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Abstract. The vast majority of ice-sheet modelling studies
rely on simplified representations of the glacial isostatic ad-
justment (GIA), which, among other limitations, do not ac-
count for lateral variations in the lithospheric thickness and
upper-mantle viscosity. In studies of the last glacial cycle us-
ing 3D GIA models, this has however been shown to have
major impacts on the dynamics of marine-based sectors of
Antarctica, which are likely to be the greatest contributors
to sea-level rise in the coming centuries. This gap in com-
prehensiveness is explained by the fact that 3D GIA models
are computationally expensive, rarely open-source and re-
quire a complex coupling scheme. To close this gap between
“best” and “tractable” GIA models, we propose FastIsostasy
here, a regional GIA model capturing lateral variations in the
lithospheric thickness and mantle viscosity. By means of fast
Fourier transforms and a hybrid collocation scheme to solve
its underlying partial differential equation, FastIsostasy can
simulate 100 000 years of high-resolution bedrock displace-
ment in only minutes of single-CPU computation, includ-
ing the changes in sea-surface height due to mass redistri-
bution. Despite its 2D grid, FastIsostasy parameterises the
depth-dependent viscosity and therefore represents the depth
dimension to a certain extent. FastIsostasy is benchmarked
here against analytical, as well as 1D and 3D numerical so-
lutions, and shows good agreement with them. For a sim-
ulation of the last glacial cycle, its mean and maximal error
over time and space respectively yield less than 5 % and 16 %

compared to a 3D GIA model over the regional solution do-
main. FastIsostasy is open-source, is documented with many
examples and provides a straightforward interface for cou-
pling to an ice-sheet model. The model is benchmarked here
based on its implementation in Julia, while a Fortran version
is also provided to allow for compatibility with most exist-
ing ice-sheet models. The Julia version provides additional
features, including a vast library of adaptive time-stepping
methods and GPU support.

1 Introduction

1.1 GIA is an important feedback on ice-sheet
dynamics

Glacial isostatic adjustment (GIA) denotes the crustal dis-
placement that results from changes in the ice, liquid-water
and sediment columns, as well as the associated changes in
Earth’s gravity and rotation axis (Mitrovica et al., 2001), ul-
timately altering the sea level (Farrell and Clark, 1976). In
the present work, we focus on the deformation and gravi-
tational effects. For ice sheets, the former is a net negative
feedback on mass balance through the lapse rate of the tropo-
sphere, and both imply additional negative feedbacks on the
dynamics of marine-based regions, where enhanced melting
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leads not only to a grounding-line retreat but also to a re-
gional bedrock uplift and a decrease in the sea-surface height
(SSH), due to the reduced load applied upon the solid Earth
and the lesser gravitational pull of the ice sheet on the oceans
(Gomez et al., 2010, 2012, 2015, 2018; Whitehouse et al.,
2019). As depicted in Fig. 1, these effects combine in a de-
crease in relative sea level (RSL), which is defined as the
difference between the SSH and the bedrock elevation. Com-
pared to the retreated state (Fig. 1b), this decrease ultimately
leads to a readvance of the grounding line (Fig. 1c and d),
therefore conditioning the marine ice-sheet instability along
with the buttressing effect from ice shelves (Gudmundsson
et al., 2012). It was shown that the representation of the de-
formation and gravitational feedbacks can stabilise ground-
ing lines on retrograde slopes (Gomez et al., 2010, 2012) and
that a rapid bedrock uplift can prevent the collapse of marine-
terminating glaciers that are transiently forced (Konrad et al.,
2015, 2016). Furthermore, an uplifting bedrock might lead
isolated bathymetric peaks to connect with the ice sheet, cre-
ating so-called pinning points (Adhikari et al., 2014) that fur-
ther contribute to the stability of a marine ice sheet. Although
the negative feedbacks are illustrated here for ice-sheet re-
treat, they conversely apply to ice-sheet growth.

In addition to these effects, recent work has shown that
the ice-sheet evolution might be significantly affected by the
forebulge dynamic on longer timescales, for which viscous
effects become important. This process denotes the region of
comparatively small bedrock uplift (subsidence) surrounding
a region of pronounced bedrock subsidence (uplift), which
results from a positive (negative) surface load anomaly. Al-
brecht et al. (2023) suggest that the forebulge formation rep-
resents a positive feedback on ice-sheet growth through a de-
crease in the RSL close to the ice-sheet margin, and Kreuzer
et al. (2023) show that a subsiding forebulge can increase
sub-shelf melting through the formation of oceanic gateways
that ease the intrusion of warm circumpolar deep water.

1.2 Laterally variable structure of the solid Earth
modulates GIA

For a given load applied to the solid Earth, the timescale of
bedrock deformation is determined by the horizontal extent
of the load and the mantle viscosity. The amplitude and the
pattern of deformation are in turn determined by the magni-
tude of the load, the mantle density and the (elastic) litho-
spheric thickness. These properties are close to being later-
ally homogeneous in many regions of the solid Earth, which
motivated the development of 1D GIA models, where prop-
erties are assumed to depend only on the depth coordinate
(Dziewonski and Anderson, 1981). However, some regions
are an exception to this and present significant lateral vari-
ability of solid-Earth properties (further simply referred to as
LV), even on relatively short spatial scales. Since Antarctica
displays a strong dichotomy between a moderately rifting
system in the west and an old craton in the east (Behrendt,

1999), it represents a prototypical example of LV. As de-
picted in Fig. 2, the lithospheric thickness and upper-mantle
viscosity are respectively as little as 50 km and 1018 Pa s in
the west and as large as 250 km and 1023 Pa s in the east
(Barletta et al., 2018; Heeszel et al., 2016; Ivins et al., 2022;
Lloyd et al., 2015, 2020; Morelli and Danesi, 2004; Nield
et al., 2014; Whitehouse et al., 2019; Wiens et al., 2022).

