Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5263-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-5263-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Department of Earth Physics and Astrophysics, Complutense University of Madrid, Madrid, Spain
Geosciences Institute, CSIC–UCM, Madrid, Spain
Marisa Montoya
Department of Earth Physics and Astrophysics, Complutense University of Madrid, Madrid, Spain
Geosciences Institute, CSIC–UCM, Madrid, Spain
Konstantin Latychev
Seakon, Toronto, Canada
Alexander Robinson
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Jorge Alvarez-Solas
Department of Earth Physics and Astrophysics, Complutense University of Madrid, Madrid, Spain
Geosciences Institute, CSIC–UCM, Madrid, Spain
Jerry Mitrovica
Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
Related authors
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Marisa Montoya, and Alexander Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1842, https://doi.org/10.5194/egusphere-2024-1842, 2024
Short summary
Short summary
The climate of the last 3 Myr varies between cold and warm periods. Numerous independent mechanisms have been proposed to explain this, however no effort has been made to study their competing effects. Here we present a simple but physically motivated model that includes these mechanisms in a modular way. We find that the main trigger is the displacement of the lithosphere due to the ice thickness evolution, but reproducing the climate records additionally requires the natural darkening of ice.
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024, https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Short summary
We present sea level projections for Antarctica in the context of ISMIP6-2300 with several forcings but extend the simulations to 2500, showing that more than 3 m of sea level contribution could be reached. We also test the sensitivity on a basal melting parameter and determine the timing of the loss of ice in the west region. All the simulations were carried out with the ice sheet model Yelmo.
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024, https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Short summary
We present the open-source model ELSA, which simulates the internal age structure of large ice sheets. It creates layers of snow accumulation at fixed times during the simulation, which are used to model the internal stratification of the ice sheet. Together with reconstructed isochrones from radiostratigraphy data, ELSA can be used to assess ice sheet models and to improve their parameterization. ELSA can be used coupled to an ice sheet model or forced with its output.
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4215–4232, https://doi.org/10.5194/tc-18-4215-2024, https://doi.org/10.5194/tc-18-4215-2024, 2024
Short summary
Short summary
Our study tries to understand how the ice temperature evolves in a large mass as in the case of Antarctica. We found a relation that tells us the ice temperature at any point. These results are important because they also determine how the ice moves. In general, ice moves due to slow deformation (as if pouring honey from a jar). Nevertheless, in some regions the ice base warms enough and melts. The liquid water then serves as lubricant and the ice slides and its velocity increases rapidly.
Javier Blasco, Ilaria Tabone, Daniel Moreno-Parada, Alexander Robinson, Jorge Alvarez-Solas, Frank Pattyn, and Marisa Montoya
Clim. Past, 20, 1919–1938, https://doi.org/10.5194/cp-20-1919-2024, https://doi.org/10.5194/cp-20-1919-2024, 2024
Short summary
Short summary
In this study, we assess Antarctic tipping points which may had been crossed during the mid-Pliocene Warm Period. For this, we use data from the PlioMIP2 ensemble. Additionally, we investigate various sources of uncertainty, like ice dynamics and bedrock configuration. Our research significantly enhances our comprehension of Antarctica's response to a warming climate, shedding light on potential future tipping points that may be surpassed.
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Natasha Valencic, Linda Pan, Konstantin Latychev, Natalya Gomez, Evelyn Powell, and Jerry X. Mitrovica
The Cryosphere, 18, 2969–2978, https://doi.org/10.5194/tc-18-2969-2024, https://doi.org/10.5194/tc-18-2969-2024, 2024
Short summary
Short summary
We quantify the effect of ongoing Antarctic bedrock uplift due to Ice Age or modern ice mass changes on estimates of ice thickness changes obtained from satellite-based ice height measurements. We find that variations in the Ice Age signal introduce an uncertainty in estimates of total Antarctic ice change of up to ~10%. Moreover, the usual assumption that the mapping between modern ice height and thickness changes is uniform systematically underestimates net Antarctic ice volume changes.
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Marisa Montoya, and Alexander Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1842, https://doi.org/10.5194/egusphere-2024-1842, 2024
Short summary
Short summary
The climate of the last 3 Myr varies between cold and warm periods. Numerous independent mechanisms have been proposed to explain this, however no effort has been made to study their competing effects. Here we present a simple but physically motivated model that includes these mechanisms in a modular way. We find that the main trigger is the displacement of the lithosphere due to the ice thickness evolution, but reproducing the climate records additionally requires the natural darkening of ice.
Meghan E. King, Jessica R. Creveling, and Jerry X. Mitrovica
EGUsphere, https://doi.org/10.5194/egusphere-2024-344, https://doi.org/10.5194/egusphere-2024-344, 2024
Short summary
Short summary
In this study, we compute glacial-interglacial sea-level changes across the mid-Pliocene Warm Period (MPWP; 3.264 – 3.025 Ma) produced from ice mass loss of different ice sheets. Our results quantify the relationship between local and global mean sea-level (GMSL) change and highlight the level of consistency in this mapping across different ice melt scenarios. These predictions can help to guide site selection in any effort to constrain the sources and magnitude of MPWP GMSL change.
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2690, https://doi.org/10.5194/egusphere-2023-2690, 2023
Short summary
Short summary
We introduce Nix, an ice-sheet model designed for understanding how large masses of ice behave. Nix as a computer program that simulates the movement and temperature changes in ice sheets. Nix helps us study how ice sheets respond to changes in the atmosphere and ocean. We found that how fast ice melts under the shelves and how heat is exchanged, play a role in determining the future of ice sheets. Nix is a useful tool for learning more about how climate change affects polar ice sheets.
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
EGUsphere, https://doi.org/10.5194/egusphere-2023-2491, https://doi.org/10.5194/egusphere-2023-2491, 2023
Short summary
Short summary
A relatively recent advance in glacial isostatic adjustment modelling has been the development of models that include 3D Earth structure, as opposed to 1D structure. However, a major limitation is the computational expense. We have developed a method using artificial neural networks to emulate the influence of 3D Earth models to affordably constrain the viscosity parameter space. Our results indicate that the misfits are of a scale such that useful predictions of relative sea level can be made.
Daniel Moreno-Parada, Jorge Alvarez-Solas, Javier Blasco, Marisa Montoya, and Alexander Robinson
The Cryosphere, 17, 2139–2156, https://doi.org/10.5194/tc-17-2139-2023, https://doi.org/10.5194/tc-17-2139-2023, 2023
Short summary
Short summary
We have reconstructed the Laurentide Ice Sheet, located in North America during the Last Glacial Maximum (21 000 years ago). The absence of direct measurements raises a number of uncertainties. Here we study the impact of different physical laws that describe the friction as the ice slides over its base. We found that the Laurentide Ice Sheet is closest to prior reconstructions when the basal friction takes into account whether the base is frozen or thawed during its motion.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Alexander Robinson, Daniel Goldberg, and William H. Lipscomb
The Cryosphere, 16, 689–709, https://doi.org/10.5194/tc-16-689-2022, https://doi.org/10.5194/tc-16-689-2022, 2022
Short summary
Short summary
Here we investigate the numerical stability of several commonly used methods in order to determine which of them are capable of resolving the complex physics of the ice flow and are also computationally efficient. We find that the so-called DIVA solver outperforms the others. Its representation of the physics is consistent with more complex methods, while it remains computationally efficient at high resolution.
Andreas Born and Alexander Robinson
The Cryosphere, 15, 4539–4556, https://doi.org/10.5194/tc-15-4539-2021, https://doi.org/10.5194/tc-15-4539-2021, 2021
Short summary
Short summary
Ice penetrating radar reflections from the Greenland ice sheet are the best available record of past accumulation and how these layers have been deformed over time by the flow of ice. Direct simulations of this archive hold great promise for improving our models and for uncovering details of ice sheet dynamics that neither models nor data could achieve alone. We present the first three-dimensional ice sheet model that explicitly simulates individual layers of accumulation and how they deform.
