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Abstract. Engaging ecological resource users in intervention
to protect resources is challenging for governments due to the
self-interest of users and uncertainty about intervention con-
sequences. Focusing on a case of forest insect infestations,
we addressed questions of resource protection and environ-
mentally responsible behavior promotion with a conceptual
model. We coupled a forest infestation model with a social
model in which a governing agent applies a mechanism for
the recognition and promotion of environmentally responsi-
ble behavior among several user agents. We ran the coupled
model in various scenarios with a reinforcement-learning al-
gorithm for the governing agent as well as best-case, worst-
case, and random baselines. Results showed that a proper
recognition policy facilitates emergence of environmentally
responsible behavior. However, ecosystem health may dete-
riorate due to temporal differences between the social and
ecological systems. Our work shows it is possible to gain in-
sight about complexities of social–ecological systems with
conceptual models through scenario analysis.

1 Introduction

1.1 A governance problem in sustainable development

Sustainable development is defined as development that
meets the needs of the present time without sacrificing the
ability of future generations to meet their needs (Brundtland,
1987). The criteria for such development are known to have
social, ecological, and economic dimensions (Brown et al.,
1987; Barbier, 1987). In the present study we are interested in
a group of sustainable-development problems wherein a gov-
ernment seeks help from users of a natural resource which is
at risk to protect that resource. From the government’s view-
point, it is ideal that the users find the motivation to cooper-
ate with the government. However, such motivation may not
come out of the users’ sense of altruism (Kaplan, 2000). One
possible way to build that sense of cooperation may be to of-
fer a financial incentive, but that may not be enough to create
long-lasting motivation for environmentally responsible be-
havior either (De Young, 2000; Katzev and Johnson, 1987).
Moreover, experience shows that using authority to enforce
environmentally responsible behavior may fail (Blundell and
Gullison, 2003; Feeny et al., 1990; Wagner, 2004; Wittemyer
et al., 2011). Therefore, in the ideal situation in the govern-
ment’s view, users should voluntarily adopt a behavior that
implies costs to them, without the governing entity needing
to use force or financial incentives. In addition, in that ideal
situation, the said behavior successfully protects the natural
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resource. These considerations give rise to a question: is such
an ideal situation possible?

In this paper, our interest is in a particular type of the
abovementioned sustainability problems, where the ecolog-
ical system is a forest resource that is attacked by a pest
and the social system includes users of the resource and a
governing entity. We assume a case where the users are log-
ging companies and the government wants them to cut spe-
cific parts of the forest and create buffer zones to control the
spread of the pest. This problem is multi-disciplinary: it in-
volves land change science (Lambin et al., 2006) in the study
of changes in the ecological system; it relates to the domains
of collective action (Nyborg et al., 2016; Ostrom, 2009) and
social norms (Farrow et al., 2017; Nyborg et al., 2016) in
the analysis of the formation of a common behavior among
users; it entails the field of social–ecological systems (Liu et
al., 2007; Ostrom, 2009) in the endeavor to understand the
dynamics that emerge through coupling the society with the
forest; and, in a broader view, this problem and the question
of how to address it are in the realm of complex systems
(Cosens et al., 2021; Filotas et al., 2014).

1.2 Background from multiple disciplines

Complex systems are entities composed of elements and in-
teractions that make the system behave as a whole, with
characteristics such as self-organization, nonlinearity, emer-
gence, feedback, and path dependence (O’Sullivan, 2004).
Because of these characteristics, the dynamics of complex
systems involve novelty and surprise (Batty and Torrens,
2005). This causes a concern in problems of sustainable
development, as they typically involve intervention in or
experimentation with complex systems, particularly social–
ecological systems. Due to the uncertainty and complexity
that are inherent in these systems meaning that intervention
in these systems may have unanticipated, irreversible, and
adverse effects, it is not always ethically and logistically
justifiable to perform trial-and-error experiments on them
(Kriebel et al., 2001). This concern justifies learning by mod-
eling and simulation (Janssen and Ostrom, 2006a).

Societies and ecosystems are complex systems. When a
society uses a natural resource, the link between the two
systems creates a larger complex system, referred to as a
social–ecological system (Berkes and Folke, 2000). Social–
ecological systems (SESs) demonstrate complexities that
cannot be understood through the lens of sociology or ecol-
ogy alone (Liu et al., 2007). In a typical SES, the society re-
ceives ecosystem services (Daily, 2000; Millennium Ecosys-
tem Assessment, 2003) and makes changes in the ecosystem.
To combine social and ecological knowledge in the analy-
sis of the complexity of SESs, a framework has been devel-
oped which accounts for governance and resource systems at
larger scales, as well as users and resource units at smaller
scales (Ostrom, 2009). This framework has been implicit in
sustainability studies in a variety of domains such as sustain-

able navigation (Parrott et al., 2011), fisheries (Schlüter et
al., 2014), and forest management (Wimolsakcharoen et al.,
2021).

Many studies of complex systems involve building and
using models that replicate some aspects of those systems
(Railsback and Grimm, 2012; Wolfram, 2002). Simulations
of complex systems are often built with a bottom-up ap-
proach, using methods such as agent-based models (ABMs)
and cellular automata (CA) models (Grimm et al., 2005). An
ABM is made up of several computer-programmed agents
that interact with each other and their environment and act
upon their decision rules (Castle and Crooks, 2006). A CA
model is composed of a grid of cells where the state of
each cell is defined by a rule based on the previous states
of that cell and its neighbors (White and Engelen, 1993).
ABMs have been used in a wide variety of complex sys-
tems studies, such as epidemiology (Perez and Dragicevic,
2009), animal movement (Bonnell et al., 2013), land devel-
opment (Pooyandeh and Marceau, 2013), and forest distur-
bance (Perez and Dragicevic, 2010; Katan and Perez, 2021).
Likewise, CA have been used in research works within fields
such as land change (National Research Council, 2014; Lam-
bin and Geist, 2006), urban growth (Batty et al., 1999; Clarke
et al., 1997; de Almeida et al., 2003), and forest disturbance
(Bone et al., 2006; Gaudreau et al., 2016).

The emergence of specific behaviors in a society is a sub-
ject of study in the field of social norms. Several definitions
of norms have been stated in the literature of the social sci-
ences. In one definition, norms are cultural rules that guide
people in their behavior (Ross, 1973). In another definition,
norms are social rules that govern the encouragement or con-
demnation of certain behaviors (Savarimuthu and Cranefield,
2011). Norms have also been defined in the context of insti-
tutions (Ostrom, 1990; Crawford and Ostrom, 1995) as val-
uations of actions regardless of the immediate consequences
of the actions. Institutions can formalize norms by convert-
ing them to regulations (North, 1990). In yet another view,
norms are classified as descriptive and injunctive. Descrip-
tive norms show what others do, whereas injunctive norms
show what others approve of (Cialdini et al., 1990). A re-
view of the literature on SES governance indicates that social
norms largely influence environmentally responsible behav-
ior (Bourceret et al., 2021). The literature also highlights that
the emergence of environmentally responsible behavior in a
society depends on what the individuals do and what they
favor (Nyborg et al., 2016), which, according to the above
definitions, are the equivalents of descriptive and injunctive
norms, respectively.

1.3 Setting, questions, and objectives

In this study we are interested in a SES governance problem.
We consider a setting where the government needs the par-
ticipation of users of a forest in a management action with
the aim of protecting the forest against infestation outbreaks.
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To clarify the scope of the problem, we state the following
assumptions:

– The forest is at risk, and the state of health of the forest
urges the government to act towards its protection.

– The expected action to protect the forest can only be
performed by the users but is costly for them.

– The users are driven by self-interest and not by altruism.

– The government cannot offer financial incentives for the
purpose of enticing the cooperation of the users.

– The government cannot enforce its authority and oblige
the users to cooperate with it.

– Users have a desire for a good reputation, which moti-
vates them to perform environmentally responsible be-
havior. However, there is no social sanction or punish-
ment for individuals who do not demonstrate responsi-
ble behavior.

– The government’s knowledge of the social system is
limited. It does not know the decision criteria of the
users.

– The government’s knowledge of the ecosystem is lim-
ited. Although the government wishes to intervene and
protect the forest, the government is not certain about
the consequences of its desired intervention.

In previous works we developed an ecological model of
outbreaks of a forest insect infestation (Harati et al., 2020,
2021b) and a social model of the promotion of a new be-
havioral norm (Harati et al., 2021a). In the present work we
combine the above two models to gain insight about a par-
ticular intervention measure to control the spread of infesta-
tions. The intended measure is to encourage forest users to
voluntarily create buffer zones in the vicinity of newly ob-
served infestations.

In a SES, the ecological and social systems are each the
variable environment of the other. This matter creates com-
plexities, which, in the particular case of our study, give rise
to the following questions: if forest users fully cooperate with
the governing entity, will the creation of buffer zones be ef-
fective in suppressing the spread of infestations in the forest?
Will forest users cooperate with the governing entity? In the
case of partial cooperation of users with the governing entity,
how will the infestations spread in the forest? Considering
these questions, the objectives of this study are

– to build a SES model by coupling the abovementioned
social and ecological models;

– to perform hypothetical experiments by implementing
management scenarios in simulations of the SES;

– to interpret the outcome of the hypothetical experiments
and, subsequently, to gain insight about (1) the above-
mentioned recognition scheme and its potential for the
promotion of environmentally responsible behavior and
(2) the state of health of the ecological resource in re-
sponse to the social dynamics that emerge from the
recognition scheme.

2 Methods

To answer the questions raised in the Introduction, we take
a conceptual modeling and scenario analysis approach. The
SES governance literature highlights the use of conceptual
models for gaining insight about complex SES problems
(Janssen and Ostrom, 2006b). The environment in which we
run hypothetical experiments is a conceptual model, which is
constructed by coupling two previously developed base mod-
els. These comprise the ecological and social components
of our coupled model. The coupled model does not have an
economic component. In this section we introduce the base
models, the mechanism for coupling the base models, and the
scenarios for testing the coupled model. Appendix A presents
further details of the models according to the ODD+D pro-
tocol, which is an extension of the ODD (overview, design
concepts, details) protocol particularly adapted for describ-
ing human decisions in ABMs (Müller et al., 2013). The
ODD protocol is a standard for the communication of infor-
mation about ABMs (Grimm et al., 2006, 2010, 2020).

2.1 Ecological model

This model (Harati et al., 2020, 2021b) simulates the spread
of a forest insect infestation. The model is built based on
observed data of the mountain pine beetle outbreaks in the
province of British Columbia in western Canada. In this
model, the study area is represented as a grid with each cell
containing geospatial information as well as binary data on
the presence or absence of infestation. For each cell, based
on its geographic variables and distance-weighted sums of
infestations in its neighborhood, the model predicts the state
of infestation in the next time step. This model uses logis-
tic regression because this machine learning algorithm is
fast and suitable for applications with binary response vari-
ables. Model calibration is dependent on the study area.
In this work, the study area is a division of the Kam-
loops Timber Supply Area in British Columbia, Canada, with
an extent from 50°45′22′′ N, 120°19′59′′W to 51°32′40′′ N,
119°6′0′′W. Figure 1 shows the study area.

