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Abstract. Atmosphere modelling applications are becoming
increasingly memory-bound due to the inconsistent devel-
opment rates between processor speeds and memory band-
width. In this study, we mitigate memory bottlenecks and
reduce the computational load of the Global–Regional Inte-
grated Forecast System (GRIST) dynamical core by adopting
a mixed-precision computing strategy. Guided by an appli-
cation of the iterative development principle, we identify the
coded equation terms that are precision insensitive and mod-
ify them from double to single precision. The results show
that most precision-sensitive terms are predominantly linked
to pressure gradient and gravity terms, while most precision-
insensitive terms are advective terms. Without using more
computing resources, computational time can be saved, and
the physical performance of the model is largely kept. In
the standard computational test, the reference runtime of
the model’s dry hydrostatic core, dry nonhydrostatic core,
and the tracer transport module is reduced by 24 %, 27 %,
and 44 %, respectively. A series of idealized tests, real-world
weather and climate modelling tests, was performed to assess
the optimized model performance qualitatively and quantita-
tively. In particular, in the long-term coarse-resolution cli-
mate simulation, the precision-induced sensitivity can man-
ifest at the large scale, while in the kilometre-scale weather
forecast simulation, the model’s sensitivity to the precision
level is mainly limited to small-scale features, and the wall-
clock time is reduced by 25.5 % from the double- to mixed-
precision full-model simulations.

1 Introduction

Increasing model resolution is an effective approach to en-
hancing atmosphere model forecast accuracy (Bauer et al.,
2021; Benjamin et al., 2019; Yu et al., 2019). Highly accu-
rate, efficient, stable, and scalable global dynamical cores
have been widely pursued over the past 2 decades (e.g.
Tomita and Satoh, 2004; Harris and Lin, 2012; Skamarock et
al., 2012; Zängl et al., 2015; Wedi et al., 2020; Sergeev et al.,
2023; Zhang et al., 2023). Doubling the horizontal resolution
with a fixed vertical resolution leads to an increase in compu-
tational amount by a factor of ∼ 23, a significant challenge
in terms of computational cost and energy consumption.

Operational weather and climate forecasting is a field
where the dual demands of accuracy and computational ef-
ficiency converge, necessitating both quality and speed. In
the context of high-resolution mesoscale forecasting, which
operates on scales of a few kilometres, computational ef-
ficiency itself implies forecast accuracy. Faster models en-
able more frequent forecast-assimilation cycles and the use
of larger ensemble sizes within the constraints of finite com-
putational resources. To tackle these computational hurdles,
efforts have concentrated on enhancing the efficiency of nu-
merical models. Progress such as field-programmable gate
arrays (FPGAs) and heterogeneous computing (e.g. Gan et
al., 2013; Yang et al., 2016; Fu et al., 2017; Gu et al., 2022;
Taylor et al., 2023), alongside compiler optimizations (e.g.
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Santos et al., 2024), has demonstrated significant potential in
accelerating Earth system models.

Conventional weather/climate model development has
typically relied on double-precision (64 bit) floating points.
The transition from double- to single-precision (32 bit)
or even half-precision floating-point arithmetic presents an
intriguing avenue for enhancing computational efficiency
(Düben et al., 2014). Single-precision computation unveils
several compelling advantages, especially when confronted
with the memory wall (Abdelfattah et al., 2021; Fornaciari
et al., 2023; Brogi et al., 2024). Beyond the alleviation
of memory constraints, single-precision arithmetic promises
three distinct benefits: accelerated arithmetic operations, im-
proved cache hit rates, and reduced inter-node data commu-
nication (Baboulin et al., 2009; Düben and Palmer, 2014;
Düben et al., 2015; Váňa et al., 2016; Nakano et al., 2018).
The benefits highlighted illustrate the capability of single-
precision computation to boost computational efficiency in
high-performance computing tasks, especially within the
realm of large-scale weather and climate simulations where
computational expenses are significant.

However, a wholesale migration from double- to single-
precision computing may not always yield beneficial out-
comes. This has led to the exploration of precision-sensitive
model components and/or physical scales in Earth sys-
tem modelling (e.g. Thornes et al., 2017; Nakano et al.,
2018; Chantry et al., 2019; Maynard and Walters, 2019;
Cotronei and Slawig, 2020). Single-precision algorithms
may struggle to converge or achieve the required precision
when tackling intricate fluid dynamics simulations. In cer-
tain scenarios, single-precision computations can also result
in floating-point under-/overflow (Váňa et al., 2016; Cotronei
and Slawig, 2020). Additionally, physical parameterization
schemes in atmospheric models may amplify grid-scale os-
cillations when executed in a pure single-precision mode
(Váňa et al., 2016). Therefore, it becomes imperative to iden-
tify the specific algorithms within the modelling framework
that are sensitive to the precision level.

Previous studies have made notable progress. A pivotal
study by Váňa et al. (2016) explored the reduction in al-
most all real-number variables in the Integrated Forecast-
ing System (IFS) of the European Centre for Medium-Range
Weather Forecasts (ECMWF) from 64 bits to 32 bits. Results
revealed that reducing precision did not significantly com-
promise the model’s accuracy, while it considerably reduced
the computational burden by a factor of ∼ 40 %. Based on
the dynamical core of the Nonhydrostatic Icosahedral Atmo-
spheric Model (NICAM), Nakano et al. (2018) witnessed an
undesirable wavenumber-5 structure when completely using
single-precision computing. This abnormal wave growth was
traced back to the errors in the grid cell geometry calcula-
tions. By using double precision for only necessary parts in
the dynamical core and single precision for all other parts,
the model successfully simulated the baroclinic wave growth
and achieved a ∼ 46 % reduction in runtime. Based on the

Yin–He global spectral model, Yin et al. (2021) used a single-
precision fast spherical harmonic transform to conduct a 10 d
global simulation and a 30 d retrospective forecasting ex-
periment. Their simulations reproduced the major precipi-
tation events over southeastern China. The single-precision
fast spherical harmonic transform may lead to a reduction
in runtime by ∼ 25.28 % without significantly affecting the
forecasting skill. Cotronei and Slawig (2020) converted the
majority of the computations within the radiation component
of the ECMWF Hamburg Model (ECHAM) to single pre-
cision, resulting in a 40 % reduction in the runtime of the
individual component. The obtained results were compara-
ble to those achieved with double precision. Banderier et
al. (2024) indicated that employing single precision for re-
gional climate simulations can significantly reduce computa-
tional costs (∼ 30 %) without significantly compromising the
quality of model results.