Javier Blasco, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
The Cryosphere, 15, 215–231, https://doi.org/10.5194/tc-15-215-2021, https://doi.org/10.5194/tc-15-215-2021, 2021
Short summary
Short summary
During the Last Glacial Maximum the Antarctic Ice Sheet was larger and more extended than at present. However, neither its exact position nor the total ice volume are well constrained. Here we investigate how the different climatic boundary conditions, as well as basal friction configurations, affect the size and extent of the Antarctic Ice Sheet and discuss its potential implications.
Alexander Robinson, Jorge Alvarez-Solas, Marisa Montoya, Heiko Goelzer, Ralf Greve, and Catherine Ritz
Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020, https://doi.org/10.5194/gmd-13-2805-2020, 2020
Short summary
Short summary
Here we describe Yelmo v1.0, an intuitive and state-of-the-art hybrid ice sheet model. The model design and physics are described, and benchmark simulations are provided to validate its performance. Yelmo is a versatile ice sheet model that can be applied to a wide variety of problems.
Jorge Alvarez-Solas, Marisa Montoya, and Alexander Robinson
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-96, https://doi.org/10.5194/cp-2019-96, 2019
Publication in CP not foreseen
Short summary
Short summary
Modelling the past abrupt climate changes often resorts to the use of freshwater flux (FWF) in the North Atlantic as an effective method to cause reorganizations of the Atlantic Meridional Overturning Circulation. This procedure has allowed to reproduce the timing of the events. However, the required FWF is inconsistent with reconstructions. Conversely, using a forcing derived from the sea-level record results in a poor fit with the data, highlighting the need of exploring other mechanisms.
Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
The Cryosphere, 13, 1911–1923, https://doi.org/10.5194/tc-13-1911-2019, https://doi.org/10.5194/tc-13-1911-2019, 2019
Short summary
Short summary
Recent reconstructions show that the North East Greenland Ice Stream (NEGIS) retreated away from its present-day position by 20–40 km during MIS-3. Atmospheric and external forcings were proposed as potential causes of this retreat, but the role of the ocean was not considered. Here, using a 3-D ice-sheet model, we suggest that oceanic warming is sufficient to induce a retreat of the NEGIS margin of many tens of kilometres during MIS-3, helping to explain this conundrum.
Jorge Alvarez-Solas, Rubén Banderas, Alexander Robinson, and Marisa Montoya
Clim. Past, 15, 957–979, https://doi.org/10.5194/cp-15-957-2019, https://doi.org/10.5194/cp-15-957-2019, 2019
Short summary
Short summary
The last glacial period was marked by the existence of of abrupt climatic changes; it is generally accepted that the presence of ice sheets played an important role in their occurrence. While an important effort has been made to investigate the dynamics and evolution of the Laurentide ice sheet during this period, the Eurasian ice sheet (EIS) has not received much attention. Here we investigate the response of the EIS to millennial-scale climate variability using a hybrid 3-D ice-sheet model.
Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
Clim. Past, 15, 593–609, https://doi.org/10.5194/cp-15-593-2019, https://doi.org/10.5194/cp-15-593-2019, 2019
Short summary
Short summary
By using a 3-D hybrid ice-sheet–shelf model, we investigate the impact of millennial-scale oceanic variability on the Greenland Ice Sheet (GrIS) evolution during the last glacial period (LGP). We show that the GrIS may have strongly reacted to oceanic temperature fluctuations associated with Dansgaard–Oeschger cycles, contributing to sea-level variations of more than 1 m. Our results open the chance for a non-negligible role of the GrIS in millennial-scale oceanic reorganisations during the LGP.
Javier Blasco, Ilaria Tabone, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
Clim. Past, 15, 121–133, https://doi.org/10.5194/cp-15-121-2019, https://doi.org/10.5194/cp-15-121-2019, 2019
Short summary
Short summary
The LGP is a period punctuated by the presence of several abrupt climate events and sea-level variations of up to 20 m at millennial timescales. The origin of those fluctuations is attributed to NH paleo ice sheets, but a contribution from the AIS cannot be excluded. Here, for the first time, we investigate the response of the AIS to millennial climate variability using an ice sheet–shelf model. We shows that the AIS produces substantial sea-level rises and grounding line migrations.
Rubén Banderas, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
Geosci. Model Dev., 11, 2299–2314, https://doi.org/10.5194/gmd-11-2299-2018, https://doi.org/10.5194/gmd-11-2299-2018, 2018
Short summary
Short summary
Here we present a new approach to force ice-sheet models offline, which accounts for a more realistic treatment of millennial-scale climate variability as compared to the existing methods. Our results reveal that an incorrect representation of the characteristic pattern of millennial-scale climate variability within the climate forcing not only affects NH ice-volume variations at millennial timescales but has consequences for glacial–interglacial ice-volume changes too.
Ilaria Tabone, Javier Blasco, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
Clim. Past, 14, 455–472, https://doi.org/10.5194/cp-14-455-2018, https://doi.org/10.5194/cp-14-455-2018, 2018
Short summary
Short summary
The response of the Greenland Ice Sheet (GrIS) to palaeo-oceanic changes on a glacial–interglacial timescale is studied from a modelling perspective. A 3-D hybrid ice-sheet–shelf model which includes a parameterization of the basal melting rate at the GrIS marine margins is used. The results show that the oceanic forcing plays a key role in the GrIS evolution, not only by controlling the ice retreat during the deglaciation but also by driving the ice expansion in glacial periods.
Jorge Alvarez-Solas, Rubén Banderas, Alexander Robinson, and Marisa Montoya
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-143, https://doi.org/10.5194/cp-2017-143, 2017
Revised manuscript not accepted
Short summary
Short summary
The last glacial period was marked by the existence of of abrupt climatic changes. It is generally accepted that the presence of ice sheets played an
important role in their occurrence. While an important effort has been made to investigate the dynamics and evolution of the Laurentide Ice Sheet during this period, the Eurasian Ice Sheet (EIS) has not received much attention. Here we investigate the response of the EIS to millennial-scale climate variability. We use a hybrid 3D ice-sheet model.
Mario Krapp, Alexander Robinson, and Andrey Ganopolski
The Cryosphere, 11, 1519–1535, https://doi.org/10.5194/tc-11-1519-2017, https://doi.org/10.5194/tc-11-1519-2017, 2017
Short summary
Short summary
We present the snowpack model SEMIC. It calculates snow height, surface temperature, surface albedo, and the surface mass balance of snow- and ice-covered surfaces while using meteorological data as input. In this paper we describe how SEMIC works and how well it compares with snowpack data of a more sophisticated regional climate model applied to the Greenland ice sheet. Because of its simplicity and efficiency, SEMIC can be used as a coupling interface between atmospheric and ice sheet models.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
A. Robinson and M. Perrette
Geosci. Model Dev., 8, 1877–1883, https://doi.org/10.5194/gmd-8-1877-2015, https://doi.org/10.5194/gmd-8-1877-2015, 2015
Short summary
Short summary
Here we present a concise interface to the NetCDF library designed to simplify reading and writing tasks of up to 6-D arrays in Fortran programs.
R. Calov, A. Robinson, M. Perrette, and A. Ganopolski
The Cryosphere, 9, 179–196, https://doi.org/10.5194/tc-9-179-2015, https://doi.org/10.5194/tc-9-179-2015, 2015
Short summary
Short summary
Ice discharge into the ocean from outlet glaciers is an important
component of mass loss of the Greenland ice sheet. Here, we present a
simple parameterization of ice discharge for coarse resolution ice
sheet models, suitable for large ensembles or long-term palaeo
simulations. This parameterization reproduces in a good approximation
the present-day ice discharge compared with estimates, and the
simulation of the present-day ice sheet elevation is considerably
improved.