2.2 Social model

This conceptual model simulates interactions between indi-
viduals in a problem known as the principal–agent problem
and provides insight into the emergence of social norms. In
the principal–agent problem, the goal of one or more prin-
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Figure 1. Study area of forest insect infestation simulation in British
Columbia, Canada. Locations of active infestations at the beginning
of the simulation period are marked as “Insects at start”. Locations
that were infested before the start of simulations are marked as “Pre-
viously infested”.

cipals is that one or more agents perform a certain behavior
(Braun and Guston, 2003). In our social model, the desire
for a good reputation is used as a motivation for agents to
perform the behavior that the principal desires. In this con-
ceptual setting, the principal grants recognition to agents who
act as the principal requests. The model runs in discrete time
steps. In each time step the principal chooses the cost of its
request from the agents. Specifically, the principal makes a
binary choice between a costly request and a no-cost request.
The agents, on the other hand, compare the cost of the re-
quested action with the benefit of receiving recognition and
decide whether or not to cooperate with the principal. Agents
assess the benefit of recognition as a function of (1) the exist-
ing awareness in their society of such recognition and (2) the
expectation of uniqueness among their peers if they obtain
recognition in the next time step. This design is inspired by
the existing literature, which underscores the importance of
personal motivations such as a good reputation in voluntary
action (Omoto and Snyder, 1995; Stern et al., 1993) and the
importance of the visibility of one’s actions in one’s behav-
ioral choices in society (Mosler, 1993; Nyborg et al., 2016).
Our approach is based on the theory of normative conduct
(Cialdini et al., 1990).

The model uses a temporal-difference reinforcement-
learning algorithm named double expected Sarsa to develop
a decision-making guideline for the principal. Input to this
decision guideline is the behavior of agents, and output is
the binary choice of action to request, i.e., costly or no-cost.
The objective of the algorithm is that by the end of simula-

tions, an acceptable proportion of agents cooperate with the
principal in its costly request. Such an acceptable proportion
is assumed to be 0.5 in this study in order to represent the
choice of the majority. In reinforcement-learning literature,
the decision-making guideline developed and used through
the algorithm is called policy. In the study presenting the so-
cial model (Harati et al., 2021a), three levels – low, medium,
and high – were assumed for the cost of the principal’s costly
request. Note that each of these levels is contrasted with a no-
cost action in the binary decisions of the principal. For each
of the above three levels, the model was run and the corre-
sponding policy was calculated.

A remark on the use of terms is necessary. The word agent
from the principal–agent literature should not be confused
with the same word in agent-based model (ABM) literature.
Our social model is agent-based, and we inevitably use ABM
terminology when describing and referring to our model.
Therefore, in order to avoid confusion, in our model descrip-
tion we use the terms governing agent for principal and user
agent for agent.

Decisions of user agents are based on simple “if state-
ments”. User agents seek uniqueness and value in their ac-
tions. To that end, they assess scores for the expected unique-
ness and value associated with performing the governing
agent’s request. Then user agents multiply the uniqueness
and value scores. Assessment of uniqueness is based on the
immediate past. For example, if no other user showed re-
sponsible behavior in the previous time step, a full score of
uniqueness is assumed for the respective action in the present
time step. Assessment of value is based on the cumulative
past. It represents the total number of times responsible users
have been recognized in the society. For example, if in all
previous time steps, responsible behavior was observed and
rewarded in the society, a full score of value is assumed for
responsible behavior in the present time step. In each time
step, each user agent compares the product of uniqueness and
value scores with a threshold that is a private property of that
user agent. Based on that comparison, the user agent decides
whether to cooperate with the governing agent or not.

2.3 Coupled social–ecological model

In this work we added a coupling mechanism to the above
two models and built a conceptual social–ecological model
to simulate a hypothetical setting. In this setting, in the eco-
logical model, the forest is attacked by mountain pine beetle
(MPB). These attacks spread in each iteration of the model,
which represents 1 year. In the conceptual social model, there
is a governing agent whose goal is to stop the spread of
infestations and several user agents, who represent logging
companies. The governing agent intends to create a buffer
zone between insects and healthy forest by cutting the for-
est in the vicinity of newly observed infestations. This in-
tervention measure is difficult and costly, and the governing
agent intends to use the social model’s recognition mecha-
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nism (Harati et al., 2021a) and encourage user agents to vol-
untarily perform the intervention action. Each user agent of
the social model is assigned to a part of the simulated for-
est of the ecological model. Decisions of the user agents are
implemented in their respective forest areas in simulations.

A feature of our simulations was the definition of the
management action. Cutting neighborhoods of infestations
is only one of the possible actions to control infestations
(Maclauchlan and Brooks, 1994). Our inspiration for choos-
ing this action came from a previous work in which we per-
formed spatial analyses of the spread of MPB infestations
and validation tests on our land change model (Harati et
al., 2021b). In that work, we noted that most of the new
MPB infestations occur in the vicinity of previous locations
of attacked trees. Therefore, in the present study we de-
fined neighborhoods of management action around newly
observed infestations. The action was to cut the cells in these
neighborhoods. Our choice of neighborhood size was also
inspired by distance analysis in that previous work (Harati
et al., 2021b) as well as the consideration that the governing
agent cannot detect new infestations in the first time step af-
ter their occurrence. This is due to the fact that infested trees
do not change color in the first year after attack. It follows
that infestations spread further in a larger neighborhood be-
fore the governing agent is aware of their previous locations.

Through the course of MPB infestations, British Columbia
(BC) eventually adopted the policy of increasing the allow-
able annual cut, first in order to suppress the infestations and
later to facilitate salvage harvesting in infested areas (Forest
Practices Board, 2007, 2009). Such an increase was smaller
than in the simulations of the present study. In severely in-
fested areas of the province, the allowable annual cut was
increased by 80 % of the pre-infestation levels (Forest Prac-
tices Board, 2007, 2009), which was less than one-third of a
percent of the forest area (BC Ministry of Forests, 2003).

Cutting trees on a large scale can be a practical challenge.
According to an analysis of data of the year 2008, with that
year’s rate of harvesting, it would take 22 years to cut the
pine trees that were killed by infestations up to 2008 (Forest
Practices Board, 2009). Moreover, although the government
wanted the added harvesting to be concentrated in severely
infested areas to control the pest, the forest industry preferred
to harvest from other locations and especially from forest
stands with mixed species (Forest Practices Board, 2007).
Furthermore, the decision to increase the allowable annual
cut raised concerns about possible ecological impacts (For-
est Practices Board, 2007, 2009), which is beyond the scope
of the present work and can be studied in future research.

In each iteration of the model, the governing agent de-
cides whether or not to ask the user agents to do its intended
action, that is, cutting trees around newly observed infesta-
tions. In cases where the governing agent asks for that action,
it grants recognition to cooperating users. Such recognition
is a “responsible user” label. In cases where the governing
agent does not ask for cooperation in the intervention mea-

sure, the governing agent grants recognition labels to all user
agents. On the other hand, each user agent, when requested to
perform the intervention measure in exchange for the recog-
nition label, makes a decision by comparing the cost of the
requested action versus the benefit of recognition. The cost
of action is assessed based on the forest area to be cut by the
user, and the value of the recognition label is assessed based
on the society’s knowledge of that label as well as on the ex-
pectation of being unique in having that label in the next time
step.

In the making of the model, we noticed that before the
emergence of cooperative behavior in the social model, the
forest would be largely infested in the ecological model.
While this observation was insightful, it also showed that
our simulations were reduced to runs of the ecological model
alone. In other words, in the absence of intervention from the
social model, the ecological model would simulate the spread
of infestations as if the two models were not connected. Be-
cause our interest was to study the complexities that arise
from the interactions between the two models, we added a
new feature in our setup. We defined preparation steps dur-
ing which the social model ran alone before being coupled
to the ecological model. The preparation steps can be con-
sidered awareness campaigns in the society. Through these
steps, the governing agent and user agents interact according
to the rules of the social model (Harati et al., 2021a). Con-
sequently, user agents become familiar with the recognition
mechanism and the “responsible user” label.

To implement the idea of coupling the two models, we de-
fined a mechanism which we named “flip-flop”. Recall that
the ecological and social models are run in R and Java envi-
ronments, respectively. To each model we allocated a direc-
tory, named “Inbox”, on the computer hard disk. Each itera-
tion of the coupled model begins with the ecological model
simulating the spread of infestations and, while the social
model waits in a loop, constantly checking its Inbox for a
new message. Based on newly observable infestations in the
simulation, the ecological model produces a report indicating
the size of the intervention buffer zone in each user agent’s
designated forest area. This report, which is a text file, is
then copied into the Inbox directory of the social model. At
this point, the social model notices the new file in the In-
box folder, exits the waiting loop, reads the file, and proceeds
to simulate interactions between governing and user agents.
Contents of the received file are needed in the cost–benefit
analyses performed by user agents. The social model, in turn,
produces a report indicating the user agents who intend to
cut trees in the intervention buffer zone of their respective
forest areas. This report, also a text file, is copied into the
Inbox folder of the ecological model, which by this time has
been waiting in a loop and constantly checking its Inbox for
a new message. The ecological model then exits its waiting
loop, reads the file sent by the social model, and accordingly
changes the landscape of simulations by eliminating forest
cover in buffer zones in areas associated with indicated user
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Figure 2. The flip-flop mechanism. Each of the two models requires
input from the other model. The models communicate with each
other via Inbox directories. Arrows show the direction of data trans-
fer. Numbers beside the arrows show the order of operations.

agents. Such an updated landscape will be the basis for sim-
ulations of the next time step. Figure 2 depicts the concept
of the flip-flop mechanism for coupling the two models, and
Fig. 3 shows a more detailed view of the coupled model.

2.4 Simulation scenarios

In order to gain insight about the emergence of environmen-
tally responsible behavior in the setting described above, we
ran several rounds of simulations with different scenarios.
We defined scenarios so that the comparison of their results
provides useful information about the subject of study. Be-
low are descriptions of these scenarios.

1. The simplest scenario is named “Business as Usual”
(BAU), in which there is no intervention from the gov-
erning agent to control the disturbance. In each time
step, user agents harvest a proportion of their allocated
zones. That proportion is the business-as-usual harvest
ratio, which is a model parameter. The spatial ecolog-
ical model iteratively simulates the spread of infesta-
tions, noting that harvested grid cells cannot become in-
fested anymore. In this scenario, the governing agent’s
reinforcement-learning (RL) algorithm is not engaged.
This scenario indicates a case where there is no govern-
ment intervention to control the insect disturbance or a
case where user agents never cooperate with the govern-
ing agent. Hence, this scenario serves as a baseline for
comparison with the main simulations.

2. Another baseline in our study is a scenario in which
all user agents always cooperate fully with the govern-
ing agent. This scenario, which we named “Enforce”,
provides a best case for the social component of our
study. The Enforce scenario shows the effectiveness of
the management plan in the control of the disturbance.
In this scenario the governing agent’s RL algorithm is
not engaged.

3. Our main scenarios, which we named “Suggest”, are
those in which the governing agent is active and uses
its RL algorithm. In Suggest scenarios, the governing
agent suggests that if user agents cooperate with it in

the management action, then they will receive “respon-
sible user” labels. User agents then analyze the gov-
erning agent’s suggestion and make their decisions. In
terms of the cooperation of user agents with the govern-
ing agent, the Suggest scenarios are between BAU and
Enforce. The neighborhood of management action is a
Moore neighborhood of the newly visible infestations.
The size of this neighborhood is a model parameter. We
ran simulations with a neighborhood of size 4 grid cells.
We also defined preparation runs, in which the ecolog-
ical model is not engaged. Instead, agents in the social
model interact with each other, which results in the in-
creased visibility and value of the “responsible user” la-
bel. Thereupon, the following three scenarios were de-
fined:

– Suggest scenario with 0 preparation time steps
(Suggest-Prep0)

– Suggest scenario with 10 preparation time steps
(Suggest-Prep10)

– Suggest scenario with 20 preparation time steps
(Suggest-Prep20).