While these studies have demonstrated various ways
of precision optimization, certain limitations remain. First,
some studies focused on a complete transition to single pre-
cision, potentially overlooking the precision-sensitive com-
ponents, and lacked a discussion of optimization strategies.
Moreover, the applicability of mixed precision in global cli-
mate simulations remains to be validated. Furthermore, be-
cause of the diversity of numerical models and algorithms,
encompassing grid systems and solver techniques, these dif-
ferences may lead to model-specific precision sensitivity.
Certain algorithms may remain amenable to single-precision
computations, while others necessitate the use of double pre-
cision for stability and accuracy. These gaps in the literature
underscore the need for the present research to explore preci-
sion sensitivity and to test reduced-precision computing for
both weather and climate simulations.

In this study, we explored the strategies of mixed-precision
computing in the dynamical core of the Global–Regional In-
tegrated Forecast System (GRIST; Zhang et al., 2019, 2020).
GRIST is a unified weather–climate model system designed
for both research and operational modelling applications.
Through a detailed implementation by modifying certain
parts of the original (double-precision) dynamical core to
support single precision, a significant reduction in the com-
putational burden has been achieved without sacrificing the
solution accuracy, stability, and physical performance. This
has been validated based on a series of numerical tests rang-
ing from idealized to real-world flow.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the GRIST model, presents the mixed-
precision optimization strategies and code modifications, and
highlights the key equation terms sensitive to precision. Sec-
tion 3 examines the computational performance of mixed-
precision computing. Section 4 evaluates the physical per-
formance of mixed-precision computing in a series of test
cases. The discussion and conclusion are given in Sects. 5
and 6, respectively.
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Table 1. Grid name and corresponding horizontal resolutions.

Grid level of
a subdivided
icosahedron

Horizontal resolution
(km) on a full-size
Earth and on a small-
radius sphere (if used)

Number of cells

G4 480 km (4 km) 2562
G5 240 km 10 242
G6 120 km (1 km) 40 962
G7 60 km (0.5 km) 163 842
G8 30 km (0.25 km) 655 362
G9 15 km 2 621 442
G9B3 5 km 23 592 962

1.1 GRIST

The GRIST dynamical core employs layer-averaged govern-
ing equations based on the generalized hybrid sigma–mass
vertical coordinate and a horizontal unstructured grid, allow-
ing for a switch between the hydrostatic and nonhydrostatic
solvers (Zhang, 2018; Zhang et al., 2019, 2020). Prognostic
variables are arranged in a hexagonal Arakawa C-grid ap-
proach. The hydrostatic solver is fully explicit, based on the
Runge–Kutta integrator and the Mesinger forward–backward
scheme. The nonhydrostatic solver employs a horizontally
explicit–vertically implicit approach. There is no time split-
ting in the integration of the dry dynamical core (dycore here-
after), while the tracer transport module is time split from the
dycore and supports several transport schemes for various ap-
plications (Zhang et al., 2020). In this study, a third-order up-
wind flux operator combined with a flux-corrected transport
limiter is used in the horizontal, and an adaptively implicit
method is used in the vertical (Li and Zhang, 2022).

1.2 Mixed-precision optimization strategy

The purpose of the mixed-precision optimization strategy is
to decrease the precision level (and thus computational cost)
while maintaining accuracy and stability. Before implement-
ing mixed-precision computing, we checked that completely
using single precision for the entire dynamical core leads to
an unacceptable loss of accuracy (see Sect. 4.1). However,
considering the extensive code base and its degree of com-
plexity, comprehensively and randomly testing every com-
ponent and variable is impractical. An iterative development
approach with a minimum degree of trial and error is used
to identify the model components that are sensitive to the
precision level. The dry baroclinic wave of Jablonowski and
Williamson (2006) is used as a benchmark test during the
iterative development cycle because this case has complex
fluid dynamics characteristics and is very sensitive to numer-
ical precision.

We established an acceptable error threshold, α, to as-
sess whether the difference between outcomes from double-

precision and mixed-precision simulations falls within a tol-
erable limit. Results from the original double-precision com-
puting serve as the true values. The iteration involves the ex-
ecution of an initial 10 d simulation. We then embarked on
a series of precision reduction tests for selected model vari-
ables, and we computed the error norm of selected diagnostic
variables for each test. E is defined as representing the over-
all error level (calculated relative to the double-precision re-
sults):

E =max(L(H)), (1)
L(x)=max(L1 (H),L2 (H),L∞ (H)), (2)

where L1, L2, and L∞ represent the first, second, and infi-
nite norm of variable H , respectively. The definitions of L1,
L2, and L∞ can be found in the Appendix. Should error E
exceed α (0.05 for this study), the modification is deemed un-
acceptable and consequently abandoned; otherwise, the mod-
ification is accepted, allowing for a further reduction in vari-
able precision based on this new configuration. This is an
optimization approach similar to the greedy algorithm. Ini-
tially, by selecting single-precision variables, we systemati-
cally attempted to reduce the precision of variables encoun-
tered sequentially in the code, starting with the first variable,
followed by the second, third, and so forth. The precision op-
timization tests were conducted using the G8 grid. The grid
names and their corresponding resolutions are listed in Ta-
ble 1. Initially, selected diagnostic variables (H ) are ps (sur-
face pressure) and vor (relative vorticity) because they can
effectively quantify deviations in the mass field and velocity
field. This criterion was set beforehand, but it has turned out
that L(vor) has a much larger error magnitude than L(ps)