A. Robinson and H. Goelzer
The Cryosphere, 8, 1419–1428, https://doi.org/10.5194/tc-8-1419-2014, https://doi.org/10.5194/tc-8-1419-2014, 2014
Related subject area
Solid Earth
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Reconciling Surface Deflections From Simulations of Global Mantle Convection
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
REHEATFUNQ (REgional HEAT-Flow Uncertainty and aNomaly Quantification) 2.0.1: a model for regional aggregate heat flow distributions and anomaly quantification
A new temperature–photoperiod coupled phenology module in LPJ-GUESS model v4.1: optimizing estimation of terrestrial carbon and water processes
High-precision 1′ × 1′ bathymetric model of Philippine Sea inversed from marine gravity anomalies
Deciphering past earthquakes from the probabilistic modeling of paleoseismic records – the Paleoseismic EArthquake CHronologies code (PEACH, version 1)
Modelling detrital cosmogenic nuclide concentrations during landscape evolution in Cidre v2.0
IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas–particle flows over complex topographies and water
A Fast Surrogate Model for 3D-Earth Glacial Isostatic Adjustment using Tensorflow (v2.8.10) Artificial Neural Networks
Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle
Three-Dimensional Analytical Solution of Self-potential from Regularly Polarized Bodies in Layered Seafloor Model
AdaHRBF v1.0: gradient-adaptive Hermite–Birkhoff radial basis function interpolants for three-dimensional stratigraphic implicit modeling
PySubdiv 1.0: open-source geological modeling and reconstruction by non-manifold subdivision surfaces
Reconstructing tephra fall deposits via ensemble-based data assimilation techniques
ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation
Addressing challenges in uncertainty quantification: the case of geohazard assessments
DeepISMNet: three-dimensional implicit structural modeling with convolutional neural network
Towards automatic finite-element methods for geodynamics via Firedrake
MagmaFOAM-1.0: a modular framework for the simulation of magmatic systems
A global, spherical finite-element model for post-seismic deformation using Abaqus
SMAUG v1.0 – a user-friendly muon simulator for the imaging of geological objects in 3-D
CliffDelineaTool v1.2.0: an algorithm for identifying coastal cliff base and top positions
Capturing the interactions between ice sheets, sea level and the solid Earth on a range of timescales: a new “time window” algorithm
Structural, petrophysical, and geological constraints in potential field inversion using the Tomofast-x v1.0 open-source code
Spatial agents for geological surface modelling
RHEA v1.0: Enabling fully coupled simulations with hydro-geomechanical heterogeneity
Modelling of faults in LoopStructural 1.0
PALEOSTRIPv1.0 – a user-friendly 3D backtracking software to reconstruct paleo-bathymetries
LoopStructural 1.0: time-aware geological modelling
Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping
Analytical solutions for mantle flow in cylindrical and spherical shells
Towards a model for structured mass movements: the OpenLISEM hazard model 2.0a
GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0)
PLUME-MoM-TSM 1.0.0: a volcanic column and umbrella cloud spreading model
HydrothermalFoam v1.0: a 3-D hydrothermal transport model for natural submarine hydrothermal systems
Synthetic seismicity distribution in Guerrero–Oaxaca subduction zone, Mexico, and its implications on the role of asperities in Gutenberg–Richter law
A new open-source viscoelastic solid earth deformation module implemented in Elmer (v8.4)
CobWeb 1.0: machine learning toolbox for tomographic imaging
pygeodyn 1.1.0: a Python package for geomagnetic data assimilation
IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches
A multilayer approach and its application to model a local gravimetric quasi-geoid model over the North Sea: QGNSea V1.0
Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)
Bayesian inference of earthquake rupture models using polynomial chaos expansion
Geodynamic diagnostics, scientific visualisation and StagLab 3.0
SaLEM (v1.0) – the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution
Ellipsoids (v1.0): 3-D magnetic modelling of ellipsoidal bodies
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024, https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
Short summary
ShellSet is a combination of well-known geoscience software packages. It features a simple user interface and is optimised through the addition of a grid search input option (automatically searching for optimal models within a defined N-dimensional parameter space) and the ability to run multiple models in parallel. We show that for each number of models tested there is a performance benefit to parallel running, while two examples demonstrate a use case by improving an existing global model.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1893, https://doi.org/10.5194/egusphere-2024-1893, 2024
Short summary
Short summary
We wish to understand how the history of flowing rock within Earth's interior impacts deflection of its surface. Observations exist to address this problem, and mathematics and different computing tools can be used to predict histories of flow. We explore how modelling choices impact calculated vertical deflections. The sensitivity of vertical motions at Earth's surface to deep flow is assessed, demonstrating how surface observations can enlighten flow histories.
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024, https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
Short summary
Numerical models that use simulated particles are a powerful tool for investigating flow in the interior of the Earth, but the accuracy of these models is not fully understood. Here we present two new benchmarks that allow measurement of model accuracy. We then document that better accuracy matters for applications like convection beneath an oceanic plate. Our benchmarks and methods are freely available to help the community develop better models.
Malte Jörn Ziebarth and Sebastian von Specht
Geosci. Model Dev., 17, 2783–2828, https://doi.org/10.5194/gmd-17-2783-2024, https://doi.org/10.5194/gmd-17-2783-2024, 2024
Short summary
Short summary
Thermal energy from Earth’s active interior constantly dissipates through Earth’s surface. This heat flow is not spatially uniform, and its exact pattern is hard to predict since it depends on crustal and mantle properties, both varying across scales. Our new model REHEATFUNQ addresses this difficulty by treating the fluctuations of heat flow within a region statistically. REHEATFUNQ estimates the regional distribution of heat flow and quantifies known structural signals therein.
Shouzhi Chen, Yongshuo H. Fu, Mingwei Li, Zitong Jia, Yishuo Cui, and Jing Tang
Geosci. Model Dev., 17, 2509–2523, https://doi.org/10.5194/gmd-17-2509-2024, https://doi.org/10.5194/gmd-17-2509-2024, 2024
Short summary
Short summary
It is still a challenge to achieve an accurate simulation of vegetation phenology in the dynamic global vegetation models (DGVMs). We implemented and coupled the spring and autumn phenology models into one of the DGVMs, LPJ-GUESS, and substantially improved the accuracy in capturing the start and end dates of growing seasons. Our study highlights the importance of getting accurate phenology estimations to reduce the uncertainties in plant distribution and terrestrial carbon and water cycling.
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
Geosci. Model Dev., 17, 2039–2052, https://doi.org/10.5194/gmd-17-2039-2024, https://doi.org/10.5194/gmd-17-2039-2024, 2024
Short summary
Short summary
Seafloor topography, as fundamental geoinformation in marine surveying and mapping, plays a crucial role in numerous scientific studies. In this paper, we focus on constructing a high-precision seafloor topography and bathymetry model for the Philippine Sea (5° N–35° N, 120° E–150° E), based on shipborne bathymetric data and marine gravity anomalies, and evaluate the reliability of the model's accuracy.
Octavi Gómez-Novell, Bruno Pace, Francesco Visini, Joanna Faure Walker, and Oona Scotti
Geosci. Model Dev., 16, 7339–7355, https://doi.org/10.5194/gmd-16-7339-2023, https://doi.org/10.5194/gmd-16-7339-2023, 2023
Short summary
Short summary
Knowing the rate at which earthquakes happen along active faults is crucial to characterize the hazard that they pose. We present an approach (Paleoseismic EArthquake CHronologies, PEACH) to correlate and compute seismic histories using paleoseismic data, a type of data that characterizes past seismic activity from the geological record. Our approach reduces the uncertainties of the seismic histories and overall can improve the knowledge on fault rupture behavior for the seismic hazard.