– Corresponding to each Suggest scenario, we defined an-
other baseline, in which the governing agent behaves
randomly instead of using its RL algorithm. In these
scenarios, which we named Random, user agents ana-
lyze and respond to the governing agent’s signals, as in
the Suggest scenarios. The calculation of the state of
health of the resource and the costs of management ac-
tion in user agent zones are performed similarly to in the
Suggest scenarios. The only difference between Suggest
and Random scenarios is in the decision-making mech-
anism of the governing agent. In this sense, by showing
what could be achieved with a naïve model, Random
scenarios serve as a baseline to indicate the power of
the sophisticated RL algorithm of the governing agent.
Thereby, the following three scenarios were defined:

– Random scenario with 0 preparation time steps
(Random-Prep0)

– Random scenario with 10 preparation time steps
(Random-Prep10)

– Random scenario with 20 preparation time steps
(Random-Prep20).

3 Results

Figure 4 shows the mean maps of remaining infestations in
the simulated scenarios at the final time step. It can be seen
that, without preparation, the Suggest and Random scenar-
ios are similar to BAU. On the other hand, with addition of
preparation steps, less infestation remains in the study area.
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Figure 3. The coupled model. In each time step, the ecological model begins with reading previous infestation maps and ends with writing
a newly simulated infestation map; the social model begins with waiting for a message from the ecological model and ends with sending a
message to the ecological model.

The figure also shows that in Suggest scenarios, less infesta-
tion remains in comparison with Random scenarios.

Figure 5 shows the mean ratio of the cooperation of user
agents with the governing agent over time steps of Sug-
gest and Random scenarios. Without preparation of the user
agents, both Suggest and Random scenarios end with nearly
no cooperation at all. Therefore, in these cases no manage-
ment action is performed to control the infestations, which
explains why the maps of no-preparation scenarios are sim-
ilar to the map of BAU. With preparation, the cooperation
ratio increases in both Suggest and Random scenarios, with
Suggest scenarios showing higher cooperation than Random
ones. Nonlinear behavior is observed in the curves of Suggest
and Random scenarios with 10 steps of preparation, which
shows a sudden emergence of cooperation with the govern-
ing agent.

Figures 6 and 7 show the mean proportions of the study
area that are covered by healthy and infested forest, as well
as the area that is cut, in each time step. The baseline scenar-
ios BAU and Enforce, which are shown in Fig. 6, indicate the
maximum amount of forest that can be saved from infestation
if the management action is successfully implemented. The
Random and Suggest scenarios, shown in Fig. 7, demonstrate
interim situations where the management action is partly im-
plemented. The plots of Random and Suggest scenarios also
show the results of adding preparation steps in the simula-
tions.

Table 1 gives a quantitative summary of the proportions of
healthy, infested, and cut area at the end of the simulations.
Note that the Enforce scenario was run only once because it
involves no stochasticity in the decisions of agents. This is
why there is no deviation in the results of this scenario. The
mean values in this table correspond to the final time step in
the plots of Figs. 6 and 7. The standard deviations reveal sev-
eral things about variations in the results. Firstly, variations
are minimal in the BAU scenario, as well as in Random and
Suggest scenarios with no preparation. These are the scenar-
ios in which user agents rarely cooperate with the govern-
ing agent, and therefore, the management action is not im-
plemented. Variations in results increase substantially when
preparation steps are included in simulations. Secondly, vari-
ations in the proportion of healthy area are smaller than vari-
ations in proportions of infested and cut areas. Thirdly, varia-
tions in Suggest scenarios are smaller than variations in Ran-
dom scenarios. This is particularly evident in scenarios with
20 preparation steps. The table shows that, in comparison
with the Random baseline scenarios, the Suggest scenarios
result in a higher proportion of healthy forest at the end of
the simulations, with smaller variations in results.

It can be seen in Figs. 6 and 7 as well as Table 1 that re-
sults of the no-preparation scenarios are similar to BAU. On
the other hand, as shown in Fig. 5, in runs with more prepa-
ration steps, the percentage of cooperation of user agents
with the governing agent increases. Such an increase is larger
when the governing agent’s decisions are made by the RL
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Figure 4. Maps of mean remaining infestation after the final time step of simulations. The Enforce scenario was run once, and all other
scenarios were run 50 times. For each scenario, “High” infestation in a cell means the presence of infestation in the cell in all runs of that
scenario and “Low” infestation means the absence of infestation in the cell in all runs of that scenario.
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Table 1. Mean and standard deviation of the final proportions of healthy, infested, and cut areas in simulations. Each scenario was run 50
times, except for Enforce, which was run once.

Scenario Healthy proportion Infested proportion Cut proportion

Mean SD Mean SD Mean SD

BAU 0.076 0.001 0.827 0.001 0.097 0
Enforce 0.295 0 0.001 0 0.704 0
Random-Prep0 0.075 0.003 0.825 0.008 0.100 0.010
Random-Prep10 0.057 0.037 0.395 0.292 0.547 0.297
Random-Prep20 0.187 0.110 0.245 0.321 0.568 0.243
Suggest-Prep0 0.076 0.002 0.826 0.002 0.098 0.004
Suggest-Prep10 0.135 0.084 0.126 0.249 0.739 0.239
Suggest-Prep20 0.257 0.089 0.059 0.166 0.683 0.110

Figure 5. Mean cooperation ratio over time for Suggest and Ran-
dom scenarios with 0, 10, and 20 preparation steps. Each scenario
was run 50 times.

Figure 6. Proportions of healthy, infested, and cut areas in BAU and
Enforce baseline scenarios.

algorithm, i.e., in Suggest scenarios. Comparing the zero-
preparation and 20-step-preparation scenarios in Figs. 6 and
7, it is evident that the 20 time steps of preparation lead to an

Figure 7. Proportions of healthy, infested, and cut areas in Random
baseline and Suggest scenarios. Each plot represents 50 runs.

increase in the remaining healthy forest, even when the gov-
erning agent’s decisions are random. Considering all cases
with the preparation of user agents, it can be observed that
more healthy cells are saved in Suggest scenarios, i.e., with a
RL decision-making algorithm for the governing agent, than
in Random scenarios, i.e., with random decisions. The case
of 10-step preparation with random decisions of the govern-
ing agent is particularly noteworthy. In this scenario, first
the infestation spreads to large areas and then the manage-
ment action begins, which involves cutting large areas around
the newly observed infestations. Consequently, the remain-
ing healthy forest in this scenario is even slightly smaller than
BAU.

Tables 2 and 3 summarize non-parametric Wilcoxon
signed-rank tests that were performed to statistically analyze
simulation results. Scenarios were compared in terms of the

https://doi.org/10.5194/gmd-17-7423-2024 Geosci. Model Dev., 17, 7423–7443, 2024



7432 S. Harati-Asl et al.: Learning from conceptual models

proportions of remaining healthy forest after the final time
step of their respective simulations. As can be seen in Ta-
ble 2, the proportions of remaining healthy forest in scenar-
ios Suggest-Prep10, Suggest-Prep20, and Random-Prep20
are greater than in BAU. Likewise, in comparison with En-
force, all scenarios lead to significantly lower proportions of
remaining healthy forest, except for Suggest-Prep20. In other
words, the result of Suggest-Prep20 is very similar to our best
cooperation case baseline. Table 3 shows the comparison of
Random and Suggest scenarios. It is seen that without prepa-
ration steps, the results of Random and Suggest scenarios are
not significantly different. On the other hand, in scenarios
with preparation steps, the proportion of remaining healthy
forest is greater in Suggest scenarios than in Random scenar-
ios.

4 Discussion

4.1 Insights about the case study

Our simulation results reveal several points that deserve fur-
ther attention and discussion. One such point is the impor-
tance of the first time step in the result of the simulations. In
the comparison of the scenarios in Fig. 7, those which have a
smaller proportion of infested cells at the end of the first time
step have a larger proportion of healthy forest remaining at
the end of the final time step. Future infestations as well as
the size of the areas to cut thus depend on infestations in the
first time step. Therefore, the more newly infested trees cut in
the first time step, the more healthy forest remains in future
time steps. As an implication of the importance of success at
the first step and expanding this discussion beyond the scope
of the present study, if the government has access to limited
financial resources to provide incentives for users, then our
insight suggests that focusing the incentives at the beginning
of intervention may contribute substantially to success at the
end. The study of such cases and building hybrid models for
them, where the government uses both incentives and recog-
nition, can be an area for future research.

Our results in Fig. 7 show that forest cover is eliminated
not only by infestations, but also by the management action
considered, which is to cut trees in order to stop the progress
of infestations. Depending on the scenario, the proportion
of the forest that is cut may even be larger than the propor-
tion that is infested. Particularly when infestations spread in
a large area and user agents decide to cooperate with the
governing agent, user agents will cut a large zone in the
forest and a small proportion of healthy forest will remain.
Likewise, in the Enforce scenario, control of the epidemic is
achieved at the cost of cutting a large area of the forest, but in
this case the proportion of remaining healthy forest is larger,
and the participation of user agents is enforced and not vol-
untary.

We noted that preparatory steps lead to the emergence of
the desired behavior among user agents, even if the govern-
ing agent’s decisions are made randomly. This shows that
recognizing responsible users and introducing them into the
society is a powerful mechanism with the potential to create
new behavioral norms. Indeed, during preparation time, the
social model runs alone before starting the ecological model,
and user agents are introduced to the scheme of recognition
of responsible behavior. As user agents compete for recogni-
tion, the value of being recognized in this scheme increases.
After preparation time, the coupled model runs begin, with
the social model keeping its memory of the value of recog-
nition of responsible behavior. That is why, even in our Ran-
dom scenarios where the governing agent does not learn to
improve its decisions, there is some responsible action by
user agents.

Another interesting matter about the simulations is that
they show that, in all scenarios, infestations spread rapidly
at first and slow down later so that by the final time steps lit-
tle or no change is noticeable in the proportion of the study
area that is infested. As the spread of infestations stops, there
will be no areas to cut around observed infestations, and the
composition of the study area will not change anymore. It
is noteworthy that in BAU, the largest spread of infestations
happens in the first three time steps. Therefore, in the Sug-
gest scenarios, if no management action is taken in these ini-
tial time steps, then a large part of the forest is destroyed by
infestations.

4.2 Insights about governance of SESs

In addition to the abovementioned points about the particu-
lar case of simulations, in this study we gained insight into
the more general problem of the sustainable management of
SESs by engaging users. Our most important finding in this
study is that it is possible to create strong motivation for ef-
fective action towards the protection of natural resources in
a SES by encouraging users – without financial incentives,
enforcement, or punishment. The latter is of particular im-
portance because the role of punishment as a basis for the
formation of norms of environmentally responsible behav-
ior has been emphasized in the literature of SESs (Farrow et
al., 2017) and social sciences (Axelrod, 1986). Our results
show that even without punishment, recognition of responsi-
ble behavior through the mechanism of our model can create
a force that acts towards the emergence of a norm of respon-
sible behavior. Moreover, from the model results presented in
Fig. 7, we gain the insight that even with the existence of the
potential for action towards protection of a natural resource,
uncalculated governance decisions about using that potential
may have adverse effects on the resource. The simulations
show an example of this type. The difference between model
results with and without an intelligent algorithm highlights
the importance of well-thought-through decision-making in
the governance of SESs.
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Table 2. Wilcoxon signed-rank test statistic and p value for the comparison of remaining healthy forest proportions of scenarios with BAU
and with Enforce (n= 50).

Scenario Null hypothesis Alternative hypothesis Statistic p value

Comparison with BAU

Random-Prep0

Scenario is BAU Scenario > BAU

638.0 0.50
Random-Prep10 295.0 0.99
Random-Prep20 1133.0 8.8× 10−07

Suggest-Prep0 669.5 0.38
Suggest-Prep10 1064.0 1.9× 10−05

Suggest-Prep20 1244.0 2.4× 10−09

Comparison with Enforce

Random-Prep0

Scenario is Enforce Scenario < Enforce

0 3.8× 10−10

Random-Prep10 0 3.8× 10−10

Random-Prep20 300 4.8× 10−04

Suggest-Prep0 0 3.8× 10−10

Suggest-Prep10 15 9.5× 10−10

Suggest-Prep20 903 0.99

Table 3. Wilcoxon signed-rank test statistic and p value for the comparison of remaining healthy forest proportions between Random and
Suggest scenarios (n= 50).