For simulations of the Antarctic Ice Sheet (AIS) on the
timescale of glacial cycles, accounting for LV by using 3D
GIA models has shown great differences compared to 1D
GIA models (Albrecht et al., 2023; Gomez et al., 2018;
Van Calcar et al., 2023), leading to discrepancies reaching up
to 700 km for the grounding-line position, more than 1 km for
the ice thickness and several metres for the sea-level equiv-
alent volume of the AIS. Although these impacts are large,
they are to be expected, given that the AIS is characterised
by large marine-based regions. The East Antarctic basins
and the West Antarctic Ice Sheet (WAIS) respectively rep-
resent sea-level contributions from ice grounded below sea
level of about 19.2 and 3.4 m at the present day (Fretwell
et al., 2013), and their evolution strongly depends on the rep-
resentation of the GIA feedbacks depicted in Fig. 1. While
both regions are likely to present abrupt transitions to ice-free
conditions under warming scenarios, the WAIS is thought to
have particularly low resilience, displaying a bifurcation at
a mean global warming of as little as 2 °C with respect to
the pre-industrial era (Garbe et al., 2020). In the context of
anthropogenic warming, this is very likely to result in an un-
precedented rate of sea-level rise, challenging the adaptation
of coastal livelihoods that represent a large number of human
societies (Kulp and Strauss, 2019).

For these reasons, comprehensive projections of sea-level
rise require the representation of the Antarctic LV in cou-
pled ice-sheet–GIA settings. Furthermore, the mantle viscos-
ity is uncertain and involves discrepancies of up to 2 orders of
magnitude at some locations in the upper mantle (i.e. above
∼ 670 km depth), depending on how viscosities are inferred
from sparse seismic data (Ivins et al., 2022). Such uncertain-
ties thus need to be propagated to the solution – typically by
an ensemble of simulations. This was addressed by Coulon
et al. (2021) by relying on a computationally efficient 2D
GIA model that allows for laterally variable relaxation times
of the deformational response. However, this is not a stan-
dard practice since only a few ice-sheet models are coupled
to a laterally variable solid Earth, typically represented by
using a 3D GIA model (Albrecht et al., 2023; Gomez et al.,
2018; Van Calcar et al., 2023). This is largely due to the fact
that 3D GIA models are computationally too expensive for
large-ensemble simulations and represent a level of complex-
ity that may be much higher than what is required to answer
most of the ongoing research questions related to the evolu-
tion of ice sheets. With the exception of CitcomSVE (Zhong
et al., 2022), 3D GIA models do not offer open-source im-
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Figure 1. Idealised representation, adapted from Whitehouse et al. (2019), of the negative GIA feedbacks on marine-terminating glaciers
with retrograde bedrock (e.g. Gomez et al., 2010). We perturb (a) the initial configuration of the ice sheet by (b) enhanced sub-shelf melting,
leading to grounding-line retreat and therefore larger thickness and increased outflow at the grounding line. (c) The loss of ice leads to an
instantaneous (δt � 1 year) decrease in the RSL, which can be decomposed into an elastic uplift of the bedrock and a decrease in the SSH
due to the reduction in the gravitational pull on the ocean, leading to a readvance of the grounding line. (d) The elastic uplift is followed by
a larger, viscous uplift which further readvances the grounding line and compensates the mass anomaly generated by the ice loss, therefore
restoring the SSH close to its original value. The dashed lines used for the ice and the bedrock contour represent their original position (a).

plementations at this time,1 and some of them even require a
commercial licence (e.g. Huang et al., 2023). These obstacles
have prevented most ice-sheet modelling studies from using
3D GIA models.

1.3 FastIsostasy: reducing the misrepresentation of LV
at low computational cost

The vast majority of ice-sheet simulations rely on greatly
simplified GIA models without accounting for the paramet-
ric uncertainties of the solid Earth, thus potentially introduc-
ing biases in sea-level projections (Gomez et al., 2015). This
also holds for the Ice Sheet Model Intercomparison Project
(ISMIP) (Seroussi et al., 2020), used as the physical basis
for the reports of the Intergovernmental Panel on Climate
Change (IPCC). In summary, the ice-sheet modelling com-
munity faces the somewhat paradoxical situation of being in-
creasingly aware of how important 3D GIA is without being

1Some of them can, however, be obtained upon request, such as
Seakon (Latychev et al., 2005).

able to represent it at a reasonable computational cost. The
work of Coulon et al. (2021) partly addresses this with a com-
putationally efficient 2D GIA model but is also characterised
by an important limitation: the viscous response is parame-
terised by a field of relaxation times. However, the response
timescale of the solid Earth depends not only on the viscosity
but also on the wavelength of the load as mentioned above.
For these reasons, deriving spatially coherent maps of the re-
laxation time and constraining them within realistic ranges is
not straightforward, as pointed out by Coulon et al. (2021).