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023, https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
Short summary
We present the development of a code to simulate simultaneously the dynamics of landscapes over geological time and the evolution of the concentration of cosmogenic isotopes in grains throughout their transport from the slopes to the river outlets. This new model makes it possible to study the relationship between the detrital signal of cosmogenic isotope concentration measured in sediment and the erosion--deposition processes in watersheds.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023, https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Short summary
We present version 2 of the numerical code IMEX-SfloW2D. With this version it is possible to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). A simulation of the 1883 Krakatau eruption demonstrates the capability of the numerical model to face a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles.
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
EGUsphere, https://doi.org/10.5194/egusphere-2023-2491, https://doi.org/10.5194/egusphere-2023-2491, 2023
Short summary
Short summary
A relatively recent advance in glacial isostatic adjustment modelling has been the development of models that include 3D Earth structure, as opposed to 1D structure. However, a major limitation is the computational expense. We have developed a method using artificial neural networks to emulate the influence of 3D Earth models to affordably constrain the viscosity parameter space. Our results indicate that the misfits are of a scale such that useful predictions of relative sea level can be made.
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
Short summary
The waxing and waning of the Antarctic ice sheet caused the Earth’s surface to deform, which is stabilizing the ice sheet and mainly determined by the spatially variable viscosity of the mantle. Including this feedback in model simulations led to significant differences in ice sheet extent and ice thickness over the last glacial cycle. The results underline and quantify the importance of including this local feedback effect in ice sheet models when simulating the Antarctic ice sheet evolution.
Pengfei Zhang, Yi-an Cui, Jing Xie, Youjun Guo, Jianxin Liu, and Jieran Liu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-94, https://doi.org/10.5194/gmd-2023-94, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
A reasonable self-potential (SP) forward modeling is fundamental for mineral exploration. In this paper, we present a method to obtain the theoretical solution of SP generated by regularly polarized bodies in layered media. The results demonstrate that the measured SP data is consistent with the analytical solution, validating the proposed method and corresponding analytical solution.
Baoyi Zhang, Linze Du, Umair Khan, Yongqiang Tong, Lifang Wang, and Hao Deng
Geosci. Model Dev., 16, 3651–3674, https://doi.org/10.5194/gmd-16-3651-2023, https://doi.org/10.5194/gmd-16-3651-2023, 2023
Short summary
Short summary
We propose a Hermite–Birkhoff radial basis function (HRBF) formulation, AdaHRBF, with an adaptive gradient magnitude for continuous 3D stratigraphic potential field (SPF) modeling of multiple stratigraphic interfaces. In the linear system of HRBF interpolants constrained by the scattered on-contact attribute points and off-contact attitude points of a set of strata in 3D space, we add a novel optimization term to iteratively obtain the true gradient magnitude.
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Geosci. Model Dev., 16, 3565–3579, https://doi.org/10.5194/gmd-16-3565-2023, https://doi.org/10.5194/gmd-16-3565-2023, 2023
Short summary
Short summary
In this work, we propose a flexible framework to generate and interact with geological models using explicit surface representations. The essence of the work lies in the determination of the flexible control mesh, topologically similar to the main geological structure, watertight and controllable with few control points, to manage the geological structures. We exploited the subdivision surface method in our work, which is commonly used in the animation and gaming industry.
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Hui Gao, Xinming Wu, Jinyu Zhang, Xiaoming Sun, and Zhengfa Bi
Geosci. Model Dev., 16, 2495–2513, https://doi.org/10.5194/gmd-16-2495-2023, https://doi.org/10.5194/gmd-16-2495-2023, 2023
Short summary
Short summary
We propose a workflow to automatically generate synthetic seismic data and corresponding stratigraphic labels (e.g., clinoform facies, relative geologic time, and synchronous horizons) by geological and geophysical forward modeling. Trained with only synthetic datasets, our network works well to accurately and efficiently predict clinoform facies in 2D and 3D field seismic data. Such a workflow can be easily extended for other geological and geophysical scenarios in the future.
Ibsen Chivata Cardenas, Terje Aven, and Roger Flage
Geosci. Model Dev., 16, 1601–1615, https://doi.org/10.5194/gmd-16-1601-2023, https://doi.org/10.5194/gmd-16-1601-2023, 2023
Short summary
Short summary
We discuss challenges in uncertainty quantification for geohazard assessments. The challenges arise from limited data and the one-off nature of geohazard features. The challenges include the credibility of predictions, input uncertainty, and assumptions’ impact. Considerations to increase credibility of the quantification are provided. Crucial tasks in the quantification are the exhaustive scrutiny of the background knowledge coupled with the assessment of deviations of assumptions made.
Zhengfa Bi, Xinming Wu, Zhaoliang Li, Dekuan Chang, and Xueshan Yong
Geosci. Model Dev., 15, 6841–6861, https://doi.org/10.5194/gmd-15-6841-2022, https://doi.org/10.5194/gmd-15-6841-2022, 2022
Short summary
Short summary
We present an implicit modeling method based on deep learning to produce a geologically valid and structurally compatible model from unevenly sampled structural data. Trained with automatically generated synthetic data with realistic features, our network can efficiently model geological structures without the need to solve large systems of mathematical equations, opening new opportunities for further leveraging deep learning to improve modeling capacity in many Earth science applications.
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022, https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.
Federico Brogi, Simone Colucci, Jacopo Matrone, Chiara Paola Montagna, Mattia De' Michieli Vitturi, and Paolo Papale
Geosci. Model Dev., 15, 3773–3796, https://doi.org/10.5194/gmd-15-3773-2022, https://doi.org/10.5194/gmd-15-3773-2022, 2022
Short summary
Short summary
Computer simulations play a fundamental role in understanding volcanic phenomena. The growing complexity of these simulations requires the development of flexible computational tools that can easily switch between sub-models and solution techniques as well as optimizations. MagmaFOAM is a newly developed library that allows for maximum flexibility for solving multiphase volcanic flows and promotes collaborative work for in-house and community model development, testing, and comparison.
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022, https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Mykhailo Vladymyrov, and Fritz Schlunegger
Geosci. Model Dev., 15, 2441–2473, https://doi.org/10.5194/gmd-15-2441-2022, https://doi.org/10.5194/gmd-15-2441-2022, 2022
Short summary
Short summary
Muon tomography is a technology that is used often in geoscientific research. The know-how of data analysis is, however, still possessed by physicists who developed this technology. This article aims at providing geoscientists with the necessary tools to perform their own analyses. We hope that a lower threshold to enter the field of muon tomography will allow more geoscientists to engage with muon tomography. SMAUG is set up in a modular way to allow for its own modules to work in between.
Zuzanna M. Swirad and Adam P. Young
Geosci. Model Dev., 15, 1499–1512, https://doi.org/10.5194/gmd-15-1499-2022, https://doi.org/10.5194/gmd-15-1499-2022, 2022
Short summary
Short summary
Cliff base and top lines that delimit coastal cliff faces are usually manually digitized based on maps, aerial photographs, terrain models, etc. However, manual mapping is time consuming and depends on the mapper's decisions and skills. To increase the objectivity and efficiency of cliff mapping, we developed CliffDelineaTool, an algorithm that identifies cliff base and top positions along cross-shore transects using elevation and slope characteristics.
Holly Kyeore Han, Natalya Gomez, and Jeannette Xiu Wen Wan
Geosci. Model Dev., 15, 1355–1373, https://doi.org/10.5194/gmd-15-1355-2022, https://doi.org/10.5194/gmd-15-1355-2022, 2022
Short summary
Short summary
Interactions between ice sheets, sea level and the solid Earth occur over a range of timescales from years to tens of thousands of years. This requires coupled ice-sheet–sea-level models to exchange information frequently, leading to a quadratic increase in computation time with the number of model timesteps. We present a new sea-level model algorithm that allows coupled models to improve the computational feasibility and precisely capture short-term interactions within longer simulations.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Eric A. de Kemp
Geosci. Model Dev., 14, 6661–6680, https://doi.org/10.5194/gmd-14-6661-2021, https://doi.org/10.5194/gmd-14-6661-2021, 2021
Short summary
Short summary
This is a proof of concept and review paper of spatial agents, with initial research focusing on geomodelling. The results may be of interest to others working on complex regional geological modelling with sparse data. Structural agent-based swarming behaviour is key to advancing this field. The study provides groundwork for research in structural geology 3D modelling with spatial agents. This work was done with NetLogo, a free agent modelling platform used mostly for teaching complex systems.