overall. Thus, L(vor) determines our optimization outcome.
Technically, the switch between double-precision and

single-precision code is defined through the Fortran KIND
parameter, specified in a constant module. As single-
precision results may not always replicate double-precision
results and can occasionally generate unacceptable errors
(e.g. see Sect. 3.2), it is crucial to identify precision-sensitive
variables and solver components. An additional parameter
“ns” has been introduced in this constant module for the
precision-insensitive variables. This modification facilitates
the transition between double-precision, single-precision,
and mixed-precision computations. Note that only the sub-
routine of the solver is modified, indicating that the model
initialization section remains in double-precision operations.
If the solver requires single-precision operands, double-
precision variables need to be converted to single precision
after initialization. This method ensures a streamlined tran-
sition to mixed precision with minimal changes to the code
structure.

Some important aspects are summarized as follows:

1. Model variables that are insensitive to the precision
level are set to the ns parameter type. When ns is
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Figure 1. Modifications to the GRIST model code repository for implementing the mixed-precision dynamical core.

defined as single precision, the code executes mixed-
precision computations; when defined as double pre-
cision, the code regresses double-precision computing
and produces solutions that are identical to the original
unmodified code.

2. We appropriately decompose computations involving
implicit-type conversions to reduce performance degra-
dation due to precision conversion. For instance, a =
b · c. Here, a is a single-precision floating point, b a
larger double-precision float, and c a single-precision
float. The conversion of c to double precision can intro-
duce extra rounding errors. These errors, amplified by
b, may accumulate over time, adversely affecting model
outcomes. Single-precision calculations provide a con-
sistent error boundary, unlike mixed precision which in-
troduces uncertainty. In some cases, results might even
be better if the computation of a function was entirely
in single precision. Hence, optimization should proceed
with caution, considering these error dynamics.

The Message Passing Interface (MPI) communication
was modified for single-precision variables; the built-in
functions, such as HUGE or TINY, are used to obtain
very large or very small values, respectively, to ensure
the values fall within the precision range of the vari-
ables.

1.3 Mixed-precision optimization results

Following the strategy outlined in Sect. 2.2, the mixed-
precision GRIST dynamical core is established. The opti-
mization results, as depicted on the left side of Fig. 1, are
summarized based on the continuous-form governing equa-
tions. The meaning of each variable in the equations fol-
lows Zhang et al. (2020) exactly to avoid repeating expla-
nations. Model variables with underlined text denote single-
precision operands; variables in black represent double-
precision operands. The black dashed boxes indicate that this
part uses double-precision variables for computation, but the
tendency is saved as single precision. The grey shading in-
dicates that this variable is diagnosed mostly from single-
precision variables. Specifically, ζp =

ζa
δπ

is highly sensitive
to the precision of δπ , requiring a double-precision δπ .

For the dycore, the precision sensitivity varies among dif-
ferent terms. The precision-sensitive terms are primarily re-
lated to pressure gradient and gravity terms. The precision-
insensitive terms are mainly advective, which may tolerate
lower numerical precision. Computationally, the advective
parts of the equations use higher-order operators, which are
responsible for the major computational burden. The passive
tracer transport equation (Eq. 10) can mostly be computed
using single precision. The only part that needs careful mod-
ification is the solid black box, which indicates that it uses
single-precision variables for computing, but the result is
saved as double precision. δπV (representing the mass flux)
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in Eq. (10) is accumulated and averaged from δπV in Eq. (3),
so computing it uses single precision. But when using it for
tracer transport, this variable is converted to double precision
so that the mass continuity equation of tracer transport uses
a double-precision mass flux.

The mass continuity equation (Eq. 3) is solved using a flux
form, ensuring global mass conservation of πs−πt (πt is
a constant) within the bounds of machine rounding errors,
which is at the double-precision level. Using single-precision
δπV implies that mass continuity is locally conserved at the
single-precision level. Recognizing the potential importance
of local mass conservation (e.g. Thuburn, 2008), a compi-
lation switch is designed so that approximating δπV and
the related mass continuity tendency can be achieved in ei-
ther single precision or double precision. The time difference
between approximating the continuity equation using single
precision and double precision accounts for ∼ 1 %–2 % of
the total computational time. We examine the model sensi-
tivity to this operation in Sect. 4.4.

1.4 Model code modification

Figure 1 illustrates the modification made to the original
model code repository. Thanks to the modular structure of
the model code, the mixed-precision version of the model
dynamics can be seamlessly integrated as an add-on com-
ponent, allowing for independent development. The switch
between double-precision and mixed-precision dynamics is
governed by the model’s control unit, facilitating the tran-
sition between two code repositories via a compiler option
(MIXCODE). Additional adjustments for each component
include modifying the parallel exchange functions to support
reduced-precision variables, altering the precision level of
allocated dynamics data, accommodating precision changes
in specific variables in physics–dynamics coupling, and in-
troducing a precision control variable. All these supplemen-
tary modifications are also designated by the compiler op-
tion MIXCODE. The pure single-precision code is achieved
by simply using single precision for all variables, marked
as SPCODE in the code. When MIXCODE is defined, ad-
ditional variable allocations and assignment statements are
introduced. It has been confirmed that overheads due to these
additional statements can be omitted by comparing the origi-
nal code to the MIX code executed in a pure double-precision
mode.

2 Computational performance

We first examine the computational performance of the
mixed-precision dynamical core in a standard reference com-
putational test. Here, all computing tasks are carried out
on a local supercomputing cluster. Each computing node is
equipped with 128 GB memory, and the central processing
unit (CPU) is a Hygon C86 7285 model at 2.0 GHz. Each

CPU features a 32 KB L1 data cache, a 64 KB L1 instruction
cache, a 512 KB L2 cache, and an 8192 KB L3 cache. We
use SGL to denote pure single-precision computing, DBL to
denote pure double-precision computing, and MIX to repre-
sent mixed-precision computing. All experiments were con-
ducted on a G8 grid, submitted with the same topology: 756
MPI tasks distributed across six nodes.