To tackle these issues, we propose FastIsostasy here, a re-
gional 2D GIA model inspired by first principles and spe-
cially tailored for the needs of ice-sheet modellers. FastI-
sostasy (1) accounts for LV; (2) parameterises the depth de-
pendence of the mantle viscosity; (3) captures the depen-
dence of the response timescale on the mantle viscosity and
the spatial scale of the load; (4) approximates the regional
gravitation response and sea-level evolution; (5) is computa-
tionally inexpensive; (6) is extensively tested; and (7) offers
a simple, open-source and extensively documented interface
for a simplified coupling to an ice-sheet model. To illustrate
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Figure 2. (a–c) Upper-mantle viscosity from Whitehouse et al. (2019) and Ivins et al. (2022) at 100, 200 and 300 km depth respectively. If
the lithospheric thickness (Pan et al., 2022), depicted in (d), is larger than the layer depth, a grey shading is applied. The black and dark-grey
contour lines respectively indicate the present-day ice-sheet and grounded-ice margins (Morlighem et al., 2020).

its capabilities, Antarctica is used as a leitmotif of the present
work since it displays (1) a high LV and depth dependence of
solid-Earth properties as depicted in Fig. 2; (2) a high sensi-
tivity to GIA due to the vast marine sectors of the AIS; (3) a
large impact on the future of human societies due to pos-
sible rapid sea-level rise; and (4) large uncertainties in the
solid-Earth parameters due, in part, to limited regional data
sets. Antarctica might therefore be “the toughest test” when
it comes to GIA modelling. Accordingly, the tools provided
here are equally applicable to any other region covered by a
past, present or future ice sheet.

1.4 FastIsostasy in the model hierarchy

The hierarchy of GIA models displays an important com-
plexity gap between the computationally cheap models,
which are largely used by the ice-sheet modelling commu-
nity, and the computationally expensive models, developed
by the GIA community. To give an impression of this, we
herein present a brief overview, summarised in Tables 1
and 2, of the GIA model classes that are available to date
and focus on the computation of the deformational response,
with references to open-source implementations that we are
aware of. The governing equations of the three first models
can be found in Appendix A.

1.4.1 ELRA

The elastic lithosphere–relaxed asthenosphere (ELRA;
Le Meur and Huybrechts, 1996) model conceptualises the
structure of the solid Earth as two layers stacked along the
depth dimension of a Cartesian coordinate system, obtained
by a regional projection of the spherical Earth. The elas-
tic lithosphere is parameterised by its constant thickness

T (x,y)= T and undergoes instantaneous compression un-
der the effect of a load. It is underlain by the asthenosphere,2

idealised as a viscous half-space parameterised by a con-
stant relaxation time τ(x,y)= τ . According to this, the verti-
cal displacement exponentially converges to the equilibrium
solution, which is computed by convolving the load with
a Green’s function. Parameterising the transient behaviour
with a relaxation time is however simplistic, since, in re-
ality, the response timescale of the solid Earth depends not
only on the viscosity but also on the wavelength of the load,
as mentioned previously. Furthermore, ELRA does not rep-
resent the depth dependence of the mantle viscosity or any
LV. Due to its 2D regional domain, it ignores the gravita-
tional and rotational feedbacks on the sea level, as well as the
pre-stress and self-gravitation (Purcell, 1998) – the latter be-
ing partly cancelled by the lack of sphericity (Amelung and
Wolf, 1994). Konrad et al. (2014) demonstrated that ELRA
displays important transient differences to a 1D GIA model
as well as discrepancies in the representation of the periph-
eral forebulge. Despite these numerous flaws, ELRA – or
even simplified versions of it – remains a widespread choice
among ice-sheet modellers (DeConto and Pollard, 2016; Lip-
scomb et al., 2019; Pattyn, 2017; Quiquet et al., 2018; Robin-
son et al., 2020; Rückamp et al., 2019), as it mimics the vis-
coelastic behaviour of the solid Earth with little implementa-
tion effort and at low computational cost. Its simplicity has
led to a large number of implementations within open-source
ice-sheet models (e.g. Lipscomb et al., 2019; Robinson et al.,
2020), but, to our knowledge, no modular implementation is

2In cratonic regions with a thick lithosphere (e.g. East Antarc-
tica) there might be no asthenosphere. This does not prevent the
use of ELRA, which is suited, more generally, to approximate the
sublithospheric mantle.
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available to date. Ice-sheet modellers have therefore repeat-
edly spent time implementing ELRA, possibly with subopti-
mal computational performance, as it does not represent the
primary focus of their work.

1.4.2 ELVA

This modelling approach was proposed by Cathles (1975),
applied to ice-sheet modelling for the first time by Lingle
and Clark (1985), and efficiently implemented by Bueler
et al. (2007) through a Fourier collocation method (FCM).
Although this model is sometimes named after the authors of
the aforementioned work, we try to provide a unifying termi-
nology here and therefore call it elastic lithosphere–viscous
mantle (ELVA). ELVA resembles ELRA in its structure but
is parameterised by the spatially homogeneous upper-mantle
viscosity η(x,y)= η. It thus avoids any conversion from vis-
cosity to relaxation time and allows for the mechanical re-
sponse to depend on the wavelength of the load (Bueler et al.,
2007). Furthermore, it permits embedding more of the ra-
dial structure of the mantle viscosity by introducing a viscous
channel between the elastic plate and the viscous half-space.3

However, it does not address any other limitation of ELRA.
It is worth mentioning that PISM (Winkelmann et al., 2011)
provides an open-source implementation of ELVA, which is
however embedded within a larger code base. This lack of
modularity is addressed by giapy (Kachuck, 2017), a Python
implementation of ELVA that might be more accessible than
code traditionally written in Fortran or C++. ELVA was
used, for example, by Kachuck et al. (2020) and Book et al.
(2022) to study the stabilising potential of rapid bedrock up-
lift on the WAIS grounding-line retreat.