Null hypothesis Alternative hypothesis Statistic p value

Random-Prep0=Suggest-Prep0 Random-Prep0 < Suggest-Prep0 555.5 0.29
Random-Prep10=Suggest-Prep10 Random-Prep10 < Suggest-Prep10 140.0 8.0× 10−07

Random-Prep20=Suggest-Prep20 Random-Prep20 < Suggest-Prep20 109.0 5.7× 10−03

Another general insight that we gained from the simu-
lations pertains to the temporal differences between social
and ecological processes, which add to the complexity of a
SES. For example, from our simulations we noted that for-
mation of an environmentally responsible behavioral norm
takes time. We also noted, throughout the simulations pro-
duced, that the largest damage made by the ecological dis-
turbance occurred in the beginning time steps of the study.
Therefore, if the efforts to promote a new norm of responsi-
ble behavior begin at the onset of the ecological disturbance,
then by the time the responsible behavior emerges in the so-
ciety, much of the resource has already been lost. This means
that it is important to prepare the society and promote envi-
ronmentally responsible behavior before there is a need for
action to protect the natural resource.

4.3 Reflections on the use of conceptual bottom-up
models in the study of complex systems

Our work is an example of the application of conceptual
models for understanding complexity. In this section, we
highlight several noteworthy points in this regard.

Questions arise about the relevance and usefulness of con-
ceptual models, as they typically involve simplifying as-
sumptions and may not be constrained by empirical data.
Indeed, where the objective is precise prediction, simplis-
tic conceptual models are not helpful. However, in studies

where the aim is to gain understanding about a complex sys-
tem, conceptual bottom-up models can be of use.

Complex systems typically involve multiple and possibly
diverse interactions among their components. To follow all
these interactions simultaneously is a challenge for the un-
aided human mind. This can make the dynamics of these sys-
tems difficult to understand, even if individual interactions
are simple. Bottom-up modeling offers a solution for these
challenges by simulating smaller components of the system
and simple interactions among them. Such interactions are
typically easy to understand. Therefore, the result of the cal-
culation of many such interactions will be reasonable even
if the calculation load is beyond the capacity of the unaided
human mind. This is how conceptual bottom-up models help
us gain insight into complexity.

In our study, for example, at the individual level user
agents act upon self-interest, which is easy to understand. At
the aggregate level, however, the system is highly complex:
decision factors of user agents depend on the history of ac-
tions of all user agents and the governing agent on the one
hand and changes in the ecological simulation on the other
hand. Moreover, the ecological simulation is affected by the
decisions of user agents. Computer simulations showed that
such a complex setting can result in the emergence of envi-
ronmentally responsible behavior and that the effectiveness
of such behavior depends on the timing of its emergence. We
do not claim that our model is a replication of reality, but we
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argue it makes sense. In other words, if a system has a con-
figuration similar to our model, it is reasonable to assume the
system has a tendency to evolve in a fashion similar to our
simulations.

Conceptualizing a complex, dynamic, and multifaceted
situation involves deciding which of its many degrees of free-
dom to reduce and which to keep in an abstract, simplified
representation. There are many combinations of degrees of
freedom and therefore many ways to perform the above task,
which is a part of the problem formulation stage. We em-
phasize the importance of this stage because it shapes all
subsequent developments and analyses and eventually de-
fines what can be learned from the model about the subject
of study. In the example of our work, identifying the impor-
tance of recognition as a motivation for responsible behavior
and subsequently defining a hypothetical scheme of govern-
ing and user agents and interactions within them and between
them and the ecosystem formed the foundation for the devel-
opment of our model.

Another noteworthy remark is the importance of experi-
menting with the conceptual model in order to extract use-
ful information from its output. A model serves as a virtual
laboratory where one can run multiple experiments with var-
ious settings. Comparing results of simulations made with
different settings can provide insightful information if the
experiments are properly defined. We used several baseline
settings or scenarios as reference for comparison with our
main simulations. We also compared our baselines with each
other to learn about the space of possible results. Our mul-
tiple scenario comparisons revealed important information
about the complexity of the system. Especially informative
was our counterintuitive observation that our RL algorithm
does not necessarily outperform a naïve model with random
decisions for the governing agent. This surprising finding
led us towards defining and experimenting with preparatory
steps for the social model before coupling it with the ecolog-
ical model.

We end this section with a note about simplified models
with techniques such as machine learning and reinforcement
learning and their relevance to complex problems such as
policymaking. Arguably, policymakers often do not have ac-
cess to extensive data that allow them to evaluate their ac-
tions and optimize their future decisions. They make deci-
sions in ways that are different from how they are made in
simplified models such as ours. Indeed, our model does not
aim to produce exact replications or predictions of the real
world. Rather, the objective of our model is to provide insight
about a complex problem. Because repeated trial-and-error
experiments are not possible in real-world situations, our ap-
proach has been to develop a virtual laboratory where we can
run experiments without the risk of adverse effects. Such ab-
straction allowed us to overcome real-world constraints and
produce datasets that could be analyzed for optimum policy
selection. In this sense, our abstract reinforcement-learning

model allowed us to run experiments that were otherwise not
possible in the real world.

4.4 Challenges and perspectives for future work

Our model is defined in a specific scope. This scope might
also be considered a limitation for the model. That is, our
model does not account for the effect of processes other
than what we included in it. Future works may use other
social models instead of ours and insert them into our SES
model. Potential research efforts may also couple other eco-
logical models to the social model. In these cases, the cou-
pling mechanism of our model may be modified according
to the needs of other applications and assumptions. As an-
other suggestion for future works, a challenge that can be ad-
dressed is the addition of a third submodel into the coupled
model to account for economic complexity. In the example of
this study, total harvest from the forest comprises market sup-
ply, which influences market price and sales quantity, which
in turn influence users’ profit and hence individual decisions
on harvest in the next time step. Another matter that may be
considered in future works is interactions among user agents.
In the present study, our goal was to gain useful insight for
managerial and government decision-making. Therefore, our
RL decision-making algorithm was placed in the hands of
the governing agent. Future works can equip user agents with
more sophisticated decision algorithms.

5 Conclusion

In this work we approached a complex social–ecological sit-
uation and translated it into a problem formulation. Then we
built a conceptual model and used it to gain insight into the
subject of study through a set of hypothetical experiments.
We connected a social model and an ecological model, which
were developed independently, through a coupling mecha-
nism to build a conceptual social–ecological model. Using
our model, we carried out tests that allowed us to perform
“what-if” analyses with several scenarios of SES manage-
ment. Our simulations showed that in a society where in-
dividuals or companies (i.e., “agents”) care about their rep-
utation, it is possible to promote environmentally responsi-
ble behavior through an encouragement mechanism without
use of force, without use of financial incentives, and only
by recognition of responsible individuals in the society. In
the management of a SES under disturbance, it is impor-
tant to note that before the emergence of environmentally re-
sponsible behavior, the disturbance may damage the ecologi-
cal system, as demonstrated in our zero-preparation-scenario
simulations. It is therefore important to prepare the society
in advance for engagement in environmental protection and
ecological conservation action. We used a conceptual model
as a virtual laboratory for performing hypothetical experi-
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ments, and by comparing the outputs of those experiments,
we gained insight about a complex system.

Appendix A: Model description using the ODD + D
protocol

A1 Overview

A1.1 Purpose

The overall goal of this study is to gain insight about the
possibility of the emergence of environmentally responsible
behavior in a SES in the absence of altruism, obligation, and
financial incentives. To that end, this model has been built
with the purpose of simulating a mechanism of recognition
of environmentally responsible behavior in a setting of forest
disturbance. We use the model to learn about the complexi-
ties of a SES in which users of a forest resource are requested
to participate in a costly action to protect the resource from a
disturbance. Particularly, we intend to better understand the
potential of the desire for a good reputation in the promotion
of environmentally responsible behavior and its implications
for management and policymaking. The model has been de-
signed for scientists, policymakers and decision-makers, and
experts with an interest in developing decision support sys-
tems.

A1.2 Entities, state variables, and scales

The model consists of a social component, which is an ABM,
and an ecological component, which is a spatial ecological
model. The social ABM includes a governing agent; several
user agents; and an auxiliary agent called the registrar, which
has been defined for a better understanding of the model. The
model includes a spatial component, which represents a for-
est resource attacked by insect infestations. The spatial eco-
logical model’s units are grid cells.

In each time step, the governing agent is in a state, takes an
action, and receives a reward. The governing agent’s state is
a two-dimensional variable which cumulatively summarizes
past interventions and their results. The two components of
this state variable are calculated based on actions and re-
wards. The governing agent’s reward is the cooperation by
the user agents in the management action to save the forest.
The governing agent’s action is to generate a binary signal
for communication to user agents. A signal of 0 is a request
for a no-cost action, and a signal of 1 is a request for a costly
action. To produce a signal, the governing agent uses a pol-
icy, which recommends an action for each state. To update
its policy, it uses its memory of past states, actions, and re-
wards. For that purpose, the governing agent has two arrays
of time-discounted scores calculated for each (state–action)
pair (Harati et al., 2021a). Each user agent is allocated a for-
est zone where the user agent harvests. These zones are cre-
ated by dividing the map of the study area into equal squares.

Each square contains cells that are in the study area and cell
that are not. Therefore, user zones include various numbers
of cells from the study area. Moreover, each user agent is
characterized by a constant decision threshold that it uses in
a cost–benefit analysis to make a binary decision in response
to the governing agent’s signal. Decisions of 0 and 1 mean
rejection and acceptance of the governing agent’s request,
respectively. The registrar is characterized by two variables,
nSum and nLast, which are non-negative integers. nSum is
the total number of times user agents decided to cooperate
with the governing agent. nLast is the number of user agents
who cooperated with the governing agent the last time the
latter requested a costly action. In the spatial component of
the model, each cell is identified by geographical data fields
including coordinates, elevation, aspect, slope, and rugged-
ness. Cells are marked with the presence or absence of in-
festations. Cells are also marked with a mask layer that indi-
cates the presence or absence of trees. The simulation area is
divided into zones, and each zone is allocated to a user agent.
Table A1 lists the model entities and their state variables.

The social ABM is influenced by an exogenous driver:
the spread of insect infestations in the forest. This driver
is simulated in the spatial ecological model, which is cou-
pled with the ABM. The spatial ecological model is a GIS
model that simulates land change. The land change process
of this study is the infestation of forests of BC in western
Canada by the mountain pine beetle (MPB). The area where
infestations are modeled is a sub-division of the Kamloops
Timber Supply Area (TSA). The extent of this area is from
50°45′22′′ N, 120°19′59′′W to 51°32′40′′ N, 119°6′0′′W . In
the spatial ecological model, one grid cell represents an area
of 400 m× 400 m.

A time step in the coupled social–ecological model rep-
resents 1 year, and the simulations ran for 10 years. In ad-
dition, separate sets of simulations were run with the social
model alone, in which the time step was arbitrarily defined
as 1 month. These simulations, which prepared the agents
for later runs of the coupled social–ecological model, were
performed with 10 and 20 additional steps.

A1.3 Process overview and scheduling

In the coupled social–ecological model, in each time step, in-
festations spread from infested cells in the previous time step.
This spread is simulated by the spatial ecological model.
Newly infested grid cells remain invisible to the governing
agent for one time step after infestation and become visible
in the next time step. These grid cells act as sources of the
spread of infestations while they are invisible to the govern-
ing agent.

