07.028, 2013.
Railsback, S. F. and Grimm, V.: Agent-based and Individual-based Modeling: A Practical Introduction, Princeton University Press, ISBN-10: 0691190836, 2012.
R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org/ (last access: 17 September 2024), 2019.
Ross, H. L.: Perspectives on social order, McGraw-Hill, New York, ISBN-10: 0070538727 ISBN-13: 978-0070538726, 1973.
Savarimuthu, B. T. R. and Cranefield, S.: Norm creation, spreading and emergence: A survey of simulation models of norms in multi-agent systems, Multiagent Grid Syst., 7, 21–54, https://doi.org/10.3233/MGS-2011-0167, 2011.
Schlüter, M., Hinkel, J., Bots, P. W. G., and Arlinghaus, R.: Application of the SES framework for model-based analysis of the dynamics of social-ecological systems, Ecol. Soc., 19, 36, https://doi.org/10.5751/ES-05782-190136, 2014.
Scott, J.: Rational Choice Theory, in: Understanding Contemporary Society: Theories of the Present, edited by: Browning, G., Halcli, A., and Webster, F., SAGE Publications Ltd, 126–138, https://doi.org/10.4135/9781446218310.n9, 2000.
s-harati: s-harati/model-flipflopSEM: v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.11245520, 2024.
Simon, H. A.: Bounded Rationality, in: Utility and Probability, edited by: Eatwell, J., Milgate, M., and Newman, P., Palgrave Macmillan UK, London, 15–18, https://doi.org/10.1007/978-1-349-20568-4_5, 1990.
Stern, P. C., Dietz, T., and Kalof, L.: Value Orientations, Gender, and Environmental Concern, Environ. Behav., 25, 322–348, https://doi.org/10.1177/0013916593255002, 1993.
Sutton, R. S. and Barto, A. G.: Reinforcement Learning: An Introduction, 2nd ed., MIT Press, Cambridge, Massachussetts, ISBN-10: 0262039249, ISBN-13: 978-0262039246, 2018.
Tascioglu, M., Eastman, J. K., and Iyer, R.: The impact of the motivation for status on consumers' perceptions of retailer sustainability: the moderating impact of collectivism and materialism, J. Consum. Mark., 34, 292–305, https://doi.org/10.1108/JCM-03-2015-1351, 2017.
Wagner, W. E.: Commons Ignorance: The Failure of Environmental Law to Produce Needed Information on Health and the Environment, Duke Law J., 53, 1619–1745, http://www.jstor.org/stable/40040450 (last access: 25 March 2024), 2004.
White, R. and Engelen, G.: Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns, Environ. Plan. A, 25, 1175–1199, https://doi.org/10.1068/a251175, 1993.
Wimolsakcharoen, W., Dumrongrojwatthana, P., Le Page, C., Bousquet, F., and Trébuil, G.: An agent-based model to support community forest management and non-timber forest product harvesting in northern Thailand, Socio-Environmental Syst. Model., 3, 17894, https://doi.org/10.18174/sesmo.2021a17894, 2021.
Wittemyer, G., Daballen, D., and Douglas-Hamilton, I.: Rising ivory prices threaten elephants, Nature, 476, 282–283, https://doi.org/10.1038/476282c, 2011.
Wolfram, S.: A new kind of science, Wolfram media, Champaign, IL, United States, ISBN-10: 1579550258, 2002.
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Social–ecological systems are the subject of many sustainability problems. Because of the...