1.4.3 LV-ELRA

The laterally variable ELRA (LV-ELRA) proposed by
Coulon et al. (2021) is a generalisation of ELRA to include
laterally variable upper-mantle relaxation time τ(x,y) and
lithospheric thickness T (x,y). The equilibrium displacement
is obtained by solving equations derived from thin-plate the-
ory (Ventsel and Krauthammer, 2001), which requires the
use of finite-difference methods (FDMs) and is computation-
ally more expensive than ELRA, since a large system of lin-
ear equations needs to be solved. To obtain τ(x,y), Coulon
et al. (2021) apply a Gaussian smoothing on a binary field,
with τ(x,y)= τ1 in East Antarctica and τ(x,y)= τ2 in the
rest of the domain. Since LV-ELRA does not include a lat-
eral coupling between the transient behaviour of neighbour-
ing cells, this smoothing ensures a certain spatial coherence
when relaxing the displacement field to the equilibrium solu-
tion; i.e. neighbouring cells have similar timescales. In ad-
dition to the limitations mentioned in Sect. 1.3, this cou-
pling prevents the representation of very localised features,

3A viscous channel has a finite thickness, unlike a viscous half-
space, which has a infinite thickness.

depicted in Fig. 2 and inferred in many studies (e.g. Barletta
et al., 2018; Heeszel et al., 2016; Nield et al., 2014). In the
rest of the paper, we will refer to these limitations as the ones
resulting from a relaxed rheology.

Although computing the changes in SSH resulting from
changes of Earth’s gravity field requires, a priori, a global
domain, it can also be approximated on a regional one. This
was done by Coulon et al. (2021) and combined with LV-
ELRA, resulting in the so-called elementary GIA model. This
approach represents one of the most comprehensive regional
GIA models developed to date and a valuable improvement
for regional modelling, as it bypasses the computational ex-
pense of more complex models. The open-source ice-sheet
model Kori includes the effort of Coulon et al. (2021), how-
ever not in a modular way that is directly usable to other ice-
sheet modellers.

1.4.4 Global 1D GIA models

Global 1D GIA models capture the radial structure of the
solid Earth (down to the core–mantle boundary) but none of
its lateral variability. They compute the gravitational field as
well as the vertical and horizontal deformation by solving the
underlying partial differential equations (PDEs) after spher-
ical harmonic expansion of the dependent variables. The 1D
GIA models typically represent the spatial heterogeneity of
the SSH, the migration of shorelines and the rotational feed-
back (Kendall et al., 2005; Mitrovica and Milne, 2003; Spada
and Melini, 2019). Most of them were cross-validated by
Spada et al. (2011) and Martinec et al. (2018), showing great
agreement while presenting intermediate computational cost.
However, they are incapable of rendering any LV (e.g. Kle-
mann et al., 2008). Spada and Melini (2019) proposed an
open-source implementation of 1D GIA, which remains an
exception in the field.

1.4.5 Regional 3D GIA models

Based on finite-element methods (FEMs), Nield et al. (2018)
and Weerdesteijn et al. (2023) have proposed regional mod-
els to compute the solid-Earth deformation in the presence
of LV. Unlike ELRA, ELVA and LV-ELRA, these regional
GIA models resolve the depth dimension (down to the core–
mantle boundary) and allow for grid refinement in regions
where a higher resolution is needed. In particular, the work
of Weerdesteijn et al. (2023) provides an open-source im-
plementation that is compatible with heavily parallel hard-
ware by extending ASPECT (Advanced Solver for Prob-
lems in Earth’s ConvecTion), a model originally developed
to solve mantle convection problems. Despite this, ASPECT
requires about an hour to compute a few hundred years of
high-resolution bedrock deformation on 256 CPUs. This rep-
resents a computational cost that is too high for most ongoing
ice-sheet modelling studies, while ignoring the gravitational
and rotational effects of GIA.
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Table 1. Comparison of the GIA models with 2D grids and low computational cost. L ∈ N here denotes an arbitrary number of layers.
Well-represented phenomena are represented by “X”, and neglected ones are represented by “×”. Phenomena that are represented by a large
amount of simplification are denoted by “'”. For instance, LV-ELRA is here considered to only partially represent LV, since it is subject
to the limitations of a relaxed rheology. Another example of partially represented phenomenon is the change in sea level, which typically
requires a global domain but can be reasonably approximated regionally as done in the elementary GIA model and FastIsostasy (cf. Sect. 2.4).

ELRA ELVA Elementary GIA model
(LV-ELRA)

FastIsostasy
(LV-ELVA)

Grid 2D 2D 2D 2D
Rheology Relaxed Maxwell Relaxed Maxwell
LV × × ' X
Radial structure 2 layers (lumped) 3 layers (lumped) 2 layers (lumped) L layers (lumped)
Domain Regional Regional Regional Regional
Distortion accounted for × × × X
Sea-level treatment × × ' '

Variable ocean surface × × × '

Rotational feedback × × × ×

Numerical scheme Green’s function FCM FDM FDM–FCM
Computational cost Low Low Low/intermediate Low
Exemplary publications Konrad et al. (2014),

Le Meur and Huy-
brechts (1996)

Bueler et al. (2007),
Kachuck et al. (2020),
Book et al. (2022)

Coulon et al. (2021) This study

1.4.6 Global 3D GIA models

The 3D GIA models account for all the processes repre-
sented in 1D GIA models and are, in addition, capable of
fully capturing the heterogeneity of solid-Earth properties.
This also results in simulations that are more complicated
to set up, since the user needs to provide fields of litho-
spheric thickness and mantle viscosity. Unlike 1D GIA mod-
els, 3D ones have not been systematically benchmarked but
can be considered to be the best technology available for
cases like Antarctica. In these models, the computation of the
deformational response either relies on spherical harmonics
(e.g. Bagge et al., 2021), FEM (e.g. A et al., 2013; Huang
et al., 2023; Martinec, 2000; Sasgen et al., 2018; van der Wal
et al., 2015; Wu, 2004; Zhong et al., 2022), the finite-volume
method (FVM; Latychev et al., 2005; Gomez et al., 2018) or
perturbation theory (e.g. Wu and Wang, 2006). Simulations
on glacial timescales typically require at least several hours
and up to few days (Albrecht et al., 2023; Pan et al., 2022;
Zhong et al., 2022) of computation, even with heavily paral-
lelised code. This is particularly problematic for propagating
parametric uncertainties of the solid Earth on long simula-
tions, since the limit of computational resources is typically
reached with only one or a few ensemble members. As men-
tioned above, Zhong et al. (2022) proposed the first open-
source implementation of a 3D GIA code.