The social model’s governing agent analyzes the last visi-
ble spread of infestations and calculates the cost of manage-
ment action to stop the spread of infestations in each user
zone. The management action is to cut a neighborhood area
of the forest surrounding the last visible infestations. Accord-
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Table A1. Model entities and their state variables.

Entity State variable Description

Registrar nLast Last known number of user agents cooperating with the governing agent
nSum Cumulative number of user agents cooperating with the governing agent

Governing agent state Two-dimensional summary of past interventions and results
signal Binary request (easy task or hard task)

User agent decision Binary response (refuse or accept)

Cell infestation Binary indicator of presence or absence of infestations
mask Binary indicator of presence or absence of host trees

ingly, the cost of action is defined as proportional to the size
of the said neighborhood. Then the governing agent sends
a binary signal to the user agents. A signal of 1 means the
governing agent requests that the user agents participate in
the management action in their allocated forest zone volun-
tarily and at their own cost in exchange for a “responsible
user” label. The “responsible user” label only shows recog-
nition of the user agents who cooperate with the governing
agent and has no monetary value. A signal of 0 means the
governing agent requests that the user agents do an easy task
with no cost for the user agents and no benefit for the gov-
erning agent, in exchange for the “responsible user” label.
There is no difference between labels given when the gov-
erning agent’s signal is 0 or 1. The governing agent uses a
reinforcement-learning (RL) algorithm in order to produce
its signal, considering the past states, actions, and rewards
(Harati et al., 2021a). The reward for the governing agent is
the cooperation of the user agents in the costly management
action and thus saving the forest from the infestations.

Each user agent considers the governing agent’s signal
and produces a binary decision in response, which indicates
whether or not the user agent accepts the governing agent’s
request in exchange for the “responsible user” label. When
the governing agent’s signal is 0, the requested action is of no
cost, all user agents accept the governing agent’s request, and
all user agents receive the “responsible user” label. When the
governing agent’s signal is 1, each user agent makes a deci-
sion with a cost–benefit analysis, taking into account the gov-
erning agent’s calculated cost of action, the history of the “re-
sponsible user” label, the uniqueness and visibility that they
gain if they get the label, and the revenue from sales. Each
user agent considers obtaining the label as an opportunity to
be unique in having recognition that some user agents do not.
Such uniqueness is assessed based on the response of user
agents to the governing agent in the last known interaction.
Each user agent also assumes that the acknowledgement of
the label in its group depends on how much the group knows
the label, which in turn depends on the cumulative number of
times the label has been seen in the group. Thereupon, user
agents consider a visibility score for the label.

In order to help understand interactions in the model, an-
other agent, the registrar, is defined. The registrar observes
and registers actions of the governing agent and the user
agents in each time step from the beginning of an episode
of simulations. The other agents refer to the registrar in their
decision-making process.

Once the users make their decisions, a message is sent
from the social ABM to the spatial ecological model, and
modifications are correspondingly made in the forest map.
These modifications include removing trees for annual har-
vest or management action. Specifically, each user’s zone is
subject to annual harvest unless that user cooperates with the
governing agent when the signal is 1. In this case, that is, if
the signal is 1 and the user agents cooperate with the govern-
ing agent, the neighborhood indicated for management ac-
tion in the user’s zone is cut. The modified landscape map is
used by the spatial ecological model in the next time step.

A2 Design concepts

A2.1 Theoretical and empirical background

The core idea of the social ABM is the promotion of respon-
sible behavior using individuals’ desire for respect. The the-
oretical basis for this idea notes that sustainability issues are
problems of collective action (Ostrom, 1990); that an individ-
ual’s behavior is influenced by the observation of behavior
of others in the society, or descriptive norms, as stated in the
theory of normative conduct (Cialdini et al., 1990); and that
people care about their reputation in the society (Anderson et
al., 2015; Lazaric et al., 2020; Nolan et al., 2008; Tascioglu
et al., 2017).

The two models that are coupled in this study are both
taken from previous works. The social ABM has been built
on the above concepts and calibrated through thousands of
training iterations (Harati et al., 2021a). The spatial ecolog-
ical model has been developed, calibrated, and tested with
observed data (Harati et al., 2020). We refer the readers to
these two papers for a detailed description of the models.

Complexities arise when the model’s governing agent uses
the “responsible user” label to encourage the user agents to
engage in a costly action. At the beginning of the simulations,
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the label has not been introduced into the society of user
agents, and it is therefore not deemed valuable. Later on, as
the label becomes more visible in society, its value increases
in the calculations of the user agents. Meanwhile, an ecolog-
ical disturbance causes damage to the forest resource. The
model sheds light on the complexities of the abovementioned
setting. Specifically, the model helps answer these questions
about the possibility of success for the governing agent: can
the governing agent gain the cooperation of the user agents?
Can they effectively control the disturbance? Can they save
the resource?

The governing agent’s decisions are based on bounded ra-
tionality (Simon, 1990). The governing agent does not know
how the group of user agents will behave, it does not know
what their decision thresholds are, and its information about
the ecological system comes with a delay. The governing
agent is designed in such a way that it observes the out-
come of its actions and learns to update its decision policy ac-
cording to its observation. User agents make rational choices
(Scott, 2000) based on information that is available to them.
They do not modify their decision rule. User agents compare
the utility of a suggestion with a threshold that indicates their
hesitation, and they make their decisions accordingly.

The social ABM uses input from the spatial ecological
model. This input is the simulation of changes in a landscape,
which are produced and processed through a GIS approach.
This GIS approach does not take a time series of external in-
puts during the simulations. However, the spatial ecological
model is calibrated before the start of simulations using GIS
data, which are available at the grid cell level.

A2.2 Individual decision-making

Subjects of decision-making are the governing agent and
user agents. The object of decision-making of the governing
agent is its binary signal, which is a variable that the govern-
ing agent communicates to user agents. The signal indicates
whether the governing agent is requesting a costly action or
no-cost action from the user agents. The object of decision-
making of each user agent is its decision, which is the user’s
response to the governing agent’s signal request.

Since the governing agent’s decisions are based on
bounded rationality and it does not have perfect knowledge
of the complex system that it deals with, it takes actions ac-
cording to its available knowledge. Then based on the result
of its action, the governing agent updates its decision policy
using a RL algorithm. The governing agent’s RL algorithm
is a double-learning algorithm, which means it includes two
arrays of scores of state–action pairs. These two arrays are
updated iteratively in a convoluted manner, each based on
the other.

The user agents’ decisions are based on rational choice.
User agents calculate the utility of cooperating with the
governing agent and compare this with an internal decision
threshold. The utility that user agents calculate is a quantity

between 0 and 1. If the calculated utility of a suggestion ex-
ceeds a user agent’s decision threshold, then the user agent
accepts that suggestion. In the calculation of the utility of the
“responsible user” label, user agents take into account the
uniqueness that they will have with the label and the visibility
of being associated with responsibility. They assess unique-
ness based on the last known proportion of user agents who
cooperated with the governing agent in a costly action. They
assess visibility based on the total number of times the label
has been presented in their society since the first time step of
the simulation. User agents calculate uniqueness and visibil-
ity based on the registrar’s nLast and nSum.

User agents adapt to changes in their social and ecologi-
cal environment. Social changes influence each user agent’s
perceived value of being recognized as a “responsible user”,
and ecological changes influence the size of the area where
the management action is prescribed, hence influencing the
cost of action required to receive the “responsible user” label.
These variables do not change the decision rule of the user
agent. The simulations shed light on the emergence of a norm
of environmentally responsible behavior among user agents.
On the other hand, the spread of infestations in the forest is a
spatial process, which influences the governing agent’s per-
ceived state of forest health and, subsequently, cost of man-
agement action in each user zone.

All agents in the model use memory in their decisions.
User agents refer to the registrar’s memory. The governing
agent, in addition to the memory of the registrar, uses its own
built-in memory. The governing agent’s RL algorithm ap-
plies a future discounting rate in the calculation of the present
value of the future consequences of its decisions.

The model includes some elements of uncertainty. The de-
cision thresholds of user agents are taken from a normal dis-
tribution. The decision policy of the governing agent is de-
fined stochastically. That is, for each state–action pair, the
policy includes a number, which is used as a threshold for
comparison against a random number. The decision is made
according to that comparison.

A2.3 Learning

Learning is the basis of the governing agent’s RL algorithm.
The RL algorithm keeps track of its states, actions, and re-
wards. The algorithm uses a policy to decide an action in
each state. Then, based on the subsequent reward, the RL al-
gorithm updates its policy. Through iterations, the governing
agent’s RL algorithm learns to adjust its policy in order to
maximize its rewards. The model does not include collective
learning.

A2.4 Individual sensing

In this model, individuals are the agents in the social ABM.
The model includes endogenous and exogenous variables.
For endogenous variables, user agents sense the governing
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agent’s signal. User agents and the governing agent sense the
total number of “responsible user” labels as well as the last
known number of labels given in a time step when the signal
was 1. These variables are accessible to agents through the
registrar. These endogenous variables are sensed without er-
ror. As for exogenous variables, the governing agent senses
the changes that happen in the ecosystem. In our conceptual
model, these changes are simulated by a spatial ecological
model that is coupled to the social ABM. Therefore, this in-
formation is exogenous to the ABM. The sensing of envi-
ronmental change is erroneous because in the definition of
the model, environmental changes are not visible when they
occur. The time lag between the occurrence and visibility of
the changes causes errors in the governing agent’s sensing,
thus adding to the complexity of the SES model. The gov-
erning agent and user agents sense the variables stored in the
registrar, which is an auxiliary agent created for better under-
standing the model. The registrar, in turn, senses the govern-
ing agent’s signal and each user agent’s decision. These vari-
ables are sensed without error. The governing agent senses
the spatial environment at global and local scales, when it
calculates the overall state of health of the forest and the cost
of management action in each user agent zone, respectively.

Within the social ABM, when the governing agent, users
agents, or the registrar requires information from another
agent, they call that other agent. The agents are equipped
with functions that send the requested information. Agents
do not have direct access to variables of other agents. In
the link between the social ABM and the spatial ecological
model, each model is designed to perform some calculations
and then wait for the other model to send the required infor-
mation. This information is transferred by copying a file into
the recipient model’s Inbox directory. The model does not
assume any costs associated with cognition or for gathering
information.

A2.5 Individual prediction

The governing agent’s RL algorithm uses the data gained
through experience in order to assess the values of its pos-
sible actions in the next step. The user agents consider data
of the last known states in their calculations. The govern-
ing agent uses a temporal-difference RL algorithm known as
double expected Sarsa (Sutton and Barto, 2018). The user
agents assess the future value of obtaining the “responsible
user” label with the assumption that the agents who previ-
ously chose a costly action in return for a label will do so
again. The predictions of the agents may be erroneous. User
agents have limited ability to predict future changes in their
society. Likewise, the governing agent’s social prediction ca-
pability is limited. In addition, the governing agent’s external
input, which comes from the ecological spatial model, is de-
signed to come with a delay.

A2.6 Interaction

The model includes direct and indirect interactions among
agents. Direct interactions include the communication of
governing agent’s signal and action cost calculations, as well
as user agents’ decisions. Indirect interactions occur due to
user agents’ desire to be better recognized than their peers,
as well as through the market where all user agents sell their
harvest. The governing agent’s decisions and calculations de-
pend on the history of responses from the user agents as well
as the state of the ecological system. User agents’ decisions
depend on action costs, which are calculated through a spa-
tial analysis. Interactions within the social ABM are com-
municated via the registrar. Interactions between the social
ABM and the ecological spatial model are performed via file
transfers, in which messages are copied into the recipient’s
Inbox directory. The model does not include a coordination
network.

A2.7 Collectives

There are no collectives in this model.