José M. Bastías Espejo, Andy Wilkins, Gabriel C. Rau, and Philipp Blum
Geosci. Model Dev., 14, 6257–6272, https://doi.org/10.5194/gmd-14-6257-2021, https://doi.org/10.5194/gmd-14-6257-2021, 2021
Short summary
Short summary
The hydraulic and mechanical properties of the subsurface are inherently heterogeneous. RHEA is a simulator that can perform couple hydro-geomechanical processes in heterogeneous porous media with steep gradients. RHEA is able to fully integrate spatial heterogeneity, allowing allocation of distributed hydraulic and geomechanical properties at mesh element level. RHEA is a valuable tool that can simulate problems considering realistic heterogeneity inherent to geologic formations.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021, https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
Short summary
PALEOSTRIP has been developed in the framework of past Antarctic ice sheet reconstructions for periods when bathymetry around Antarctica differed substantially from today. It has been designed for users with no knowledge of numerical modelling and allows users to switch on and off the processes involved in backtracking and backstripping. Applications are broad, and it can be used to restore any continental margin bathymetry or sediment thickness and to perform basin analysis.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters
Geosci. Model Dev., 14, 3421–3435, https://doi.org/10.5194/gmd-14-3421-2021, https://doi.org/10.5194/gmd-14-3421-2021, 2021
Short summary
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.
Bastian van den Bout, Theo van Asch, Wei Hu, Chenxiao X. Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen
Geosci. Model Dev., 14, 1841–1864, https://doi.org/10.5194/gmd-14-1841-2021, https://doi.org/10.5194/gmd-14-1841-2021, 2021
Short summary
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behaviour and reducing disaster risk. Numerical models assume that the solids and fluids of the flow are unstructured. The newly presented model captures the internal structure during movement. This important step can lead to more accurate predictions of landslide movement.
Andrzej Górszczyk and Stéphane Operto
Geosci. Model Dev., 14, 1773–1799, https://doi.org/10.5194/gmd-14-1773-2021, https://doi.org/10.5194/gmd-14-1773-2021, 2021
Short summary
Short summary
We present the 3D multi-parameter synthetic geomodel of the subduction zone, as well as the workflow designed to implement all of its components. The model contains different geological structures of various scales and complexities. It is intended to serve as a tool for the geophysical community to validate imaging approaches, design acquisition techniques, estimate uncertainties, benchmark computing approaches, etc.
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, https://doi.org/10.5194/gmd-14-1345-2021, 2021
Short summary
Short summary
Here, we present PLUME-MoM-TSM, a volcanic plume model that allows us to quantify the formation of aggregates during the rise of the plume, model the phase change of water, and include the possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is first applied to the 2015 Calbuco eruption (Chile) and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Zhikui Guo, Lars Rüpke, and Chunhui Tao
Geosci. Model Dev., 13, 6547–6565, https://doi.org/10.5194/gmd-13-6547-2020, https://doi.org/10.5194/gmd-13-6547-2020, 2020
Short summary
Short summary
We present the 3-D hydro-thermo-transport model HydrothermalFoam v1.0, which we designed to provide the marine geosciences community with an easy-to-use and state-of-the-art tool for simulating mass and energy transport in submarine hydrothermal systems. HydrothermalFoam is based on the popular open-source platform OpenFOAM, comes with a number of tutorials, and is published under the GNU General Public License v3.0.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, Quetzalcoatl Rodríguez-Pérez, Otilio Rojas, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 13, 6361–6381, https://doi.org/10.5194/gmd-13-6361-2020, https://doi.org/10.5194/gmd-13-6361-2020, 2020
Short summary
Short summary
The Mexican subduction zone along the Pacific coast is one of the most active seismic zones in the world, where every year larger-magnitude earthquakes shake huge inland cities such as Mexico City. In this work, we use TREMOL (sThochastic Rupture Earthquake ModeL) to simulate the seismicity observed in this zone. Our numerical results reinforce the hypothesis that in some subduction regions single asperities are responsible for producing the observed seismicity.
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Loïc Huder, Nicolas Gillet, and Franck Thollard
Geosci. Model Dev., 12, 3795–3803, https://doi.org/10.5194/gmd-12-3795-2019, https://doi.org/10.5194/gmd-12-3795-2019, 2019
Short summary
Short summary
The pygeodyn package is a geomagnetic data assimilation tool written in Python. It gives access to the Earth's core flow dynamics, controlled by geomagnetic observations, by means of a reduced numerical model anchored to geodynamo simulation statistics. It aims to provide the community with a user-friendly and tunable data assimilation algorithm. It can be used for education, geomagnetic model production or tests in conjunction with webgeodyn, a set of visualization tools for geomagnetic models.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, Giacomo Lari, and Alvaro Aravena
Geosci. Model Dev., 12, 581–595, https://doi.org/10.5194/gmd-12-581-2019, https://doi.org/10.5194/gmd-12-581-2019, 2019
Short summary
Short summary
Pyroclastic avalanches are a type of granular flow generated at active volcanoes by different mechanisms, including the collapse of steep pyroclastic deposits (e.g., scoria and ash cones) and fountaining during moderately explosive eruptions. We present IMEX_SfloW2D, a depth-averaged flow model describing the granular mixture as a single-phase granular fluid. Benchmark cases and preliminary application to the simulation of the 11 February pyroclastic avalanche at Mt. Etna (Italy) are shown.
Yihao Wu, Zhicai Luo, Bo Zhong, and Chuang Xu
Geosci. Model Dev., 11, 4797–4815, https://doi.org/10.5194/gmd-11-4797-2018, https://doi.org/10.5194/gmd-11-4797-2018, 2018
Short summary
Short summary
A multilayer approach is parameterized for model development, and the multiple layers are located at different depths beneath the Earth’s surface. This method may be beneficial for gravity/manget field modeling, which may outperform the traditional single-layer approach.
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018, https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Hugo Cruz-Jiménez, Guotu Li, Paul Martin Mai, Ibrahim Hoteit, and Omar M. Knio
Geosci. Model Dev., 11, 3071–3088, https://doi.org/10.5194/gmd-11-3071-2018, https://doi.org/10.5194/gmd-11-3071-2018, 2018
Short summary
Short summary
One of the most important challenges seismologists and earthquake engineers face is reliably estimating ground motion in an area prone to large damaging earthquakes. This study aimed at better understanding the relationship between characteristics of geological faults (e.g., hypocenter location, rupture size/location, etc.) and resulting ground motion, via statistical analysis of a rupture simulation model. This study provides important insight on ground-motion responses to geological faults.
Fabio Crameri
Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, https://doi.org/10.5194/gmd-11-2541-2018, 2018
Short summary
Short summary
Firstly, this study acts as a compilation of key geodynamic diagnostics and describes how to automatise them for a more efficient scientific procedure. Secondly, it outlines today's key pitfalls of scientific visualisation and provides means to circumvent them with, for example, a novel set of fully scientific colour maps. Thirdly, it introduces StagLab 3.0, a software that applies such fully automated diagnostics and state-of-the-art visualisation in the blink of an eye.
Michael Bock, Olaf Conrad, Andreas Günther, Ernst Gehrt, Rainer Baritz, and Jürgen Böhner
Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018, https://doi.org/10.5194/gmd-11-1641-2018, 2018
Short summary
Short summary
We introduce the Soil and
Landscape Evolution Model (SaLEM) for the prediction of soil parent material evolution following a lithologically differentiated approach. The GIS tool is working within the software framework SAGA GIS. Weathering, erosion and transport functions are calibrated using extrinsic and intrinsic parameter data. First results indicate that our approach shows evidence for the spatiotemporal prediction of soil parental material properties.