1.4.7 FastIsostasy

The summary above points out a gap between the elemen-
tary GIA model (Coulon et al., 2021) and regional 3D GIA
models (Nield et al., 2018; Weerdesteijn et al., 2023): the

former is computationally cheap but suffers the limitation of
a relaxed rheology, whereas the latter accurately represent
the viscoelastic response of the solid Earth but come with a
computational cost that makes them impractical for most ice-
sheet modelling studies. FastIsostasy fills this gap by relying
on LV-ELVA, a laterally variable generalisation of ELVA,
coupled to a regional sea-level model (ReSeLeM), both of
which are introduced in Sect. 2, along with a discussion of
the underlying limitations. In Sect. 3, we discuss the practical
features of its Julia implementation, such as the adaptive time
stepping used for integration and GPU support. In Sect. 4, we
subsequently benchmark FastIsostasy against analytical, as
well as 1D and 3D numerical, solutions. Finally, we discuss
the results as well as possible future improvements.

Remarks on open-source code. Thanks to recent work,
the GIA model classes listed above now present at least
some open-source code, which has typically become avail-
able much later than the first equivalent piece of propri-
etary code. For instance, 1D and 3D GIA models have al-
ready existed for 40 and 20 years respectively, but their
first open-source implementations were only published much
later, in respectively Spada and Melini (2019) and Zhong
et al. (2022). We specifically refer here to source code that
is licensed and can be downloaded and used without request.
However, all open-source code mentioned above lacks tools
from modern software development, including (1) dynam-
ically built documentations with code examples; (2) auto-
mated test suites; and (3) a transparent development, which
can be eased, for instance, by the use of GitHub issues and
pull requests. Although these aspects are of a technical na-
ture, we believe that they can make GIA models more user-
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Table 2. Comparison of the GIA models with a 3D grid and higher computational cost. L ∈ N here denotes an arbitrary number of layers. We
focus on Maxwell rheology here, since it is most commonly used in the literature. However, these models can also be adapted to represent
other rheologies.

Global 1D Regional 3D Global 3D

Grid 3D 3D 3D
Rheology Maxwell Maxwell Maxwell
LV × X X
Radial structure L layers (resolved) L layers (resolved) L layers (resolved)
Domain Global Regional Global
Distortion accounted for X × X
Sea level X × X
Variable ocean surface X × X
Rotational feedback X × X
Numerical scheme Spherical harmonics FEM Diverse
Computational cost Intermediate Intermediate/high High
Exemplary publications Spada and Melini

(2019)
Nield et al. (2018),
Weerdesteijn et al.
(2023)

Latychev et al. (2005),
Zhong et al. (2022)

friendly and their development more transparent, participa-
tive and reliable. This, in turn, reduces barriers in future re-
search, and we have therefore applied these concepts to FastI-
sostasy.

Since LV-ELVA is a generalisation of ELVA, the latter can
be used in FastIsostasy by simply providing it with homoge-
neous parameter fields. Additionally, we implemented ELRA
in an efficient way, further described in Appendix A. Thus,
both of these simpler models now present a modular, opti-
mised and documented implementation, distributed under the
GNU General Public License v3.0.

2 Model description

2.1 Preliminary considerations

As depicted in Fig. 3, FastIsostasy assumes a rectangular do-
main �⊂ R2, obtained from a projection of the spherical
Earth onto a Cartesian plane with dimensions 2Wx and 2Wy ,
in the directions of the lateral coordinates x and y respec-
tively. We introduce the uniform spatial discretisation step
hx = hy = h such that the domain is subdivided intoNx×Ny
cells, with Nx,Ny ∈ N. We define all variables that are not
specified as scalars (cf. Table 3) to be smooth fields, such as,
for instance, the vertical load σ zz(x,y, t) : R3

→ R. For con-
venience, we will omit the space and time dependence from
now on. The discretised equivalent of smooth fields is de-
noted by bold symbols, e.g. σ zz ∈ RNx×Ny , with their entries
denoted by the index notation σ zzi,j , with i ∈ {1,2, . . .,Nx},
j ∈ {1,2, . . .,Ny}. The vertical load field is expressed as

σ zz =−g
(
ρice1H ice

+ ρsw1H sw
+ ρsed1H sed

)
, (1)

with g as the mean gravitational acceleration at Earth’s sur-
face and ρice, ρsw and ρsed as the mean densities of ice,

seawater and sediment respectively.4 The height anomalies
1H ice, 1H sw and 1H sed of the corresponding columns are
defined with respect to a reference state. On this domain, the
first and second spatial derivatives of an arbitrary fieldM can
be computed with central differences:

DxMi,j =
Mi+1,j −Mi−1,j

2hKi,j
,

DyMi,j =
Mi,j+1−Mi,j−1

2hKi,j
,

DxxMi,j =
Mi+1,j − 2Mi,j +Mi−1,j

h2 ·K2
i,j

,

DyyMi,j =
Mi,j+1− 2Mi,j +Mi,j−1

h2 ·K2
i,j

,

DxyMi,j =Dy
(
DxMi,j

)
,

(2)

withK as the distortion factor of the chosen projection.5 Fur-
thermore, the pseudo-differential operator |∇| of an arbitrary
matrix M is adapted from Bueler et al. (2007) to suit distorted
grids:

|∇|M= F−1 (κ �F (M))�K, (3)

with � as the element-wise product, � as the element-wise
division, F as the Fourier transform, F−1 as its inverse and
κ as the coefficient matrix derived in Bueler et al. (2007).
Models that do not account for distortion underestimate the
length and area of cells away from the reference latitude and
therefore require a domain with restricted spatial extent, a
limitation that is overcome here.