Compared to the double-precision model, the runtime of
the mixed-precision model for the nonhydrostatic dry dy-
namical core (NDC), hydrostatic dry dynamical core (HDC),
and tracer transport solver reduced by 27 %, 24 %, and 44 %,
respectively (Table 2). The runtime of the mixed-precision
dycore solver is still larger compared to the single-precision
dycore, implying that there is time overhead incurred by
the use of double precision in precision-sensitive algorithms.
The runtime of the mixed-precision tracer transport solver
is comparable to that of the single-precision tracer trans-
port solver because most computations in the tracer trans-
port module now use single-precision computing. It should
be noted that the time gains from mixed-precision comput-
ing may also depend on hardware and compiler options (e.g.
Brogi et al., 2024).

For real-world applications with routine I/O, the mixed-
precision code maximizes its potential in global storm-
resolving model (GSRM) simulations. In Sect. 4.5, the MIX
run achieved a 25.5 % reduction in the wall-clock time for
the dynamics and physics procedures (including physics–
dynamics coupling), as compared with the DBL run. The
simulations (5 km; 23 592 962 cells) were conducted using
3248 MPI processes distributed across 58 computing nodes,
where each node is equipped with 56 Intel Xeon Gold 6348
CPUs operating at 2.60 GHz and 256 GB of memory. For
both DBL and MIX runs, the dynamics and physics proce-
dures (including physics–dynamics coupling) accounted for
approximately 95 % of total wall-clock time, with dynamics
alone occupying a substantial portion ranging from 83 % to
85 %.

For a computational task that is not significantly restricted
by the memory bandwidth, the reduction in wall-clock time
can be less significant. This is the case described in Sect. 4.4,
in which a coarse-resolution (120 km; 40 962 cells) model is
executed using 640 MPI processes across 20 nodes. The MIX
test is faster than the DBL test by roughly 12 %.

As emphasized by one reviewer, reduced-precision com-
puting can be particularly beneficial for the machines with
sub-optimal interconnect, and on the graphic processing unit
(GPU)-like architectures, where increased computational in-
tensity (in terms of degrees of freedom per GPU) can in-
crease the overall performance. Another application of this
mixed-precision code also confirms this assertion. Thanks
to Sunway’s local engineers, this mixed-precision code has
been successfully ported to the new Sunway supercomputer.
Here, we report some observations; detailed results will be
presented elsewhere.
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Table 2. Time elapsed using single, mixed, and double precision. (The runtime of each solver is normalized to that of the corresponding
solver in double precision.)

Grid name Precision Dycore time (1440 steps) Tracer time (1440 steps)

G8 DBL 1 (NDC) 1 (HDC) 1
SGL 0.53 (NDC) 0.56 (HDC) 0.58
MIX 0.73 (NDC) 0.76 (HDC) 0.56

One processor of Sunway has 390 cores, distributed across
six core groups (CGs). Each CG consists of one manage-
ment processing element (MPE) and 64 computing process-
ing elements (CPEs) organized as an 8× 8 array. Numeri-
cal tests were conducted at the 3.75 and 1.875 km (icosa-
hedral grid levels 11 and 12) horizontal resolutions using
the full model. A notable observation was that mixed pre-
cision typically did not yield significant speedup on the MPE
side but provided notable speedup on the CPE-parallelized
kernels. Considering that the Sunway architecture generally
does not exhibit higher calculation performance for single
precision compared to double precision (except for division
and elemental functions), we may infer that the MPE-side
code is not limited by the memory bandwidth. On CPEs, the
mixed-precision code demonstrates better speedup. This im-
plies that the performance of the CPE-side code is more con-
strained by the memory bandwidth, and thus mixed-precision
computing leads to better improvements.

3 Physical performance

3.1 Moist baroclinic wave

To ensure robustness, a hierarchy of five test cases from
simple to complex is adopted for model evaluation. This
first case is from the DCMIP2016, as outlined by Ullrich et
al. (2014), a modified approach to the dry baroclinic instabil-
ity scenario (Jablonowski and Williamson, 2006). This ex-
perimental setup triggers the emergence of an unstable baro-
clinic wave pattern, initiated by early perturbations, which
exhibits exponential growth and attains its maximum inten-
sity around the 11th day. The experiment incorporates a pas-
sive tracer representing water vapour, which is subject to
passive advection. Although the mixing ratio marginally in-
fluences the pressure gradient force, as noted by Zhang et
al. (2020), the overall behaviour of wave growth is in sub-
stantial agreement with that in the dycore (Zhang et al.,
2019). The primary objective is to assess the model’s effi-
cacy in replicating the typical dynamics of moist atmospheric
conditions across various precision settings.

Figure 2 shows surface pressure and the relative vortic-
ity field at the model level near 850 hPa (model layer 23,
30 layers in total) at day 11, as simulated by the G8 reso-
lutions. The baroclinic waves show the anticipated growth in
the DBL simulation (Fig. 2a). In the SGL simulation, the pri-

mary growth fluctuations in the DBL simulation were repro-
duced (Fig. 2c). However, in the Northern Hemisphere, there
were developments of incorrect spurious waves, whose inten-
sity was comparable to the major fluctuations (Fig. 2c). The
Southern Hemisphere exhibited a weaker structure of spuri-
ous waves (Fig. 2c). The results from the MIX simulation
displayed patterns much closer to those in the DBL simula-
tion (Fig. 2e).

The primary difference between the MIX and DBL simu-
lations lies in the vicinity of strong gradients along the cold
front (Fig. 2c). But the primary fluctuations in both MIX and
DBL simulations exhibit a high degree of similarity in their
patterns (Fig. 2a and e), indicating that precision levels have
a tangible impact on the phase speed of wave propagation.