Karthik Iyer, Henrik Svensen, and Daniel W. Schmid
Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, https://doi.org/10.5194/gmd-11-43-2018, 2018
Short summary
Short summary
Igneous intrusions in sedimentary basins have a profound effect on the thermal structure of the hosting sedimentary rocks. In this paper, we present a user-friendly 1-D FEM-based tool, SILLi, that calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The motivation is to make a standardized numerical toolkit openly available that can be widely used by scientists with different backgrounds to test the effects of magmatic bodies in a wide variety of settings.
Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart
Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, https://doi.org/10.5194/gmd-10-4577-2017, 2017
Short summary
Short summary
Rivers control the movement of sediment and nutrients across Earth's surface. Understanding how rivers change through time is important for mitigating natural hazards and predicting Earth's response to climate change. We develop a new computer model for predicting how rivers cut through sediment and rock. Our model is designed to be joined with models of flooding, landslides, vegetation change, and other factors to provide a comprehensive toolbox for predicting changes to the landscape.
Diego Takahashi and Vanderlei C. Oliveira Jr.
Geosci. Model Dev., 10, 3591–3608, https://doi.org/10.5194/gmd-10-3591-2017, https://doi.org/10.5194/gmd-10-3591-2017, 2017
Short summary
Short summary
Ellipsoids are the only bodies for which the self-demagnetization can be treated analytically. This property is useful for modelling compact orebodies having high susceptibility. We present a review of the magnetic modelling of ellipsoids, propose a way of determining the isotropic susceptibility above which the self-demagnetization must be considered, and discuss the ambiguity between confocal ellipsoids, as well as provide a set of routines to model the magnetic field produced by ellipsoids.
Cited articles
A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, https://doi.org/10.1093/gji/ggs030, 2013. a
Accardo, N. J., Wiens, D. A., Hernandez, S., Aster, R. C., Nyblade, A., Huerta, A., Anandakrishnan, S., Wilson, T., Heeszel, D. S., and Dalziel, I. W. D.: Upper mantle seismic anisotropy beneath the West Antarctic Rift System and surrounding region from shear wave splitting analysis, Geophys. J. Int., 198, 414–429, https://doi.org/10.1093/gji/ggu117, 2014. a
Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., and Nowicki, S.: Future Antarctic bed topography and its implications for ice sheet dynamics, Solid Earth, 5, 569–584, https://doi.org/10.5194/se-5-569-2014, 2014. a
Adhikari, S., Ivins, E. R., Larour, E., Caron, L., and Seroussi, H.: A kinematic formalism for tracking ice–ocean mass exchange on the Earth's surface and estimating sea-level change, The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020, 2020. a
Amante, C. and Eakins, B. E.: ETOPO1 1 arc-minute global relief model: procedure, data sources and analysis, Tech. rep., NOAA, https://doi.org/10.7289/V5C8276M, 2009. a
Amelung, F. and Wolf, D.: Viscoelastic perturbations of the earth: significance of the incremental gravitational force in models of glacial isostasy, Geophys. J. Int., 117, 864–879, https://doi.org/10.1111/j.1365-246X.1994.tb02476.x, 1994. a
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/gji/ggu140, 2014. a
Austermann, J., Hoggard, M. J., Latychev, K., Richards, F. D., and Mitrovica, J. X.: The effect of lateral variations in Earth structure on Last Interglacial sea level, Geophys. J. Int., 227, 1938–1960, https://doi.org/10.1093/gji/ggab289, 2021. a
Bagge, M., Klemann, V., Steinberger, B., Latinović, M., and Thomas, M.: Glacial‐Isostatic Adjustment Models Using Geodynamically Constrained 3D Earth Structures, Geochem. Geophy. Geosy., 22, e2021GC009853, https://doi.org/10.1029/2021GC009853, 2021.Please provide article number or page range. a
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S. A., Rovira-Navarro, M., Dalziel, I., Smalley, R., Kendrick, E., Konfal, S., Caccamise, D. J., Aster, R. C., Nyblade, A., and Wiens, D. A.: Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability, Science, 360, 1335–1339, https://doi.org/10.1126/science.aao1447, 2018. a, b
Beghein, C., Trampert, J., and van Heijst, H. J.: Radial anisotropy in seismic reference models of the mantle: ANISOTROPY IN MANTLE MODELS, J. Geophys. Res.-Sol. Ea., 111, B02303, https://doi.org/10.1029/2005JB003728, 2006. a
Behrendt, J. C.: Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations – a review, Global Planet. Change, 23, 25–44, https://doi.org/10.1016/S0921-8181(99)00049-1, 1999. a
Besard, T., Foket, C., and De Sutter, B.: Effective Extensible Programming: Unleashing Julia on GPUs, IEEE T. Parall. Distr., 30, 827–841, https://doi.org/10.1109/TPDS.2018.2872064, 2019. a
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing, SIAM Rev., 59, 65–98, https://doi.org/10.1137/141000671, 2017. a
Bogacki, P. and Shampine, L.: An efficient Runge-Kutta (4,5) pair, Comput. Math. Appl., 32, 15–28, https://doi.org/10.1016/0898-1221(96)00141-1, 1996. a
Book, C., Hoffman, M. J., Kachuck, S. B., Hillebrand, T. R., Price, S. F., Perego, M., and Bassis, J. N.: Stabilizing effect of bedrock uplift on retreat of Thwaites Glacier, Antarctica, at centennial timescales, Earth Planet. Sc. Lett., 597, 117798, https://doi.org/10.1016/j.epsl.2022.117798, 2022. a, b, c
Caron, L., Métivier, L., Greff-Lefftz, M., Fleitout, L., and Rouby, H.: Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies, Geophys. J. Int., 209, 1126–1147, https://doi.org/10.1093/gji/ggx083, 2017. a
Cogley, J. G.: Area of the Ocean, Mar. Geod., 35, 379–388, https://doi.org/10.1080/01490419.2012.709476, 2012. a
Coulon, V., Bulthuis, K., Whitehouse, P. L., Sun, S., Haubner, K., Zipf, L., and Pattyn, F.: Contrasting Response of West and East Antarctic Ice Sheets to Glacial Isostatic Adjustment, J. Geophys. Res.-Earth, 126, e2020JF006003, https://doi.org/10.1029/2020JF006003, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
De Boer, B., Stocchi, P., Whitehouse, P. L., and Van De Wal, R. S.: Current state and future perspectives on coupled ice-sheet – sea-level modelling, Quaternary Sci. Rev., 169, 13–28, https://doi.org/10.1016/j.quascirev.2017.05.013, 2017. a
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016. a
Farrell, W. E.: Deformation of the Earth by surface loads, Rev. Geophys., 10, 761, https://doi.org/10.1029/RG010i003p00761, 1972. a
Farrell, W. E. and Clark, J. A.: On Postglacial Sea Level, Geophys. J. Roy. Astron. Soc., 46, 647–667, https://doi.org/10.1111/j.1365-246X.1976.tb01252.x, 1976. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Frigo, M. and Johnson, S.: The Design and Implementation of FFTW3, P. IEEE, 93, 216–231, https://doi.org/10.1109/JPROC.2004.840301, 2005. a
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F., and Winkelmann, R.: The hysteresis of the Antarctic Ice Sheet, Nature, 585, 538–544, https://doi.org/10.1038/s41586-020-2727-5, 2020. a