4FastIsostasy’s interface already accepts external forcing from
sediments, but they will be ignored for the present work.

5The distortion K does not appear in σ zz since it cancels out
when computing the volume-to-area ratio.
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Table 3. Numerical values of constants in FastIsostasy, from left to right: Earth’s mass, Earth’s radius, mean gravitational acceleration
at Earth’s surface, density of ice, sea water, lithosphere and mantle, elastic modulus and Poisson ratio of the lithosphere (compressible),
and present-day ocean surface area. Values for the solid Earth are largely derived from the Preliminary Reference Earth Model (PREM;
Dziewonski and Anderson, 1981) and the ocean surface from Cogley (2012).

ME (kg) rE (km) g (m s−2) ρice (kg m−3) ρsw ρl ρm E0 (Pa) ν0 (1) Apd (m2)

5.972× 1024 6371 9.8 910 1028 3200 3400 6.6× 1010 0.28 3.625× 1014

Figure 3. Schematic representation of a typical FastIsostasy do-
main.

2.2 Lumping the depth dimension

As depicted in Fig. 3, the vertical structure of the solid Earth
is modelled by a stack of layers along the vertical dimension
z. With the layer index l ∈ {0,1, . . .,L−1,L} going from top
to bottom, the layers are the following:

– l = 0 – an elastic plate with a laterally constant Young
modulus E0(x,y)= E0 and Poisson ratio ν0(x,y)= ν0
and laterally variable thickness T0(x,y);

– l ∈ {1,2, . . .,L−2,L−1} – an arbitrary number of vis-
cous channels, each with laterally constant Young mod-
ulus El(x,y)= El , Poisson ratio νl(x,y)= νl and lat-
erally variable viscosity ηl(x,y) (as depicted in Fig. 3,
the first of these layers has a laterally variable thick-
ness T1(x,y) that is complementary to T0(x,y) and
allows for all further layers to have a homogeneous
Tl(x,y)= Tl for l ≥ 2);

– l = L – a viscous half-space with a laterally con-
stant Young modulus EL(x,y)= EL, Poisson ratio
νL(x,y)= νL and viscosity ηL(x,y)= ηL.

Whereas l = 0 represents the lithosphere, all further layers
represent the remaining mantle. FastIsostasy lumps the latter
layers into a single layer by computing a so-called effective
viscosity for the whole mantle. The key to do so is provided
by Cathles (1975), where a three-layer model including an
elastic plate, a viscous channel and a viscous half-space is

converted into a two-layer model where the viscous channel
and the viscous half-space have been lumped into a single
half-space by introducing the following scaling factor:

R(κ, η̃,T )=

2 η̃ C S+
(
1− η̃2) T 2 κ2

+ η̃2 S2
+C2(

η̃+ η̃−1
)
C S +

(
η̃− η̃−1

)
T κ + S2+C2

, (4)

with T as the channel thickness, η̃ as the channel viscosity
divided by the half-space viscosity, C = cosh(T κ) and
S = sinh(T κ). The characteristic wavenumber κ = πλ−1 is
defined by choosing a characteristic wavelength λ for the
load. Hence, solving the three-layer case can be formulated
as solving the two-layer case with the half-space viscosity
scaled by R. We propose generalising this idea by perform-
ing an induction from the bottom to the top layers, i.e. with
decreasing l.

Initialisation. Layer l = L is a viscous half-space with
ηeff
l = ηL.

Induction step. Layer l+1 can be represented as a viscous
half-space with ηeff

l+1 and is overlain by a viscous channel
l. These can be converted in an equivalent half-space with
effective viscosity:

ηeff
l = R

(
κ,

ηl

ηeff
l+1
,Tl

)
· ηeff
l+1. (5)

Thus, ηeff
1 is the effective viscosity of the half-space rep-

resenting the compound of layers l ∈ {1,2, . . .,L− 1,L}. In
essence, this represents a nonlinear mean of the viscosity
over an arbitrary number of layers, which is only computed
at initialisation and can improve the parameterisation of the
depth dimension compared, for instance, to Bueler et al.
(2007). However, this approach presents important limita-
tions.

– Since the depth dimension is not resolved, the multi-
modal response of Earth to surface loading is not cap-
tured as accurately as in 1D and 3D GIA models. For
instance, the larger the load, the deeper the deformation
into the mantle and the more relevant the radial layering
of viscosity and density, which is not captured in FastI-
sostasy.
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– The deformational response is likely to be less accu-
rate for loads with dimensions that substantially differ
from the characteristic wavelength λ, used in Eq. (4)
to lump the depth dimension. We however emphasise
that, for a given ice sheet, λ can be chosen such that the
near field of deformation is represented well, which is
typically what is required in simulations coupled to ice-
sheet models. For all the computations presented here,
we choose λ to be the mean of {Wx,Wy}.

– Equation (4), as derived in Cathles (1975), applies to lat-
erally constant viscosities. In the present case, we how-
ever allow for the viscosity to be laterally variable and
apply this scaling for each column.