The error introduced by SGL and MIX can be quantified
by comparing their solutions to a DBL solution. Following
Jablonowski and Williamson (2006), l2 error norms (defined
in the Appendix) of the relativity vorticity field at the 23rd
model layer are compared on the global grid as a function of
time. Figure 3 shows the l2 norm for the SGL and MIX. In
the initial stages of the model integration, the errors in the
SGL simulations increased rapidly. By checking the original
fields (figure not shown), it was found that numerous small-
scale spurious fluctuations had emerged on both sides of the
Equator, the intensity of which was similar to the physically
meaningful fluctuations.

After day 6, the primary fluctuations in the baroclinic
waves in the SGL simulations began to develop, resembling
the behaviour of the DBL simulations, and the errors started
to decrease (Fig. 3). By day 10, the fluctuations developed
rapidly, the primary fluctuations grew robustly, and the spu-
rious fluctuations produced in the early stages of the SGL
simulations also developed rapidly, leading to an increase in
errors (Fig. 3). On day 11, the intensity of the spurious fluc-
tuations developed in SGL was close to that of the primary
fluctuations, which is unacceptable. Due to the slow growth
of the primary fluctuations in the early stages, the MIX sim-
ulation exhibited minimal errors before day 9 (Fig. 3). Sub-
sequently, as the fluctuations matured rapidly, larger differ-
ences in the phase speed compared to the DBL emerged,
leading to a rapid increase in errors.

3.2 Splitting supercell thunderstorms

The splitting supercell test of DCMIP2016 (Klemp et al.,
2015; Zarzycki et al., 2019) emphasizes the importance of
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Figure 2. Baroclinic wave development at day 11 in the (a) DBL simulation, (b) SGL simulation, and (d) MIX simulation. (a, b, d) The
colours show relative vorticity (×10−5 s−1) and contours of the surface pressure and (c, e) the relative error between SGL and DBL, as well
as the difference between MIX and DBL.

scrutinizing nonhydrostatic model simulations of small-scale
dynamics, especially as models approach spatial resolutions
on the (sub-)kilometre scale. This test utilized the small-
planet testing framework (Wedi and Smolarkiewicz, 2009),
a cost-effective approach by scaling down Earth’s radius by
a factor of 120. The model employs the Kessler warm-rain
microphysics scheme for simplified physics. This particular
test case is characterized by unstable atmospheric conditions

conducive to moist convection, posing a challenge to numeri-
cal accuracy and stability. Klemp et al. (2015) suggested that
an increase in horizontal resolution should lead to conver-
gent solutions. For GRIST, this behaviour has been verified
by Zhang et al. (2020). Our investigation further examines
the capability of the MIX configuration to accurately repli-
cate the behaviours observed in the DBL simulations.
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Figure 3. Time evolution of the global l2 difference norm of simu-
lated relative vorticity between the SGL and DBL and the l2 differ-
ence norm between the MIX and DBL. Red and blue represent SGL
and MIX experiments, respectively.

Figure 4 shows the qr mixing ratio at 5 km eleva-
tion in both DBL and MIX simulations at four resolution
choices (G4: ∼ 4 km, G6: ∼ 1 km, G7: ∼ 0.5 km, and G8:
∼ 0.25 km). The DBL and MIX solutions show bulk similar-
ities across all the resolutions. At 7200 s, a single updraught
splits and evolves into a symmetric storm propagating to-
wards the poles, with two supercells located ∼ 30° from the
Equator. These supercells show subtle differences in their
structure and intensity. At a low resolution of 4 km, the dif-
ferences between the MIX and DBL simulations are minimal
at all altitudes (Fig. 4b–c). As the resolution increases from
4 to 1 km and to 0.5 km, the structural differences in super-
cells gradually become more pronounced (Fig. 4b–d, f–h, j–
l). However, when the resolution further increases from 0.5 to
0.25 km, the differences diminish (Fig. 4n–p). For DBL sim-
ulation results, the differences between 0.5 km and 0.25 km
are smaller than those between 1 and 0.5 km, indicating that
the solution converges at a resolution of almost 0.5 km. At
0.25 km, the results of the MIX simulation show greater sim-
ilarity to those of the DBL simulation at all altitudes (Fig. 4n–
p). This indicates that, in the mixed-precision simulation, su-
percells also achieved good convergence at this resolution,
and thus the sensitivity to the precision level diminishes from
0.5 to 0.25 km.

Figure 5 shows the maximum vertical speed and area-
integrated rainfall rate over the global domain as a function of
time for each resolution. The vertical speed in both MIX and
DBL increases with resolution (Fig. 5a). From the start of the
model integration until 5400 s, the vertical speed curves of
the MIX and DBL simulations nearly overlap (Fig. 5a). After
5400 s, a noticeable deviation appears, except for the G4 grid.
The difference in vertical speed between MIX and DBL is

minimal at 4 km resolution, followed by 0.25 km resolution,
while it is larger at 1 and 0.5 km resolutions (Fig. 5a). The
area-integrated rainfall rate curves exhibit similar evolution-
ary features (Fig. 5b). At very low resolutions, such as 4 km,
the differences between the MIX and DBL simulations are
not significant. At a higher resolution of 0.25 km, the over-
all behaviour of supercells in the MIX simulations is closer
to that of DBL compared to 0.5 and 1 km resolutions. Both
MIX and DBL solutions exhibit convergence behaviours.

3.3 Idealized tropical cyclone

This idealized tropical cyclone scenario integrates a three-
dimensional dynamical core with a simple physics suite
(Reed and Jablonowski, 2012), alongside an analytic vortex
initialization technique (Reed and Jablonowski, 2011). The
experiment produces the evolution of a tropical cyclone from
a nascent, idealized vortex, highlighting the model’s sensi-
tivity to various parameter adjustments. Notably, alterations
in the tracer transport schemes of GRIST can produce subtle
sensitivities in the development of the tropical cyclone due to
the pressure gradient terms (Zhang et al., 2020), thereby es-
tablishing this case as being useful for assessing model pre-
cision sensitivity.

