Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5263-2024
https://doi.org/10.5194/gmd-17-5263-2024
Development and technical paper
 | 
10 Jul 2024
Development and technical paper |  | 10 Jul 2024

FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth

Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica

Related authors

Hysteresis of the Greenland ice sheet from the Last Glacial Maximum to the future
Lucía Gutiérrez-González, Alexander Robinson, Jorge Alvarez-Solas, Ilaria Tabone, Jan Swierczek-Jereczek, Daniel Moreno-Parada, and Marisa Montoya
EGUsphere, https://doi.org/10.5194/egusphere-2025-2616,https://doi.org/10.5194/egusphere-2025-2616, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A simple physical model for glacial cycles
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Alexander Robinson, and Marisa Montoya
Earth Syst. Dynam., 16, 915–937, https://doi.org/10.5194/esd-16-915-2025,https://doi.org/10.5194/esd-16-915-2025, 2025
Short summary
Understanding the Mid-Pleistocene transition with a simple physical model
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Alexander Robinson, and Marisa Montoya
EGUsphere, https://doi.org/10.5194/egusphere-2025-2467,https://doi.org/10.5194/egusphere-2025-2467, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary

Related subject area

Solid Earth
A Bayesian framework for inferring regional and global change from stratigraphic proxy records (StratMC v1.0)
Stacey Edmonsond and Blake Dyer
Geosci. Model Dev., 18, 4759–4788, https://doi.org/10.5194/gmd-18-4759-2025,https://doi.org/10.5194/gmd-18-4759-2025, 2025
Short summary
SubsurfaceBreaks v. 1.0: a supervised detection of fault-related structures on triangulated models of subsurface homoclinal interfaces
Michał P. Michalak, Christian Gerhards, and Peter Menzel
Geosci. Model Dev., 18, 4469–4481, https://doi.org/10.5194/gmd-18-4469-2025,https://doi.org/10.5194/gmd-18-4469-2025, 2025
Short summary
Empirical modeling of tropospheric delays with uncertainty
Jungang Wang, Junping Chen, and Yize Zhang
Geosci. Model Dev., 18, 1487–1504, https://doi.org/10.5194/gmd-18-1487-2025,https://doi.org/10.5194/gmd-18-1487-2025, 2025
Short summary
CitcomSVE-3.0: a three-dimensional finite-element software package for modeling load-induced deformation and glacial isostatic adjustment for an Earth with a viscoelastic and compressible mantle
Tao Yuan, Shijie Zhong, and Geruo A
Geosci. Model Dev., 18, 1445–1461, https://doi.org/10.5194/gmd-18-1445-2025,https://doi.org/10.5194/gmd-18-1445-2025, 2025
Short summary
NSOAS24: a new global marine gravity model derived from multi-satellite sea surface slopes
Shengjun Zhang, Xu Chen, Runsheng Zhou, and Yongjun Jia
Geosci. Model Dev., 18, 1221–1239, https://doi.org/10.5194/gmd-18-1221-2025,https://doi.org/10.5194/gmd-18-1221-2025, 2025
Short summary

Cited articles

A, G., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, https://doi.org/10.1093/gji/ggs030, 2013. a
Accardo, N. J., Wiens, D. A., Hernandez, S., Aster, R. C., Nyblade, A., Huerta, A., Anandakrishnan, S., Wilson, T., Heeszel, D. S., and Dalziel, I. W. D.: Upper mantle seismic anisotropy beneath the West Antarctic Rift System and surrounding region from shear wave splitting analysis, Geophys. J. Int., 198, 414–429, https://doi.org/10.1093/gji/ggu117, 2014. a
Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., and Nowicki, S.: Future Antarctic bed topography and its implications for ice sheet dynamics, Solid Earth, 5, 569–584, https://doi.org/10.5194/se-5-569-2014, 2014. a
Adhikari, S., Ivins, E. R., Larour, E., Caron, L., and Seroussi, H.: A kinematic formalism for tracking ice–ocean mass exchange on the Earth's surface and estimating sea-level change, The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020, 2020. a
Albrecht, T., Bagge, M., and Klemann, V.: Feedback mechanisms controlling Antarctic glacial cycle dynamics simulated with a coupled ice sheet–solid Earth model, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2990, 2023. a, b, c, d, e, f, g
Download
Short summary
Ice sheets present a thickness of a few kilometres, leading to a vertical deformation of the crust of up to a kilometre. This process depends on properties of the solid Earth, which can be regionally very different. We propose a model that accounts for this often-ignored heterogeneity and run 100 000 simulation years in minutes. Thus, the evolution of ice sheets is modeled with better accuracy, which is critical for a good mitigation of climate change and, in particular, sea-level rise.
Share