Finally, to account for compressibility and lateral varia-
tions in the shear modulus, a scaling α of the viscosity is
introduced and described in Appendix C. This yields the cor-
rected effective viscosity η, which brings the Maxwell time
of FastIsostasy close to that of a 3D GIA model:

η = α ηeff
1 . (6)

Although converting the 3D problem into a 2D one intro-
duces the limitations mentioned above, it also greatly reduces
the computational cost. In addition, the partial differential
equation (PDE) governing an elastic plate on a viscous half-
space can be transformed into an ordinary differential equa-
tion (ODE), as we describe in the next section.

2.3 LV-ELVA

We now assume that the aforementioned lumping of the lay-
ers has been performed and that the lithosphere and under-
lying mantle are represented by an elastic plate overlaying
a viscous half-space. Since the vertical extent of the plate is
typically 2 orders of magnitude smaller than its horizontal
one, it is considered to be thin. By assuming a Maxwell rhe-
ology, the total vertical displacement uel

+ u of the bedrock
resulting from stress σ zz can be decomposed in an elastic and
a viscous response respectively denoted by uel and u. As in
Bueler et al. (2007), the elastic response of the lithosphere is
computed by a convolution of the load σ zz with an appropri-
ate Green’s function 0el:

uel
= 0el

⊗
K2σ zz

g
. (7)

This represents the instantaneous compression of the litho-
sphere and accounts for the distortion resulting from the pro-
jection. In reality, this process takes place on the timescale
of days, but it can be considered to be instantaneous com-
pared to the long timescales of the viscous response and the
ice-sheet dynamics. To construct the elastic Green’s function,
a “Gutenberg–Bullen A” spherical Earth model is assumed,
and values from Farrell (1972, Table A3) are used, as done
by Bueler et al. (2007). This treatment of the elastic response

shows great agreement with a 3D GIA model, as shown in
Sect. 4.

When material from the solid Earth is displaced, a hydro-
static force counteracting the load arises. We define the pres-
sure field p as the sum of all these effects:

p = σ zz− g
(
ρl uel

+ ρm u
)
, (8)

with ρl and ρm as mean densities of the lithosphere and the
upper mantle. Since the displacement occurs in Earth’s out-
ermost layers, we assume g to be constant over these shal-
low depths. The 3D GIA models usually represent the elastic
lithosphere as a viscous layer with very high viscosity, and
the elastic displacement therefore also implies a hydrostatic
force. We argue that this is closer to reality and adapt this
point of view to the present context by including the elas-
tic displacement in Eq. (8), unlike Bueler et al. (2007) and
Coulon et al. (2021). The evolution of the viscous displace-
ment is therefore coupled to the elastic one and is governed
by

2η(x,y) |∇|
(
∂u

∂t

)
= F

F = p+
∂2Mxx

∂x2 + 2
∂2Mxy

∂x∂y
+
∂2Myy

∂y2 , (9)

with Mxx , Myy and Mxy as the flexural moments for a thin
plate (Coulon et al., 2021; Ventsel and Krauthammer, 2001):

Mxx =

T0/2∫
−T0/2

σ xxzdz=−D
(
∂2u

∂x2 + ν
∂2u

∂y2

)
, (10)

Myy =

T0/2∫
−T0/2

σ yyzdz=−D
(
∂2u

∂y2 + ν
∂2u

∂x2

)
, (11)

Mxy =

T0/2∫
−T0/2

σ xyzdz=−D(1− ν)
∂2u

∂x∂y
. (12)

In these equations, D = E0 T
3

0 (x,y) (12(1− ν2
0))
−1 is the

laterally variable lithospheric rigidity field. The PDE can
be understood as an ad hoc generalisation of ELVA (Bueler
et al., 2007; Cathles, 1975; Lingle and Clark, 1985) that is
inspired by LV-ELRA (Coulon et al., 2021) and further de-
scribed in Appendix A. Though we did not manage to for-
mally derive it by generalising the work of Cathles (1975) to
heterogeneous viscosities, Eq. (9) yields results that are very
close to those of a 3D GIA model, as shown in Sect. 4. F
on the right-hand side of the PDE can be evaluated by finite
differences, as defined in Eq. (2):

F= p+DxxMxx + 2DxyMxy +DyyMyy . (13)
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Subsequently, a Fourier collocation of this equation can be
achieved by making use of Eq. (3) and rearranging terms:

∂u
∂t
= F−1 (F(F�K� 2η) � (κ + ε)) , (14)

with ε� 1 as a regularisation term to avoid division by 0.
Thus, by using a hybrid FDM–FCM approach the PDE ex-
pressed in Eq. (9) is transformed into an ODE, which can
be solved with explicit integration methods. In particular, we
thus avoid solving a large system of linear equations, as nor-
mally done in FDM, FVM or FEM code. Note that in Bueler
et al. (2007) the closed form of a Crank–Nicolson (implicit)
scheme is derived, thus providing unconditional stability.
Due to the complexity of the right-hand side, finding such
a closed form for LV-ELVA is more challenging and goes be-
yond the scope of this work. We emphasise that the smaller
time steps resulting from explicit schemes might neverthe-
less be needed for (1) coupling purposes, as a dense output
in time can be provided to the ice-sheet model, and (2) accu-
rately capturing the fast dynamics that can occur in regions
of low viscosity.

Far away from the ice sheet, the changes of the load are
comparatively small, and we therefore require the displace-
ment to be zero at the domain boundaries.6 However, FCM
does not allow explicit treatment of Dirichlet boundary con-
ditions (BCs). To enforce its approximate representation, we
subtract the mean displacement of the corner vertices from
the solution at each time step, which is here expressed with
the common choice of notation from programming:

ui,j := ui,j −
1
4
(u1,1+ u1,Ny + uNx ,1+ uNx ,Ny ). (15)

Note that this differs from Bueler et al. (2007), where the
whole domain boundary is used for this purpose. We argue
that our approach is a better representation of the required
BC because corner points are (1) further away from the load
and (2) equidistant from the centre of a rectangular domain.