Figure 6 displays the wind speed at day 10 for the DBL
(Fig. 6a and b) and MIX (Fig. 6c and d) simulations at the G8
resolution. Figure 6 (left) shows the longitude–height cross-
sections of the magnitude of the wind through the centre
latitude of the vortex. Figure 6 (right) displays the horizon-
tal cross-sections of the magnitude of the wind at the low-
est model layer. The centre of the vortex is defined as the
grid point with minimum surface pressure. At day 10, the
developed storm resembled a tropical cyclone. The overall
behaviour in the MIX simulation was similar to that in the
DBL simulation, with maximum winds near the surface and
a distinct eyewall structure (Fig. 6). However, there was some
differences in the vertical structure and centre location of the
cyclone (Fig. 6a and c). In the MIX simulation, the generated
cyclone was stronger, with higher wind speeds near the sur-
face (Fig. 6c). The eyewall of the cyclone in the MIX simula-
tion appeared to be less pronounced compared to that in the
DBL simulation, where the cyclone’s eyewall was narrower
and straighter (Fig. 6c). Overall, the characteristics of the cy-
clone were comparable between the MIX and DBL simula-
tions.

In addition to two deterministic control simulations us-
ing both double precision and mixed precision with the
nonhydrostatic solver, eight ensemble simulations are fur-
ther performed with the double-precision nonhydrostatic
model. This assesses the MIX simulation within the un-
certainty range of the DBL simulation. The uncertainty
range is quantified by the ensemble simulations encompass-
ing eight initial-value perturbation members. Random small-
amplitude perturbations were applied to the initial wind
speeds (e.g. Li et al., 2020), where perturbations to the nor-
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Figure 4. Horizontal cross-sections of the rainwater mixing ratio at different heights from supercell thunderstorm simulations. The first row
displays double-precision simulations at 5 km altitude. The second, third, and fourth rows show the differences between mixed-precision and
double-precision simulations at 5, 2.5, and 10 km altitudes, respectively. The four columns represent results at different resolutions (from left
to right): G4 (4 km), G6 (1 km), G7 (0.5 km), and G8 (0.25 km).
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Figure 5. The (a) domain maximum vertical speed and (b) area-
integrated rainfall rate obtained from the supercell simulations.

mal velocity at cell edges were prescribed within a range of
2 % of their values in the control experiment.

Figure 7 describes the tracks of tropical cyclones, along
with the evolution of minimum surface pressure and max-
imum surface wind speed over time. The red and blue
lines represent two deterministic simulations conducted us-
ing MIX and DBL solvers, respectively. The eight random
perturbation simulations with the DBL solver are represented
by grey lines. Minimal spread is observed in the early stages
of the simulations (Fig. 7). Cyclone track separation between
the MIX and DBL simulations occurs on day 1 (Fig. 7a).
Subsequently, spread in the simulations increases over time
(Fig. 7). The evolution of minimum surface pressure and
maximum surface wind speed over time exhibits similar
trends (Fig. 7b, c). No discernible difference is found be-

tween the sensitivity introduced by MIX and that introduced
by perturbed DBL simulations. The overall behaviour of the
MIX simulation falls within the range of uncertainty of the
DBL simulation.

3.4 Atmospheric Model Intercomparison Project
(AMIP) simulation

Following the establishment of the MIX dynamical core,
a detailed examination of its integration with the model
physics suite (Li et al., 2023) becomes crucial. The nonlinear
interactions between the model’s dynamics and its physical
processes can result in varied performances across weather
and climate simulations. It is imperative to investigate these
differences to ensure that MIX simulations can accurately
mirror the outcomes of DBL simulations in practical appli-
cations.

In assessing a new formulation for real-world modelling,
our guiding principle is to first run long-term AMIP simu-
lations (Zhang et al., 2021). This ensures that the model can
achieve statistical equilibrium, maintain a realistic model cli-
mate, and have good integral properties such as conservation
and balanced budgets (e.g. Fu et al., 2024). Subsequently,
the same model, with minimal application-specific mod-
ifications, undergoes shorter-range but higher-resolution,
kilometre-scale tests (Zhang et al., 2022).

The AMIP experiment is conducted in alignment with
Zhang et al. (2021). This involved running both hydrostatic
and nonhydrostatic models with the weather physics suite on
a G6 grid over a decade, spanning 2001 to 2010. The sim-
ulations were performed under conditions with prescribed
climatological sea surface temperatures and sea ice concen-
trations. The focus was narrowed to precipitation, which is
a comprehensive metric due to its sensitivity to both model
dynamics and physics, effectively reflecting the nonlinear in-
teractions that are crucial for accurate weather and climate
simulations (Zhang and Chen, 2016).

Figure 8 shows the simulated climatological (2001–
2010) precipitation field for June–July–August (JJA) and
December–January–February (DJF). Both the hydrostatic
and nonhydrostatic MIX solvers can replicate the JJA and
DJF precipitation patterns in the DBL simulations. The dis-
crepancies between the MIX and DBL simulations are simi-
lar in both hydrostatic and nonhydrostatic simulations, with
the primary differences occurring in the tropics. The pre-
cipitation differences shift from north to south along with
the main rain bands as the season transitions from (boreal)
summer to winter. The deviation in summer precipitation is
greater than that in winter precipitation because convective
activities are most vigorous. In the summer, the MIX simu-
lation overestimates the precipitation in the tropical coastal
regions of the western Pacific, especially along the western
coast (Fig. 8a and b). In winter, the main biases in the MIX
simulation are concentrated in the Southern Ocean (Fig. 8c
and d).
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Figure 6. The simulated wind speed (m s−1) at the G8 resolution with the NDC solver, including MIX (a, b) and DBL (c, d) simulations.
(a, c) Longitude–height cross-section of the wind speed through the centre latitude of the vortex as a function of the radius from the vortex
centre. (b, d) Horizontal cross-section of the wind speed at the lowest model layer.

