Articles | Volume 17, issue 16
https://doi.org/10.5194/gmd-17-6301-2024
https://doi.org/10.5194/gmd-17-6301-2024
Development and technical paper
 | 
27 Aug 2024
Development and technical paper |  | 27 Aug 2024

Mixed-precision computing in the GRIST dynamical core for weather and climate modelling

Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue

Related authors

LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024,https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev., 16, 2975–2993, https://doi.org/10.5194/gmd-16-2975-2023,https://doi.org/10.5194/gmd-16-2975-2023, 2023
Short summary
Stable climate simulations using a realistic general circulation model with neural network parameterizations for atmospheric moist physics and radiation processes
Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J. Zhang
Geosci. Model Dev., 15, 3923–3940, https://doi.org/10.5194/gmd-15-3923-2022,https://doi.org/10.5194/gmd-15-3923-2022, 2022
Short summary
A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine
Bowen Cao, Le Yu, Victoria Naipal, Philippe Ciais, Wei Li, Yuanyuan Zhao, Wei Wei, Die Chen, Zhuang Liu, and Peng Gong
Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021,https://doi.org/10.5194/essd-13-2437-2021, 2021
Short summary
BCC-CSM2-HR: a high-resolution version of the Beijing Climate Center Climate System Model
Tongwen Wu, Rucong Yu, Yixiong Lu, Weihua Jie, Yongjie Fang, Jie Zhang, Li Zhang, Xiaoge Xin, Laurent Li, Zaizhi Wang, Yiming Liu, Fang Zhang, Fanghua Wu, Min Chu, Jianglong Li, Weiping Li, Yanwu Zhang, Xueli Shi, Wenyan Zhou, Junchen Yao, Xiangwen Liu, He Zhao, Jinghui Yan, Min Wei, Wei Xue, Anning Huang, Yaocun Zhang, Yu Zhang, Qi Shu, and Aixue Hu
Geosci. Model Dev., 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021,https://doi.org/10.5194/gmd-14-2977-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025,https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025,https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025,https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Estimation of aerosol and cloud radiative heating rate in the tropical stratosphere using a radiative kernel method
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025,https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary

Cited articles

Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., Luszczek, P., and Tomov, S.: Accelerating scientific computations with mixed precision algorithms, Comput. Phys. Commun., 180, 2526–2533, https://doi.org/10.1016/j.cpc.2008.11.005, 2009. 
Banderier, H., Zeman, C., Leutwyler, D., Rüdisühli, S., and Schär, C.: Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification, Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, 2024. 
Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nat. Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021. 
Benjamin, S. G., Brown, J. M., Brunet, G., Lynch, P., Saito, K., and Schlatter, T. W.: 100 Years of Progress in Forecasting and NWP Applications, Meteorol. Monogr., 59, 13.11–13.67, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1, 2019. 
Download
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Share