A2.8 Heterogeneity

User agents are heterogeneous in their decision thresholds, as
well as their allocated forest zones. User agents and the gov-
erning agent are different in their decision-making. The ob-
ject of decision of the governing agent is the signal it sends to
the user agents, and the objects of decisions of user agents are
their responses to the governing agent. The governing agent
uses a RL algorithm in its decision, whereas user agents com-
pare the utility of a suggestion with a threshold.

A2.9 Stochasticity

The decision thresholds of the users are drawn from a normal
distribution. The decision policy of the governing agent is
stochastic.

A2.10 Observation

In each time step, the governing agent’s signal; the propor-
tion of user agents who cooperated with the governing agent;
and the remaining proportions of infested, non-infested, and
harvested forest land are collected for analysis. In addition,
for testing and verification of the model, all communications
between the social ABM and the ecological spatial model are
saved. Among the user agents, cooperation with the govern-
ing agent, despite its cost, is a behavior that emerges through
simulations. In addition, saving forest areas from infestations
is an emergent effect in the simulations.
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A3 Details

A3.1 Implementation details

The social ABM was developed in Java, using features of
Repast (North et al., 2013). The spatial ecological model was
developed in R (R Core Team, 2019). Please see the “Code
and data availability” section for links to model code and re-
sults.

A3.2 Initialization

The social ABM consists of a governing agent, nine user
agents, and a registrar agent. The governing agent’s policy
is defined by the results of a previous study (Harati et al.,
2021a), wherein the governing agent’s RL algorithm was
trained through interaction with the same number of user
agents. There is no history of the decisions of user agents;
therefore the last known number of user agents cooperating
with the governing agent is zero. In the previous study that
defined the social ABM (Harati et al., 2021a), three sets of
simulations were run with mean user agent decision thresh-
olds of 0.3 (low), 0.5 (medium), and 0.7 (high). In the present
study, assuming that the governing agent does not have any
information about the decision thresholds of user agents, we
initialized the governing agent with the policy obtained from
training with medium-level user agent decision thresholds.
The said training was the output of the previous study (Harati
et al., 2021a). In the spatial ecological model, locations of
insects at the start of simulations are extracted through GIS
analysis of infestation data (BC Ministry of Forests, 2015).

There are some differences between various runs of the
same series of simulations. The decision thresholds of user
agents in the social ABM are drawn from a truncated normal
distribution with a pre-set mean and standard deviation. In
new runs, new thresholds are drawn from the same normal
distribution. Therefore, user agents change in new runs. For
the governing agent, within the same set of simulations, the
decision policy is updated based on rewards earned in the
previous episode of runs.

A3.3 Input data

In each time step, the social ABM uses input from the eco-
logical spatial model. This input is based on simulations of
the spread of infestations in the forest. As the simulated in-
festations spread further in the forest, the data transmitted to
the social ABM change over time.

A3.4 Submodels

The social ABM includes a RL algorithm for the governing
agent and a simple threshold decision-making algorithm for
user agents. These have been explained in detail in a previ-
ous work (Harati et al., 2021a). The ecological spatial model
is based on a logistic regression algorithm, which has been

Table A2. Model parameters.

Parameter Value(s)

Number of user agents 9

Mean decision threshold of user agents 0.7

Standard deviation of decision thresh-
olds of user agents

0.08

Future discounting rate 0.1

Number of time steps in one episode 10

Number of preparation time steps 0, 10, 20

Number of episodes 50

Business-as-usual harvest ratio 0.01

Management action neighborhood Moore, size 4

explained in detail in another previous work (Harati et al.,
2020). The social and ecological models are coupled through
a mechanism that we call flip-flop. The social model requires
inputs about the state of the forest and newly spread infes-
tations, which is calculated in the ecological model. Con-
versely, the ecological model requires inputs on actions of
user agents, which change land cover. In the flip-flop mech-
anism, each of the models runs its algorithm up to the mo-
ment it requires input from another model. Then it enters a
loop in which it waits and observes an Inbox directory that
is allocated to that model on the computer’s hard disk. In
the meantime, the other model continues its calculations and
eventually produces an output message file and sends it to the
abovementioned Inbox directory. As soon as the message file
is copied into the Inbox directory, the first model notices the
change in the contents of its Inbox, exits the waiting loop,
reads the file, and resumes computing. In this way, mod-
els take alternative turns of running and pausing, hence the
name flip-flop. This strategy has enabled us to facilitate the
exchange of information between two different algorithms
(i.e., the social and the ecological models) that have been
implemented in two different computer languages (Java and
R, respectively).

The management action that we consider in this study is
cutting cells in a neighborhood of newly observed infesta-
tions. The size of this neighborhood is a parameter that needs
to be defined. Based on insight obtained about the spatial
spread of MPB infestations in a previous study (Harati et
al., 2021b), in the present study we used Moore neighbor-
hoods of size 4 to simulate the abovementioned management
action. Considering that the cell size in the model is 400 m,
the said neighborhood will be a square with side length of
3.6 km. The rationale for this hypothetical neighborhood is
that newly infested cells are not immediately detected. By
the time infested cells change color and become observable,
the infestation has spread further in the area.
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The subject of calibration of the social ABM is the deci-
sion policy of its RL algorithm. This policy was learned pre-
viously (Harati et al., 2021a) through 50 sets of 4000 training
episodes, each in a configuration with medium-level decision
thresholds for user agents. Each set of 4000 episodes resulted
in 1 learned policy; thus, there were a total of 50 learned poli-
cies. The mean of those 50 policies was used as the starting
policy in the simulations of the present study. The spatial eco-
logical model was calibrated using observed infestation data
of the years 2002–2004 for BC. Details of the model and its
calibration are described in the corresponding previous work
(Harati et al., 2020).

As both the social ABM and the spatial ecological model
are taken from previous works, we only made modifications
to code and parameters for the coupling of the two models
and the runs of this study. The social model’s parameters in-
clude the number of user agents, mean and standard deviation
of decision thresholds of user agents, future discounting rate,
number of time steps in one episode, and number of episodes.
Each episode of simulations was run with a new set of user
agents. In addition, in the present study we added a new pa-
rameter for the number of preparation steps before the social
model is coupled with the spatial ecological model. The pa-
rameters of the coupling of the two models are the business-
as-usual harvest ratio, which is the ratio of the study area that
the user agents would harvest regardless of disturbance man-
agement, and the size of the neighborhood of newly visible
infestations, in which the management action of cutting cells
is defined. Table A2 shows the model parameters and their
values. Note that in this table all values are dimensionless
except for the management action neighborhood size, which
is in grid cells.

Code and data availability. Model code files are available at a Zen-
odo repository (https://doi.org/10.5281/zenodo.11245520, s-harati,
2024) under an MIT license. Datasets of model input and output
are available in an OSF repository (https://doi.org/10.17605/OSF.
IO/URJQ8, Harati-Asl et al., 2024). Further information about the
model is presented below:

– model name – flipflopSEM (FlipFlop: a Social Ecological
Model);
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– languages – Java and R.

Author contributions. SHA developed model concept and code un-
der supervision by LP and RMH. SHA curated model data and ran
the model. All authors contributed to the writing and the preparation
of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We are thankful to the Université de Mon-
tréal’s International Affairs Office (IAO) for their International Part-
nership Development program, which allowed the collaboration be-
tween researchers from Université de Montréal and CREAF.

Financial support. This research was partially funded by the Nat-
ural Sciences and Engineering Research Council (NSERC) of
Canada through a Discovery Grant, number RGPIN/05396-2016,
awarded to Liliana Perez. Roberto Molowny-Horas received finan-
cial support from the European Union’s Seventh Framework Pro-
gramme through NEWFORESTS, program number PIRSES-GA-
2013-612645.

Review statement. This paper was edited by Sam Rabin and re-
viewed by two anonymous referees.

References

Anderson, C., Hildreth, J. A. D., and Howland, L.: Is the
desire for status a fundamental human motive? A review
of the empirical literature, Psychol. Bull., 141, 574–601,
https://doi.org/10.1037/a0038781, 2015.

Axelrod, R.: An evolutionary approach to norms, Am. Polit. Sci.
Rev., 80, 1095–1111, 1986.

Barbier, E. B.: The Concept of Sustainable Eco-
nomic Development, Environ. Conserv., 14, 101–110,
https://doi.org/10.1017/S0376892900011449, 1987.

Batty, M. and Torrens, P. M.: Modelling and predic-
tion in a complex world, Futures, 37, 745–766,
https://doi.org/10.1016/j.futures.2004.11.003, 2005.

Batty, M., Xie, Y., and Sun, Z.: Modeling urban dynamics through
GIS-based cellular automata, Comput. Environ. Urban Syst.,
23, 205–233, https://doi.org/10.1016/S0198-9715(99)00015-0,
1999.

BC Ministry of Forests: British Columbia’s Forests And Their
Management, 24 pp., https://www.for.gov.bc.ca/hfd/pubs/docs/
mr/mr113/BC_Forest_Management.pdf (last access: 25 March
2024), 2003.

BC Ministry of Forests: BC MPB Observed Cumulative Kill –
vol. 12 [data set], https://www.for.gov.bc.ca/ftp/HRE/external/
!publish/web/BCMPB/Year12/ (last access: 19 September 2019),
2015.

Berkes, F. and Folke, C.: Linking social and ecological sys-
tems for resilience and sustainability, in: Linking Social and
Ecological Systems: Management Practices and Social Mecha-
nisms for Building Resilience, edited by: Berkes, F., Folke, C.,
and Colding, J., Cambridge University Press, 1–26, ISBN-10:
0521785626, ISBN-13: 978-0521785624, 2000.

Geosci. Model Dev., 17, 7423–7443, 2024 https://doi.org/10.5194/gmd-17-7423-2024

https://doi.org/10.5281/zenodo.11245520
https://doi.org/10.17605/OSF.IO/URJQ8
https://doi.org/10.17605/OSF.IO/URJQ8
https://doi.org/10.1037/a0038781
https://doi.org/10.1017/S0376892900011449
https://doi.org/10.1016/j.futures.2004.11.003
https://doi.org/10.1016/S0198-9715(99)00015-0
https://www.for.gov.bc.ca/hfd/pubs/docs/mr/mr113/BC_Forest_Management.pdf
https://www.for.gov.bc.ca/hfd/pubs/docs/mr/mr113/BC_Forest_Management.pdf
https://www.for.gov.bc.ca/ftp/HRE/external/!publish/web/BCMPB/Year12/
https://www.for.gov.bc.ca/ftp/HRE/external/!publish/web/BCMPB/Year12/


S. Harati-Asl et al.: Learning from conceptual models 7441

Blundell, A. G. and Gullison, R. E.: Poor regulatory capacity limits
the ability of science to influence the management of mahogany,
Forest Policy Econ., 5, 395–405, https://doi.org/10.1016/S1389-
9341(03)00038-8, 2003.

Bone, C., Dragicevic, S., and Roberts, A.: A fuzzy-constrained cel-
lular automata model of forest insect infestations, Ecol. Modell.,
192, 107–125, https://doi.org/10.1016/j.ecolmodel.2005.09.013,
2006.

Bonnell, T. R., Campennì, M., Chapman, C. A., Gogarten,
J. F., Reyna-Hurtado, R. A., Teichroeb, J. A., Wasser-
man, M. D., and Sengupta, R.: Emergent Group Level
Navigation: An Agent-Based Evaluation of Movement Pat-
terns in a Folivorous Primate, PLoS One, 8, e78264,
https://doi.org/10.1371/journal.pone.0078264, 2013.

Bourceret, A., Amblard, L., and Mathias, J. D.: Governance in
social-ecological agent-based models: A review, Ecol. Soc., 26,
https://doi.org/10.5751/ES-12440-260238, 2021.

Braun, D. and Guston, D. H.: Principal-agent theory and re-
search policy: An introduction, Sci. Public Policy, 30, 302–308,
https://doi.org/10.3152/147154303781780290, 2003.