Figure 7. The results from the deterministic and ensemble simulations. (a) The track of the tropical cyclone centre for the MIX (blue lines)
and DBL (red lines) deterministic simulations. Time evolution of the (b) minimum surface pressure and (c) maximum surface wind speed
from the deterministic and ensemble simulations. The red and blue lines represent the deterministic MIX and DBL simulations, respectively.
The grey lines represent the eight runs with random perturbations to the initial normal velocity at the cell edges.
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Figure 8. The difference between the MIX and DBL simulations, including solutions from the hydrostatic (a, c) and nonhydrostatic (b, d)
solvers. The first and second rows display the averaged (2001–2010) precipitation rate (mm d−1) for JJA and DJF, respectively.

These results may have two implications. In MIX simu-
lations, the cumulative effects of rounding errors might be
progressively magnified over the course of long-term climate
integrations. This phenomenon could lead to notable differ-
ences in the simulated large-scale atmospheric phenomena.
This contrasts with high-resolution shorter-range weather
modelling, where discrepancies primarily emerge at small
scales, as is discussed in Sect. 4.5. This might imply that
MIX simulations may diverge more from their DBL coun-
terparts over extended integration periods, necessitating a
careful consideration of how rounding errors accumulate and
their impact on the climate simulation performance.

Second, the differences induced by varying the precision
level can be further exacerbated by physical processes within
the climate system. A clear example is observed in the tropi-
cal regions during the boreal summer, where higher discrep-
ancies are noted. This suggests that certain atmospheric con-
ditions or regions, such as the tropics during periods of in-
tense solar heating, may be more susceptible to the effects of
precision-level differences. These conditions can amplify the
inherent precision differences, leading to more pronounced
variations.

In the MIX implementation, Eq. (3) implies that global
mass is conserved at the double-precision level. The local
mass flux is only conserved at the single-precision level be-
cause the mass flux and its divergence are treated as single
precision. As mentioned in Sect. 2.3, we retained the capabil-
ity to compute the terms related to the mass flux divergence
equation in the double precision as well. Local mass can be
conserved at the double-precision level as well. We then eval-
uated the long-term climate integration results based on the
hydrostatic model.

Figure 9 shows the differences in the climatological pre-
cipitation field between MIX with single- (MIX_SGL_mass)
and double-precision (MIX_DBL_mass) mass flux diver-
gence against the pure DBL simulation. In summer, the
simulation differences between the MIX_SGL_mass and
MIX_DBL_mass solvers are small (Fig. 9a and b). In win-
ter, the deviations in the MIX_SGL_mass solver are smaller
than those in the MIX_DBL_mass solver (Fig. 9c and d).
The deviations are most pronounced in tropical convective
precipitation over the southern tropical oceans (Fig. 9c and
d). The larger difference between MIX_DBL_mass and DBL
is likely due to implicit-type conversions, as discussed in
Sect. 2.2.

Geosci. Model Dev., 17, 6301–6318, 2024 https://doi.org/10.5194/gmd-17-6301-2024



S. Chen et al.: Mixed-precision computing in the GRIST dynamical core for weather and climate modelling 6313

Figure 9. (a) Difference between the JJA-averaged (2001–2010) precipitation rate (mm d−1) simulated by the SGL continuity equation
solver in the mixed-precision mode and the “true DBL value”. (b) The same as (a) but for the DBL continuity equation solver. (c, d) The
same as (a) (b) but for the DJF-averaged (2001–2010) results.

3.5 A global storm-resolving simulation

Under the constraints of today’s computational resources, ex-
ecuting GSRM nonhydrostatic simulations remains resource
intensive (Satoh et al., 2017; Stevens et al., 2019). The use
of MIX simulations presents a cost-effective solution to this
challenge. However, it has been reported, for instance by
Nakano et al. (2018), that as the resolution of the model in-
creases, the difference between MIX and DBL may increase,
especially for the smaller-scale flow features. This observa-
tion prompts a closer investigation into the performance of
nonhydrostatic models at high-resolution modelling.

A GSRM experiment at 5 km (G9B3) is performed us-
ing the MIX nonhydrostatic model, following Zhang et
al. (2022). The model was integrated from 00:00 UTC on
10 July to 00:00 UTC on 15 July 2015. We expect that the de-
veloped mixed-precision dynamical core can replicate the be-
haviour of DBL in the kilometre-scale weather simulations.

Figure 10 shows the period-accumulated precipitation
(00:00 UTC on 10 July to 00:00 UTC on 15 July) from the
MIX and DBL model runs. All data have been interpolated
onto a 0.5° regular latitude–longitude grid. The precipitation

patterns simulated by MIX are very close to those of DBL
simulations. MIX obtains nearly the same general position,
orientation, and intensity of the rain band (Fig. 10a, b). MIX
and DBL also produce very comparable kinetic energy spec-
tra (figure not shown).

Like the AMIP simulations, the differences in precipita-
tion are primarily located within the tropics, with the most
pronounced differences in areas with vigorous convection.
Close-ups of these locations reveal that it is small scales
(a few grid spaces) that are most sensitive to the precision
level because small scales are most sensitive to numerical
discretization and dissipation (Jablonowski and Williamson,
2011). Considering that global mesoscale forecast at a few
kilometres would greatly benefit from ensemble prediction
(Palmer, 2019), in practice, the MIX-induced small-scale
sensitivity may also fall within the uncertainty range of the
ensemble, similar to that in Sect. 4.3.

4 Discussion

As mentioned in Sect. 2.3, the advective parts of the equa-
tions are not sensitive to the precision level, and they use
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Figure 10. The 5 d (00:00 UTC on 10 July to 00:00 UTC on
15 July 2015) accumulated precipitation (units: mm) from the
(a) DBL simulation and (b) MIX simulation and (c) the difference
between the MIX and DBL simulations.