Gasperini, P., Dal Forno, G., and Boschi, E.: Linear or non-linear rheology in the Earth's mantle: the prevalence of power-law creep in the postglacial isostatic readjustment of Laurentia, Geophys. J. Int., 157, 1297–1302, https://doi.org/10.1111/j.1365-246X.2004.02319.x, 2004. a
Goelzer, H., Coulon, V., Pattyn, F., de Boer, B., and van de Wal, R.: Brief communication: On calculating the sea-level contribution in marine ice-sheet models, The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020, 2020. a, b, c, d
Gomez, N., Mitrovica, J. X., Huybers, P., and Clark, P. U.: Sea level as a stabilizing factor for marine-ice-sheet grounding lines, Nat. Geosci., 3, 850–853, https://doi.org/10.1038/ngeo1012, 2010. a, b, c
Gomez, N., Pollard, D., Mitrovica, J. X., Huybers, P., and Clark, P. U.: Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res.-Earth, 117, F01013, https://doi.org/10.1029/2011JF002128, 2012. a, b
Gomez, N., Pollard, D., and Holland, D.: Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss, Nat. Commun., 6, 8798, https://doi.org/10.1038/ncomms9798, 2015. a, b
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., and Van De Wal, R. S. W.: Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019. a
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, 2012. a
Heeszel, D. S., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Dalziel, I. W. D., Huerta, A. D., Nyblade, A. A., Wilson, T. J., and Winberry, J. P.: Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities, J. Geophys. Res.-Sol. Ea., 121, 1758–1775, https://doi.org/10.1002/2015JB012616, 2016. a, b
Huang, P., Steffen, R., Steffen, H., Klemann, V., Wu, P., van der Wal, W., Martinec, Z., and Tanaka, Y.: A commercial finite element approach to modelling Glacial Isostatic Adjustment on spherical self-gravitating compressible earth models, Geophys. J. Int., 235, 2231–2256, https://doi.org/10.1093/gji/ggad354, 2023. a, b
Ivins, E. R., Caron, L., Adhikari, S., and Larour, E.: Notes on a compressible extended Burgers model of rheology, Geophys. J. Int., 228, 1975–1991, https://doi.org/10.1093/gji/ggab452, 2021. a
Ivins, E. R., van der Wal, W., Wiens, D. A., Lloyd, A. J., and Caron, L.: Antarctic upper mantle rheology, Geological Society, London, Memoirs, 56, M56–2020–19, https://doi.org/10.1144/M56-2020-19, 2022. a, b, c
Kachuck, S. B.: giapy: Glacial Isostatic Adjustment in PYthon (1.0.0), https://github.com/skachuck/giapy/ (last access: 4 July 2024), 2017. a
Kachuck, S. B., Martin, D. F., Bassis, J. N., and Price, S. F.: Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier, Geophys. Res. Lett., 47, e2019GL086446, https://doi.org/10.1029/2019GL086446, 2020. a, b, c
Kang, K., Zhong, S., Geruo, A., and Mao, W.: The effects of non-Newtonian rheology in the upper mantle on relative sea level change and geodetic observables induced by glacial isostatic adjustment process, Geophys. J. Int., 228, 1887–1906, https://doi.org/10.1093/gji/ggab428, 2021. a
Kendall, R. A., Mitrovica, J. X., and Milne, G. A.: On post-glacial sea level – II. Numerical formulation and comparative results on spherically symmetric models, Geophys. J. Int., 161, 679–706, https://doi.org/10.1111/j.1365-246X.2005.02553.x, 2005. a, b
Klemann, V., Martinec, Z., and Ivins, E. R.: Glacial isostasy and plate motion, J. Geodynam., 46, 95–103, https://doi.org/10.1016/j.jog.2008.04.005, 2008. a
Konrad, H., Thoma, M., Sasgen, I., Klemann, V., Grosfeld, K., Barbi, D., and Martinec, Z.: The Deformational Response of a Viscoelastic Solid Earth Model Coupled to a Thermomechanical Ice Sheet Model, Surv. Geophys., 35, 1441–1458, https://doi.org/10.1007/s10712-013-9257-8, 2014. a, b, c
Konrad, H., Sasgen, I., Pollard, D., and Klemann, V.: Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate, Earth Planet. Sc. Lett., 432, 254–264, https://doi.org/10.1016/j.epsl.2015.10.008, 2015. a
Konrad, H., Sasgen, I., Klemann, V., Thoma, M., Grosfeld, K., and Martinec, Z.: Sensitivity of grounding-line dynamics to viscoelastic deformation of the solid-earth in an idealized scenario, Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85, 89–99, https://doi.org/10.2312/POLFOR.2016.005, 2016. a
Kreuzer, M., Albrecht, T., Nicola, L., Reese, R., and Winkelmann, R.: Oceanic gateways in Antarctica – Impact of relative sea-level change on sub-shelf melt, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2737, 2023. a
Kulp, S. A. and Strauss, B. H.: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nat. Commun., 10, 4844, https://doi.org/10.1038/s41467-019-12808-z, 2019. a
Lingle, C. S. and Clark, J. A.: A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream, J. Geophys. Res., 90, 1100, https://doi.org/10.1029/JC090iC01p01100, 1985. a, b, c, d
Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R., Bradley, S. L., Evans, K. J., Fyke, J. G., Kennedy, J. H., Perego, M., Ranken, D. M., Sacks, W. J., Salinger, A. G., Vargo, L. J., and Worley, P. H.: Description and evaluation of the Community Ice Sheet Model (CISM) v2.1, Geosci. Model Dev., 12, 387–424, https://doi.org/10.5194/gmd-12-387-2019, 2019. a, b
Lloyd, A. J., Wiens, D. A., Nyblade, A. A., Anandakrishnan, S., Aster, R. C., Huerta, A. D., Wilson, T. J., Dalziel, I. W. D., Shore, P. J., and Zhao, D.: A seismic transect across West Antarctica: Evidence for mantle thermal anomalies beneath the Bentley Subglacial Trench and the Marie Byrd Land Dome, J. Geophys. Res.-Sol. Ea., 120, 8439–8460, https://doi.org/10.1002/2015JB012455, 2015. a
Lloyd, A. J., Wiens, D. A., Zhu, H., Tromp, J., Nyblade, A. A., Aster, R. C., Hansen, S. E., Dalziel, I. W. D., Wilson, T., Ivins, E. R., and O’Donnell, J. P.: Seismic Structure of the Antarctic Upper Mantle Imaged with Adjoint Tomography, J. Geophys. Res.-Sol. Ea., 125, 2019JB017823, https://doi.org/10.1029/2019JB017823, 2020. a
Martinec, Z.: Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth, Geophys. J. Int., 142, 117–141, https://doi.org/10.1046/j.1365-246x.2000.00138.x, 2000. a
Martinec, Z., Klemann, V., van der Wal, W., Riva, R. E. M., Spada, G., Sun, Y., Melini, D., Kachuck, S. B., Barletta, V., Simon, K., A, G., and James, T. S.: A benchmark study of numerical implementations of the sea level equation in GIA modelling, Geophys. J. Int., 215, 389–414, https://doi.org/10.1093/gji/ggy280, 2018. a
Mitrovica, J. X. and Milne, G. A.: On post-glacial sea level: I. General theory, Geophys. J. Int., 154, 253–267, https://doi.org/10.1046/j.1365-246X.2003.01942.x, 2003. a, b
Mitrovica, J. X., Milne, G. A., and Davis, J. L.: Glacial isostatic adjustment on a rotating earth, Geophys. J. Int., 147, 562–578, https://doi.org/10.1046/j.1365-246x.2001.01550.x, 2001. a
Mitrovica, J. X., Gomez, N., and Clark, P. U.: The Sea-Level Fingerprint of West Antarctic Collapse, Science, 323, 753–753, https://doi.org/10.1126/science.1166510, 2009. a
Morelli, A. and Danesi, S.: Seismological imaging of the Antarctic continental lithosphere: a review, Global Planet. Change, 42, 155–165, https://doi.org/10.1016/j.gloplacha.2003.12.005, 2004. a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M. R. V. D., Ommen, T. D. V., Wessem, M. V., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020. a