Brown, B. J., Hanson, M. E., Liverman, D. M., and Merideth, R.
W.: Global sustainability: Toward definition, Environ. Manage.,
11, 713–719, https://doi.org/10.1007/BF01867238, 1987.

Brundtland, G. H.: Report of the World Commission on environ-
ment and development: “our common future”, World Commis-
sion on Environment and Development (WCED). Our Common
Future. Oxford and New York: Oxford University Press, 383 pp.,
ISBN 0 19 282080 X, 1987.

Castle, C. and Crooks, A.: Principles and concepts of agent-based
modelling for developing geospatial simulations, Centre for Ad-
vanced Spatial Analysis (UCL), London, UK, ISSN 1467-1298,
2006.

Cialdini, R. B., Reno, R. R., and Kallgren, C. A.: A Focus Theory of
Normative Conduct: Recycling the Concept of Norms to Reduce
Littering in Public Places, J. Pers. Soc. Psychol., 58, 1015–1026,
https://doi.org/10.1037/0022-3514.58.6.1015, 1990.

Clarke, K. C., Hoppen, S., and Gaydos, L.: A self-modifying cel-
lular automaton model of historical urbanization in the San
Francisco Bay area, Environ. Plan. B Plan. Des., 24, 247–261,
https://doi.org/10.1068/b240247, 1997.

Cosens, B., Ruhl, J. B., Soininen, N., Gunderson, L., Belinskij,
A., Blenckner, T., Camacho, A. E., Chaffin, B. C., Craig, R.
K., Doremus, H., Glicksman, R., Heiskanen, A.-S., Larson, R.,
and Similä, J.: Governing complexity: Integrating science, gov-
ernance, and law to manage accelerating change in the glob-
alized commons, P. Natl. Acad. Sci. USA, 118, e2102798118,
https://doi.org/10.1073/pnas.2102798118, 2021.

Crawford, S. E. and Ostrom, E.: A grammar of institutions, Am.
Polit. Sci. Rev., 89, 582–600, 1995.

Daily, G. C.: Management objectives for the protection of
ecosystem services, Environ. Sci. Policy, 3, 333–339,
https://doi.org/10.1016/S1462-9011(00)00102-7, 2000.

de Almeida, C. M., Batty, M., Monteiro, A. M. V., Câmara, G.,
Soares-Filho, B. S., Cerqueira, G. C., and Pennachin, C. L.:
Stochastic cellular automata modeling of urban land use dy-
namics: Empirical development and estimation, Comput. Env-
iron. Urban Syst., 27, 481–509, https://doi.org/10.1016/S0198-
9715(02)00042-X, 2003.

De Young, R.: New ways to promote proenvironmental be-
havior: Expanding and evaluating motives for environmen-
tally responsible behavior, J. Soc. Issues, 56, 509–526,
https://doi.org/10.1111/0022-4537.00181, 2000.

Farrow, K., Grolleau, G., and Ibanez, L.: Social Norms and Pro-
environmental Behavior: A Review of the Evidence, Ecol. Econ.,
140, 1–13, https://doi.org/10.1016/j.ecolecon.2017.04.017,
2017.

Feeny, D., Berkes, F., McCay, B. J., and Acheson, J. M.: The
Tragedy of the Commons: Twenty-two years later, Hum. Ecol.,
18, 1–19, https://doi.org/10.1007/BF00889070, 1990.

Filotas, E., Parrott, L., Burton, P. J., Chazdon, R. L., Coates, K. D.,
Coll, L., Haeussler, S., Martin, K., Nocentini, S., Puettmann, K.
J., Putz, F. E., Simard, S. W., and Messier, C.: Viewing forests
through the lens of complex systems science, Ecosphere, 5, 1–
23, https://doi.org/10.1890/ES13-00182.1, 2014.

Forest Practices Board: Tree Species Harvested
In Areas Affected By Mountain Pine Beetles,
https://www.bcfpb.ca/wp-content/uploads/2016/04/
SR33-Tree-Species-Harvested-in-Areas-Affected-by-MPB.pdf
(last access: 25 March 2024), 2007.

Forest Practices Board: Biodiversity Conservation during Salvage
Logging in the Central Interior of BC, https://www.bcfpb.ca/
wp-content/uploads/2016/04/SR35-Salvage-Logging.pdf (last
access: 25 March 2024), 2009.

Gaudreau, J., Perez, L., and Drapeau, P.: BorealFireSim: A GIS-
based cellular automata model of wildfires for the boreal forest
of Quebec in a climate change paradigm, Ecol. Inform., 32, 12–
27, https://doi.org/10.1016/j.ecoinf.2015.12.006, 2016.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Rails-
back, S. F., Thulke, H. H., Weiner, J., Wiegand, T., and DeAn-
gelis, D. L.: Pattern-oriented modeling of agent-based com-
plex systems: Lessons from ecology, Science, 310, 987–991,
https://doi.org/10.1126/science.1116681, 2005.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V.,
Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse,
G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M.,
Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A.
M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E.,
Souissi, S., Stillman, R. A., Vabø, R., Visser, U., and DeAn-
gelis, D. L.: A standard protocol for describing individual-
based and agent-based models, Ecol. Modell., 198, 115–126,
https://doi.org/10.1016/j.ecolmodel.2006.04.023, 2006.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G.,
Giske, J., and Railsback, S. F.: The ODD protocol: A
review and first update, Ecol. Modell., 221, 2760–2768,
https://doi.org/10.1016/j.ecolmodel.2010.08.019, 2010.

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher,
C., DeAngelis, D. L., Edmonds, B., Ge, J., Giske, J., Groeneveld,
J., Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G.,
Radchuk, V., Rohwäder, M.-S., Stillman, R. A., Thiele, J. C., and
Ayllón, D.: The ODD Protocol for Describing Agent-Based and
Other Simulation Models: A Second Update to Improve Clarity,
Replication, and Structural Realism, J. Artif. Soc. Soc. Simul.,
23, 7, https://doi.org/10.18564/jasss.4259, 2020.

Harati, S., Perez, L., and Molowny-Horas, R.: Integrating neighbor-
hood effect and supervised machine learning techniques to model
and simulate forest insect outbreaks in british columbia, canada,
Forests, 11, 1215, https://doi.org/10.3390/f11111215, 2020.

https://doi.org/10.5194/gmd-17-7423-2024 Geosci. Model Dev., 17, 7423–7443, 2024

https://doi.org/10.1016/S1389-9341(03)00038-8
https://doi.org/10.1016/S1389-9341(03)00038-8
https://doi.org/10.1016/j.ecolmodel.2005.09.013
https://doi.org/10.1371/journal.pone.0078264
https://doi.org/10.5751/ES-12440-260238
https://doi.org/10.3152/147154303781780290
https://doi.org/10.1007/BF01867238
https://doi.org/10.1037/0022-3514.58.6.1015
https://doi.org/10.1068/b240247
https://doi.org/10.1073/pnas.2102798118
https://doi.org/10.1016/S1462-9011(00)00102-7
https://doi.org/10.1016/S0198-9715(02)00042-X
https://doi.org/10.1016/S0198-9715(02)00042-X
https://doi.org/10.1111/0022-4537.00181
https://doi.org/10.1016/j.ecolecon.2017.04.017
https://doi.org/10.1007/BF00889070
https://doi.org/10.1890/ES13-00182.1
https://www.bcfpb.ca/wp-content/uploads/2016/04/SR33-Tree-Species-Harvested-in-Areas-Affected-by-MPB.pdf
https://www.bcfpb.ca/wp-content/uploads/2016/04/SR33-Tree-Species-Harvested-in-Areas-Affected-by-MPB.pdf
https://www.bcfpb.ca/wp-content/uploads/2016/04/SR35-Salvage-Logging.pdf
https://www.bcfpb.ca/wp-content/uploads/2016/04/SR35-Salvage-Logging.pdf
https://doi.org/10.1016/j.ecoinf.2015.12.006
https://doi.org/10.1126/science.1116681
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2010.08.019
https://doi.org/10.18564/jasss.4259
https://doi.org/10.3390/f11111215


7442 S. Harati-Asl et al.: Learning from conceptual models

Harati, S., Perez, L., and Molowny-Horas, R.: Promoting the
emergence of behavior norms in a principal–agent problem –
an agent-based modeling approach using reinforcement learn-
ing, Appl. Sci., 11, 8368, https://doi.org/10.3390/app11188368,
2021a.

Harati, S., Perez, L., Molowny-Horas, R., and Pontius, R. G.:
Validating models of one-way land change: an example case
of forest insect disturbance, Landsc. Ecol., 36, 2919–2935,
https://doi.org/10.1007/s10980-021-01272-0, 2021b.

Harati-Asl, S., Perez, L., and Molowny-Horas, R.:
Datasets for Model flipflopSEM, OSF [data set],
https://doi.org/10.17605/OSF.IO/URJQ8, 2024.

Janssen, M. A. and Ostrom, E.: Empirically Based, Agent-
based models, Ecol. Soc., 11, 37, https://www.jstor.org/stable/
26265994 (last access: 25 March 2024), 2006a.

Janssen, M. A. and Ostrom, E.: Governing Social-Ecological Sys-
tems, in: Handbook of Computational Economics (vol. 2),
edited by: Tesfatsion, L. and Judd, K. L., Elsevier, 1465–1509,
https://doi.org/10.1016/S1574-0021(05)02030-7, 2006b.

Kaplan, S.: New ways to promote proenvironmental behavior: Hu-
man nature and environmentally responsible behavior, J. Soc.
Issues, 56, 491–508, https://doi.org/10.1111/0022-4537.00180,
2000.

Katan, J. and Perez, L.: ABWiSE v1.0: toward an agent-based
approach to simulating wildfire spread, Nat. Hazards Earth
Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-
3141-2021, 2021.

Katzev, R. D. and Johnson, T. R.: Promoting Energy Conserva-
tion: An Analysis of Behavioral Research, Westview Press, ISBN
0813373379, 1987.

Kriebel, D., Tickner, J., Epstein, P., Lemons, J., Levins,
R., Loechler, E. L., Quinn, M., Rudel, R., Schettler, T.,
and Stoto, M.: The precautionary principle in environ-
mental science, Environ. Health Perspect., 109, 871–876,
https://doi.org/10.1289/ehp.01109871, 2001.

Lambin, E. F. and Geist, H. (Eds.): Land-Use and Land-
Cover Change, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/3-540-32202-7, 2006.

Lambin, E. F., Geist, H., and Rindfuss, R. R.: Introduction: Local
Processes with Global Impacts, in: Land-Use and Land-Cover
Change, edited by: Lambin, E. F. and Geist, H., Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–8, https://doi.org/10.1007/3-
540-32202-7_1, 2006.

Lazaric, N., Le Guel, F., Belin, J., Oltra, V., Lavaud, S., and
Douai, A.: Determinants of sustainable consumption in France:
the importance of social influence and environmental values,
J. Evol. Econ., 30, 1337–1366, https://doi.org/10.1007/s00191-
019-00654-7, 2020.

Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C.,
Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco,
J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L.,
Schneider, S. H., and Taylor, W. W.: Complexity of Cou-
pled Human and Natural Systems, Science, 317, 1513–1516,
https://doi.org/10.1126/science.1144004, 2007.

Maclauchlan, L. E. and Brooks, J. E. (Eds.): Strategies and tac-
tics for managing the mountain pine beetle Dendroctonus pon-
derosae, B.C. Forest Service, Kamloops Region Forest Health,
Kamloops, BC, 60 pp., 1994.

Millennium Ecosystem Assessment: Ecosystems and their services,
in: Ecosystems and Human Well-being: A Framework for As-
sessment, Island Press, Washington, DC, 49–70, ISBN 1-55963-
403-0, 2003.

