Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5263-2024
https://doi.org/10.5194/gmd-17-5263-2024
Development and technical paper
 | 
10 Jul 2024
Development and technical paper |  | 10 Jul 2024

FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth

Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica

Related authors

Chaotic fluctuations in Greenland outlet glaciers limit predictability of a future ice sheet collapse
Kolja Kypke, Marisa Montoya, Alexander Robinson, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, and Peter Ditlevsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-4116,https://doi.org/10.5194/egusphere-2025-4116, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Hysteresis of the Greenland ice sheet from the Last Glacial Maximum to the future
Lucía Gutiérrez-González, Alexander Robinson, Jorge Alvarez-Solas, Ilaria Tabone, Jan Swierczek-Jereczek, Daniel Moreno-Parada, and Marisa Montoya
EGUsphere, https://doi.org/10.5194/egusphere-2025-2616,https://doi.org/10.5194/egusphere-2025-2616, 2025
Short summary
A simple physical model for glacial cycles
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Alexander Robinson, and Marisa Montoya
Earth Syst. Dynam., 16, 915–937, https://doi.org/10.5194/esd-16-915-2025,https://doi.org/10.5194/esd-16-915-2025, 2025
Short summary
Understanding the Mid-Pleistocene transition with a simple physical model
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Alexander Robinson, and Marisa Montoya
EGUsphere, https://doi.org/10.5194/egusphere-2025-2467,https://doi.org/10.5194/egusphere-2025-2467, 2025
Short summary

Cited articles

A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, https://doi.org/10.1093/gji/ggs030, 2013. a
Accardo, N. J., Wiens, D. A., Hernandez, S., Aster, R. C., Nyblade, A., Huerta, A., Anandakrishnan, S., Wilson, T., Heeszel, D. S., and Dalziel, I. W. D.: Upper mantle seismic anisotropy beneath the West Antarctic Rift System and surrounding region from shear wave splitting analysis, Geophys. J. Int., 198, 414–429, https://doi.org/10.1093/gji/ggu117, 2014. a
Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., and Nowicki, S.: Future Antarctic bed topography and its implications for ice sheet dynamics, Solid Earth, 5, 569–584, https://doi.org/10.5194/se-5-569-2014, 2014. a
Adhikari, S., Ivins, E. R., Larour, E., Caron, L., and Seroussi, H.: A kinematic formalism for tracking ice–ocean mass exchange on the Earth's surface and estimating sea-level change, The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020, 2020. a
Albrecht, T., Bagge, M., and Klemann, V.: Feedback mechanisms controlling Antarctic glacial cycle dynamics simulated with a coupled ice sheet–solid Earth model, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2990, 2023. a, b, c, d, e, f, g
Download
Short summary
Ice sheets present a thickness of a few kilometres, leading to a vertical deformation of the crust of up to a kilometre. This process depends on properties of the solid Earth, which can be regionally very different. We propose a model that accounts for this often-ignored heterogeneity and run 100 000 simulation years in minutes. Thus, the evolution of ice sheets is modeled with better accuracy, which is critical for a good mitigation of climate change and, in particular, sea-level rise.
Share