Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6887-2024
https://doi.org/10.5194/gmd-17-6887-2024
Development and technical paper
 | 
13 Sep 2024
Development and technical paper |  | 13 Sep 2024

GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator

Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang

Data sets

The dataset of the manuscript "GPU-HADVPPM4HIP V1.0: higher model accuracy on China's domestically GPU-like accelerator using heterogeneous compute interface for portability (HIP) technology to accelerate the piecewise parabolic method (PPM) in an air quality model (CAMx V6.10)" K. Cao and Q. Wu https://doi.org/10.5281/zenodo.12747391

The dataset of the manuscript "GPUHADVPPM V1.0: high-efficient parallel GPU design of the Piecewise Parabolic Method (PPM) for horizontal advection in air quality model (CAMx V6.10)" K. Cao et al. https://doi.org/10.5281/zenodo.7765218

Model code and software

CAMx version 6.1 ENVIRON https://camx-wp.azurewebsites.net/download/source/

Download
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.