Mosler, H.-J.: Self-dissemination of environmentally-responsible
behavior: The influence of trust in a commons dilemma game, J.
Environ. Psychol., 13, 111–123, https://doi.org/10.1016/S0272-
4944(05)80144-6, 1993.

Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Mar-
tin, R., Schlüter, M., Schulze, J., Weise, H., and Schwarz, N.:
Describing human decisions in agent-based models – ODD+D,
an extension of the ODD protocol, Environ. Model. Softw., 48,
37–48, https://doi.org/10.1016/j.envsoft.2013.06.003, 2013.

National Research Council: Advancing Land Change Modeling:
Opportunities and Research Requirements, National Academies
Press, Washington, D.C., https://doi.org/10.17226/18385, 2014.

Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein,
N. J., and Griskevicius, V.: Normative Social Influence is
Underdetected, Personal. Soc. Psychol. Bull., 34, 913–923,
https://doi.org/10.1177/0146167208316691, 2008.

North, D. C.: Institutions, Institutional Change and Economic
Performance, Cambridge University Press, Cambridge, UK,
https://doi.org/10.1017/CBO9780511808678, 1990.

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M.,
Bragen, M., and Sydelko, P.: Complex adaptive systems model-
ing with Repast Simphony, Complex Adapt. Syst. Model., 1, 3,
https://doi.org/10.1186/2194-3206-1-3, 2013.

Nyborg, K., Anderies, J. M., Dannenberg, A., Lindahl, T., Schill, C.,
Schlüter, M., Adger, W. N., Arrow, K. J., Barrett, S., Carpenter,
S., Chapin, F. S., Crépin, A.-S., Daily, G., Ehrlich, P., Folke, C.,
Jager, W., Kautsky, N., Levin, S. A., Madsen, O. J., Polasky, S.,
Scheffer, M., Walker, B., Weber, E. U., Wilen, J., Xepapadeas,
A., and de Zeeuw, A.: Social norms as solutions, Science, 354,
42–43, https://doi.org/10.1126/science.aaf8317, 2016.

Omoto, A. M. and Snyder, M.: Sustained helping without obli-
gation: Motivation, longevity of service, and perceived attitude
change among AIDS volunteers, J. Pers. Soc. Psychol., 68, 671–
686, https://doi.org/10.1037/0022-3514.68.4.671, 1995.

Ostrom, E.: Governing the commons: The evolution of institutions
for collective action, Cambridge University Press, Cambridge,
UK, ISBN-10: 0521405998, ISBN-13: 978-1933771779, 1990.

Ostrom, E.: A General Framework for Analyzing Sustainabil-
ity of Social-Ecological Systems, Science, 325, 419–422,
https://doi.org/10.1126/science.1172133, 2009.

O’Sullivan, D.: Complexity Science and Human Geography, Trans.
Inst. Br. Geogr., 29, 282–295, https://doi.org/10.1111/j.0020-
2754.2004.00321.x, 2004.

Parrott, L., Chion, C., Martins, C. C. A., Lamontagne, P., Turgeon,
S., Landry, J. A., Zhens, B., Marceau, D. J., Michaud, R., Cantin,
G., Ménard, N., and Dionne, S.: A decision support system to
assist the sustainable management of navigation activities in the
St. Lawrence River Estuary, Canada, Environ. Model. Softw., 26,
1403–1418, https://doi.org/10.1016/j.envsoft.2011.08.009, 2011.

Perez, L. and Dragicevic, S.: An agent-based approach for modeling
dynamics of contagious disease spread, Int. J. Health Geogr., 8,
50, https://doi.org/10.1186/1476-072X-8-50, 2009.

Perez, L. and Dragicevic, S.: Modeling mountain pine bee-
tle infestation with an agent-based approach at two

Geosci. Model Dev., 17, 7423–7443, 2024 https://doi.org/10.5194/gmd-17-7423-2024

https://doi.org/10.3390/app11188368
https://doi.org/10.1007/s10980-021-01272-0
https://doi.org/10.17605/OSF.IO/URJQ8
https://www.jstor.org/stable/26265994
https://www.jstor.org/stable/26265994
https://doi.org/10.1016/S1574-0021(05)02030-7
https://doi.org/10.1111/0022-4537.00180
https://doi.org/10.5194/nhess-21-3141-2021
https://doi.org/10.5194/nhess-21-3141-2021
https://doi.org/10.1289/ehp.01109871
https://doi.org/10.1007/3-540-32202-7
https://doi.org/10.1007/3-540-32202-7_1
https://doi.org/10.1007/3-540-32202-7_1
https://doi.org/10.1007/s00191-019-00654-7
https://doi.org/10.1007/s00191-019-00654-7
https://doi.org/10.1126/science.1144004
https://doi.org/10.1016/S0272-4944(05)80144-6
https://doi.org/10.1016/S0272-4944(05)80144-6
https://doi.org/10.1016/j.envsoft.2013.06.003
https://doi.org/10.17226/18385
https://doi.org/10.1177/0146167208316691
https://doi.org/10.1017/CBO9780511808678
https://doi.org/10.1186/2194-3206-1-3
https://doi.org/10.1126/science.aaf8317
https://doi.org/10.1037/0022-3514.68.4.671
https://doi.org/10.1126/science.1172133
https://doi.org/10.1111/j.0020-2754.2004.00321.x
https://doi.org/10.1111/j.0020-2754.2004.00321.x
https://doi.org/10.1016/j.envsoft.2011.08.009
https://doi.org/10.1186/1476-072X-8-50


S. Harati-Asl et al.: Learning from conceptual models 7443

spatial scales, Environ. Model. Softw., 25, 223–236,
https://doi.org/10.1016/j.envsoft.2009.08.004, 2010.

Pooyandeh, M. and Marceau, D. J.: A spatial web/agent-
based model to support stakeholders’ negotiation regard-
ing land development, J. Environ. Manage., 129, 309–323,
https://doi.org/10.1016/j.jenvman.2013.07.028, 2013.

Railsback, S. F. and Grimm, V.: Agent-based and Individual-based
Modeling: A Practical Introduction, Princeton University Press,
ISBN-10: 0691190836, 2012.

R Core Team: R: A Language and Environment for Statistical
Computing, https://www.r-project.org/ (last access: 17 Septem-
ber 2024), 2019.

Ross, H. L.: Perspectives on social order, McGraw-Hill, New York,
ISBN-10: 0070538727 ISBN-13: 978-0070538726, 1973.

Savarimuthu, B. T. R. and Cranefield, S.: Norm creation, spread-
ing and emergence: A survey of simulation models of norms
in multi-agent systems, Multiagent Grid Syst., 7, 21–54,
https://doi.org/10.3233/MGS-2011-0167, 2011.

Schlüter, M., Hinkel, J., Bots, P. W. G., and Arlinghaus, R.: Ap-
plication of the SES framework for model-based analysis of
the dynamics of social-ecological systems, Ecol. Soc., 19, 36,
https://doi.org/10.5751/ES-05782-190136, 2014.

Scott, J.: Rational Choice Theory, in: Understanding Contempo-
rary Society: Theories of the Present, edited by: Browning, G.,
Halcli, A., and Webster, F., SAGE Publications Ltd, 126–138,
https://doi.org/10.4135/9781446218310.n9, 2000.

s-harati: s-harati/model-flipflopSEM: v1.0.0 (v1.0.0), Zenodo
[code], https://doi.org/10.5281/zenodo.11245520, 2024.

Simon, H. A.: Bounded Rationality, in: Utility and Probability,
edited by: Eatwell, J., Milgate, M., and Newman, P., Palgrave
Macmillan UK, London, 15–18, https://doi.org/10.1007/978-1-
349-20568-4_5, 1990.

Stern, P. C., Dietz, T., and Kalof, L.: Value Orientations, Gen-
der, and Environmental Concern, Environ. Behav., 25, 322–348,
https://doi.org/10.1177/0013916593255002, 1993.

Sutton, R. S. and Barto, A. G.: Reinforcement Learning: An Intro-
duction, 2nd ed., MIT Press, Cambridge, Massachussetts, ISBN-
10: 0262039249, ISBN-13: 978-0262039246, 2018.

Tascioglu, M., Eastman, J. K., and Iyer, R.: The impact of the mo-
tivation for status on consumers’ perceptions of retailer sustain-
ability: the moderating impact of collectivism and materialism, J.
Consum. Mark., 34, 292–305, https://doi.org/10.1108/JCM-03-
2015-1351, 2017.

Wagner, W. E.: Commons Ignorance: The Failure of Environmental
Law to Produce Needed Information on Health and the Environ-
ment, Duke Law J., 53, 1619–1745, http://www.jstor.org/stable/
40040450 (last access: 25 March 2024), 2004.

White, R. and Engelen, G.: Cellular automata and fractal ur-
ban form: a cellular modelling approach to the evolution of
urban land-use patterns, Environ. Plan. A, 25, 1175–1199,
https://doi.org/10.1068/a251175, 1993.

Wimolsakcharoen, W., Dumrongrojwatthana, P., Le Page, C., Bous-
quet, F., and Trébuil, G.: An agent-based model to support com-
munity forest management and non-timber forest product har-
vesting in northern Thailand, Socio-Environmental Syst. Model.,
3, 17894, https://doi.org/10.18174/sesmo.2021a17894, 2021.

Wittemyer, G., Daballen, D., and Douglas-Hamilton, I.: Ris-
ing ivory prices threaten elephants, Nature, 476, 282–283,
https://doi.org/10.1038/476282c, 2011.

Wolfram, S.: A new kind of science, Wolfram media, Champaign,
IL, United States, ISBN-10: 1579550258, 2002.

https://doi.org/10.5194/gmd-17-7423-2024 Geosci. Model Dev., 17, 7423–7443, 2024

https://doi.org/10.1016/j.envsoft.2009.08.004
https://doi.org/10.1016/j.jenvman.2013.07.028
https://www.r-project.org/
https://doi.org/10.3233/MGS-2011-0167
https://doi.org/10.5751/ES-05782-190136
https://doi.org/10.4135/9781446218310.n9
https://doi.org/10.5281/zenodo.11245520
https://doi.org/10.1007/978-1-349-20568-4_5
https://doi.org/10.1007/978-1-349-20568-4_5
https://doi.org/10.1177/0013916593255002
https://doi.org/10.1108/JCM-03-2015-1351
https://doi.org/10.1108/JCM-03-2015-1351
http://www.jstor.org/stable/40040450
http://www.jstor.org/stable/40040450
https://doi.org/10.1068/a251175
https://doi.org/10.18174/sesmo.2021a17894
https://doi.org/10.1038/476282c

	Abstract
	Introduction
	A governance problem in sustainable development
	Background from multiple disciplines
	Setting, questions, and objectives

	Methods
	Ecological model
	Social model
	Coupled social–ecological model
	Simulation scenarios

	Results
	Discussion
	Insights about the case study
	Insights about governance of SESs
	Reflections on the use of conceptual bottom-up models in the study of complex systems
	Challenges and perspectives for future work

	Conclusion
	Appendix A: Model description using the ODD+D protocol
	Appendix A1: Overview
	Appendix A1.1: Purpose
	Appendix A1.2: Entities, state variables, and scales
	Appendix A1.3: Process overview and scheduling

	Appendix A2: Design concepts
	Appendix A2.1: Theoretical and empirical background
	Appendix A2.2: Individual decision-making
	Appendix A2.3: Learning
	Appendix A2.4: Individual sensing
	Appendix A2.5: Individual prediction
	Appendix A2.6: Interaction
	Appendix A2.7: Collectives
	Appendix A2.8: Heterogeneity
	Appendix A2.9: Stochasticity
	Appendix A2.10: Observation

	Appendix A3: Details
	Appendix A3.1: Implementation details
	Appendix A3.2: Initialization
	Appendix A3.3: Input data
	Appendix A3.4: Submodels


	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