Nield, G. A., Barletta, V. R., Bordoni, A., King, M. A., Whitehouse, P. L., Clarke, P. J., Domack, E., Scambos, T. A., and Berthier, E.: Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading, Earth Planet. Sc. Lett., 397, 32–41, https://doi.org/10.1016/j.epsl.2014.04.019, 2014. a, b
Nield, G. A., Whitehouse, P. L., van der Wal, W., Blank, B., O'Donnell, J. P., and Stuart, G. W.: The impact of lateral variations in lithospheric thickness on glacial isostatic adjustment in West Antarctica, Geophys. J. Int., 214, 811–824, https://doi.org/10.1093/gji/ggy158, 2018. a, b, c
Pan, L., Powell, E. M., Latychev, K., Mitrovica, J. X., Creveling, Gomez, N., Hoggard, M. J., and Clark, P. J.: Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse, Sci. Adv., 7, eabf7787, https://doi.org/10.1126/sciadv.abf7787, 2021. a
Pan, L., Milne, G. A., Latychev, K., Goldberg, S. L., Austermann, J., Hoggard, M. J., and Mitrovica, J. X.: The influence of lateral Earth structure on inferences of global ice volume during the Last Glacial Maximum, Quaternary Sci. Rev., 290, 107644, https://doi.org/10.1016/j.quascirev.2022.107644, 2022. a, b, c, d, e
Pattyn, F.: Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0), The Cryosphere, 11, 1851–1878, https://doi.org/10.5194/tc-11-1851-2017, 2017. a
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015. a
Peltier, W. R., Argus, D. F., and Drummond, R.: Comment on “An Assessment of the ICE‐6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al., J. Geophys. Res.-Sol. Ea., 123, 2019–2028, https://doi.org/10.1002/2016JB013844, 2018. a, b, c
Purcell, A.: The significance of pre-stress advection and internal buoyancy in the flat-Earth formulation, in: Dynamics of the Ice Age Earth – A Modern Perspective, Trans Tech Publications LTD, 24, 105–122, ISBN 978-0-87849-810-9, 1998. a
Purcell, A., Tregoning, P., and Dehecq, A.: An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model, J. Geophys. Res.-Sol. Ea., 121, 3939–3950, https://doi.org/10.1002/2015JB012742, 2016. a
Quiquet, A., Dumas, C., Ritz, C., Peyaud, V., and Roche, D. M.: The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet, Geosci. Model Dev., 11, 5003–5025, https://doi.org/10.5194/gmd-11-5003-2018, 2018. a
Rackauckas, C. and Nie, Q.: DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia, J. Open Res. Softw., 5, 15, https://doi.org/10.5334/jors.151, 2017. a
Robinson, A., Alvarez-Solas, J., Montoya, M., Goelzer, H., Greve, R., and Ritz, C.: Description and validation of the ice-sheet model Yelmo (version 1.0), Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020, 2020. a, b, c
Rückamp, M., Greve, R., and Humbert, A.: Comparative simulations of the evolution of the Greenland ice sheet under simplified Paris Agreement scenarios with the models SICOPOLIS and ISSM, Polar Sci., 21, 14–25, https://doi.org/10.1016/j.polar.2018.12.003, 2019. a
Sasgen, I., Martín-Español, A., Horvath, A., Klemann, V., Petrie, E. J., Wouters, B., Horwath, M., Pail, R., Bamber, J. L., Clarke, P. J., Konrad, H., Wilson, T., and Drinkwater, M. R.: Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA), Earth Syst. Sci. Data, 10, 493–523, https://doi.org/10.5194/essd-10-493-2018, 2018. a
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020. a
Spada, G. and Melini, D.: SELEN4 (SELEN version 4.0): a Fortran program for solving the gravitationally and topographically self-consistent sea-level equation in glacial isostatic adjustment modeling, Geosci. Model Dev., 12, 5055–5075, https://doi.org/10.5194/gmd-12-5055-2019, 2019. a, b, c, d
Spada, G., Barletta, V. R., Klemann, V., Riva, R. E., Martinec, Z., Gasperini, P., Lund, B., Wolf, D., Vermeersen, L. L. A., and King, M. A.: A benchmark study for glacial isostatic adjustment codes: A GIA benchmark study, Geophys. J. Int., 185, 106–132, https://doi.org/10.1111/j.1365-246X.2011.04952.x, 2011. a, b, c, d, e, f, g, h, i
Swierczek-Jereczek, J.: JanJereczek/FastIsostasy.jl: v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.11277347, 2024a. a
Swierczek-Jereczek, J.: JanJereczek/isostasy_data: Version 0.2 (v0.2.0). Zenodo [data set], https://doi.org/10.5281/zenodo.11175418, 2024b. a
Swierczek-Jereczek, J.: Simulating the GIA response of Antarctica during the last glacial cycle with FastIsosatsy, GitHub [video], https://github.com/JanJereczek/FastIsostasy.j, last access: 4 July 2024c. a
van Calcar, C. J., van de Wal, R. S. W., Blank, B., de Boer, B., and van der Wal, W.: Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle, Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, 2023. a, b, c
van der Wal, W., Wu, P., Wang, H., and Sideris, M. G.: Sea levels and uplift rate from composite rheology in glacial isostatic adjustment modeling, J. Geodynam., 50, 38–48, https://doi.org/10.1016/j.jog.2010.01.006, 2010. a
van der Wal, W., Whitehouse, P. L., and Schrama, E. J. O.: Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica, Earth Planet. Sc. Lett., 414, 134–143, https://doi.org/10.1016/j.epsl.2015.01.001, 2015. a, b
Weerdesteijn, M. F. M., Naliboff, J. B., Conrad, C. P., Reusen, J. M., Steffen, R., Heister, T., and Zhang, J.: Modeling Viscoelastic Solid Earth Deformation Due To Ice Age and Contemporary Glacial Mass Changes in ASPECT, Geochem. Geophy. Geosy., 24, e2022GC010813, https://doi.org/10.1029/2022GC010813, 2023. a, b, c, d, e
Whitehouse, P. L., Gomez, N., King, M. A., and Wiens, D. A.: Solid Earth change and the evolution of the Antarctic Ice Sheet, Nat.e Commun., 10, 503, https://doi.org/10.1038/s41467-018-08068-y, 2019. a, b, c, d
Wiens, D. A., Shen, W., and Lloyd, A. J.: The seismic structure of the Antarctic upper mantle, Geological Society, London, Memoirs, 56, M56–2020–18, https://doi.org/10.1144/M56-2020-18, 2022. a
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011. a
Wu, P.: Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress, Geophys. J. Int., 158, 401–408, https://doi.org/10.1111/j.1365-246X.2004.02338.x, 2004. a
Wu, P. and Wang, H.: Effects of mode coupling and location of rotational axis on glacial induced rotational deformation in a laterally heterogeneous viscoelastic earth, Geophys. J. Int., 167, 853–859, https://doi.org/10.1111/j.1365-246X.2006.03103.x, 2006. a
Zhong, S., Kang, K., A, G., and Qin, C.: CitcomSVE: A Three‐Dimensional Finite Element Software Package for Modeling Planetary Mantle’s Viscoelastic Deformation in Response to Surface and Tidal Loads, Geochem. Geophy. Geosy., 23, e2022GC010359, https://doi.org/10.1029/2022GC010359, 2022. a, b, c, d, e, f, g
Short summary
Ice sheets present a thickness of a few kilometres, leading to a vertical deformation of the crust of up to a kilometre. This process depends on properties of the solid Earth, which can be regionally very different. We propose a model that accounts for this often-ignored heterogeneity and run 100 000 simulation years in minutes. Thus, the evolution of ice sheets is modeled with better accuracy, which is critical for a good mitigation of climate change and, in particular, sea-level rise.
Ice sheets present a thickness of a few kilometres, leading to a vertical deformation of the...