Figure 11. The L2 norm error and convergence rate of the three-
dimensional passive transport test (Hadley-like meridional circula-
tion) using a single (SGL)-precision and double (DBL)-precision
code for three horizontal flux operators: RK3O2, RK3O3, and
RK3O4. The upper and lower grey lines correspond to the slopes
of first- and second-order convergence rates, respectively.

higher-order operators. To understand whether this optimiza-
tion outcome is sensitive to the nominal order of numerics,
we utilized an isolated three-dimensional tracer transport ex-
periment (Kent et al., 2013; Hadley-like meridional circula-
tion) and performed a convergence test. This test case was
also performed by Zhang et al. (2020) and Li and Zhang
(2022), and thus their results can be used as a reference. By
adjusting the very small values introduced by the limiter to
be within the single-precision range, this equation (Eq. 10 in
Fig. 1) is solved independently in single precision (SPCODE
compiler option in the model code).

We used various orders of horizontal flux operators,
namely RK3O2, RK3O3, and RK3O4 (combinations of a
third-order Runge–Kutta integration scheme and the nomi-
nal second- to fourth-order spatial flux operators). RK3O3 is
used in other tests of this paper. The vertical advection oper-
ator remains unchanged. The results are shown in Fig. 11.
The tested resolutions and associated time steps include
G5L30 (600 s), G6L60 (300 s), G7L120 (150 s), G8L240
(75 s), and G9L480 (37.5 s). The results demonstrate that,
using different-order horizontal flux operators, the single-
precision simulations are comparable to the double-precision
simulations across all resolutions, with nearly identical error
norms and convergence rates.

This outcome suggests that, within the current code im-
plementation, the advective part of the model demonstrates
greater resilience when subjected to changes in precision, re-
gardless of the nominal order of the numerical operator. This
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supports the optimization results in all dynamical equations.
As reported by Nakano et al. (2018) and Yin et al. (2021),
the precision-sensitive components are related to the spe-
cific numerical algorithms. Additionally, badly conditioned
code or poor coding practice may also necessitate double-
precision calculations (Váňa et al., 2016; Palmer, 2020). For
other components (e.g. pressure gradient) that currently have
higher sensitivity to the precision level, we believe that it may
require more careful code implementation to allow us to ben-
efit more from reduced-precision computing.

We consider this project to be a success, at least in its
current phase. Existing literature and our own experiments
suggest that the deviation between reduced-precision and
double-precision codes tends to increase with higher resolu-
tions. Therefore, the mixed-precision code optimization de-
veloped based on the G8 grid test can have relatively smaller
deviations compared with the double-precision model on the
coarser grids. While we cannot 100 % guarantee that the opti-
mization outcome is optimal for all grid resolutions, the cur-
rent 5 km test is also reasonable. Overall, we are confident
that the present code will not degrade the operational skill
score (e.g. those examined by Wang et al., 2024), but more
testing efforts are still required for quality operational runs.
In the future, we aim to further reduce the precision of cer-
tain variables and conduct more tests at the kilometre scale
to ensure the robustness of the optimized code. Some alter-
native advection schemes in the tracer transport module have
not been implemented in single precision yet, and this can be
done in the future. Experiments with further reduced signifi-
cant digits also deserve exploration.

5 Summary

In this study, we investigated mixed-precision computing
within the GRIST dynamical core, identifying the equation
terms that are particularly sensitive to numerical precision.
We outlined an optimization procedure characterized by a
limited extent of iterative development. Given the current de-
velopment trajectory of high-performance computing, where
advancements in memory bandwidth lag behind peak proces-
sor performance improvements, mixed-precision computa-
tion holds promise for enhancing weather and climate model
development. The major conclusions are summarized as fol-
lows.

We discovered that terms sensitive to numerical precision
primarily involve pressure gradient and gravity terms. In con-
trast, advective terms exhibit resilience to single precision
and can be optimized. Advective terms are computationally
more expensive than pressure gradient and gravity terms.
The viability of employing mixed-precision computing in the
GRIST dynamical core has been validated across a spectrum
of scenarios, from idealized flow to real-world AMIP and
GSRM simulations. These MIX experiments yielded results
remarkably similar to those from the DBL simulations. For

dycore, the runtime for the dry hydrostatic and dry nonhy-
drostatic cores was reduced by 24 % and 27 %, respectively.
The tracer transport module witnessed a runtime reduction
of 44 %. The overall time savings depend on the proportion
of dycore and tracer transport in the total wall-clock time,
as well as the scale of a computational task, which varies
by application. For instance, the MIX-GSRM experiment in
Sect. 4.5 witnessed a 25.5 % reduction in the wall-clock time
compared with the DBL-GSRM experiment.

We noted a higher sensitivity to precision in long-term cli-
mate simulations compared to short-term higher-resolution
weather simulations, particularly affecting the precipitation
field over certain regions. In shorter-range weather forecast,
the differences between MIX and DBL are mainly found
at small scales, while in the AMIP simulations, the differ-
ence is found at larger scales. These effects may primar-
ily stem from the model sensitivity to the precision level
or from biases introduced by mixed-precision computations
themselves. Compared with the low-resolution global simu-
lations, the mixed-precision code is more beneficial for the
GSRM simulations at a scale of a few kilometres or other
model applications with computational scales comparable to
GSRMs.

Appendix A

We define the three-dimensional global integral of H as

I (H)=

z=ztop∫
z=zsurface

‹
HdAdz, (A1)

where A denotes the cell area, and z denotes height. The
vertical integral is omitted if two-dimensional space is un-
der consideration. The definitions of L1, L2, and L∞ are as
follows:

L1 =
I (|H −HT|)

I (|HT|)
, (A2)

L2 =

√√√√I
[
(H −HT)

2]
I
[
(HT)

2] , (A3)

L∞ =
max∀|H −HT|

max∀|HT|
, (A4)

where H and HT are the computational solution and true so-
lution, respectively, and max∀means selecting the maximum
value from the field.

Code and data availability. Model code and plotting data related to
this paper are available at https://doi.org/10.5281/zenodo.11229770
(GRIST-Dev, 2024).
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