2.4 Regional sea-level model (ReSeLeM)

In a coupled setting, a GIA model is typically expected to
take the ice thickness field as an input and to return the RSL
field S as an output, which can be expressed as

S(x,y, t)= zss(x,y, t)− zb(x,y, t), (16)
zss(x,y, t)= s(t)+N(x,y, t)+ c(t), (17)

zb(x,y, t)= zb
ref(x,y)+ u(x,y, t)+ u

el(x,y, t), (18)

with zss as the SSH, zb as the bedrock elevation, s as the
barystatic sea level (BSL), N as the SSH perturbation due to
changes in the gravitational field and c as a time-dependent

6This is not completely correct since the ocean load changes
at the domain margin, which is however impossible to represent
accurately in a regional model.

scalar. In a global model, c ensures mass conservation of
water, which is however impossible to ensure in a regional
model with open boundaries. In contrast, we use c to impose
a mean zero SSH perturbation at the domain boundary, sim-
ilar to Eq. (15). The sea-level terminology used here follows
the definitions of Gregory et al. (2019), which we refer to
for any further detail. Whereas the displacements u and uel

are computed as described in Sect. 2.3, the SSH perturbation
N can be regionally approximated by the convolution of the
mass anomaly with an appropriate Green’s function 0N , as
proposed in Coulon et al. (2021):

N = 0N ⊗
K2p

g
, (19)

0N (θ)=
Re

Me

(
1

2sin(θ/2)

)
, (20)

with Re as Earth’s radius at the Equator, Me as Earth’s mass
and θ as the colatitude. To avoid dividing by θ = 0°, we im-
pose a minimal colatitude of the order of the resolution. By
neglecting the changes in surface load from sediments and
expressing 1H sw with the RSL, Eq. (1) becomes

σ zz =−gA (ρsw1SO+ ρice1H ice C), (21)
1S = S− Sref, (22)

1H ice
=H ice

−H ice
ref , (23)

with O as the ocean function; C as the continent function;
and G as the grounded-ice function, which can be expressed
by introducing the indicator function 1 and the ice thickness
above flotation H af:

O = 1−max(C,G), (24)
C = 1(S < 0), (25)

G = 1(H af > 0), (26)

H af
=H ice

− S
ρice

ρsw . (27)

In Eq. (21), the activation mask A defines what we fur-
ther consider the near field of displacement: it yields 1 close
to the ice sheet and 0 otherwise. This approach is similar
to what is done in Coulon et al. (2021) and is, by defini-
tion, somewhat arbitrary. The choice made here is illustrated
in Sect. 4 for Antarctica. Most importantly, the activation
mask enforces a zero change in load close to the boundary
of the domain, which is necessary to fulfil the BCs expressed
in Eq. (15). This is a limitation compared to a global GIA
model but allows for accounting for water column changes
in the near field of the ice sheet, unlike most regional mod-
els (Book et al., 2022; Bueler et al., 2007; Kachuck et al.,
2020; Lingle and Clark, 1985; Le Meur and Huybrechts,
1996; Weerdesteijn et al., 2023).
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In Goelzer et al. (2020), the evolution of the BSL is de-
scribed as7

s(t)=
V (t)

Apd
, (28)

V (t)= V af(t)
ρice

ρsw +V
pov(t)+V den(t), (29)

with Apd as the present-day ocean surface and V as the vol-
ume contribution of ice sheets to the ocean. The latter is de-
composed into V af, the contribution from ice above flota-
tion; V pov, the contribution from changes in the bedrock
height; and V den, the contribution from density differences
between meltwater and seawater. We refer the reader to
Goelzer et al. (2020) for the detailed computation of these
quantities, which are defined with respect to a reference state,
typically the present-day one. Assuming a fixed ocean sur-
face to compute the evolution of the sea level can, however,
lead to a bias of tens of metres over glacial cycles. To tackle
this, we propose an extension of Goelzer et al. (2020) that
accounts for the time dependence of the ocean surface A(t)
when computing the BSL. To this end, we first introduce a
time discretisation t = k1t , with O(1t)= 10 years. We fur-
ther introduce the ocean surface as a function A(s), which is
nonlinear with respect to the BSL s when a realistic topog-
raphy is used, as shown in Fig. 4 and described with more
detail in Sect. B. The volume change 1Vk = Vk−Vk−1 over
a time step leads to a change 1sk = sk − sk−1 of the BSL.
Since 1t is much smaller than glaciological timescales, 1sk
is a small number and the nonlinear relationship between the
volume contribution, the ocean surface and the BSL can be
approximated by a trapezoidal rule, pictured in Fig. 4 and
described by the following equation:

1Vk = (sk − sk−1)
A(sk)+A(sk−1)

2
. (30)

Equation (30) is solved by using sk−1 as an initial guess,
and the updated BSL sk is typically obtained after a few it-
erations of the nonlinear solver. This is of course an impor-
tant simplification compared to global GIA models, which
typically resolve the migration of shorelines (Kendall et al.,
2005; Mitrovica and Milne, 2003). Nonetheless, this is an
improvement compared to fixing A(t)= Apd. In particular,
Fig. 4d shows that the sea level of the Last Glacial Maximum
(LGM) is overestimated by about 5 m for fixed ocean bound-
aries compared to our trapezoidal approximation. This can
lead to differences of several kilometres in the grounding-
line position, depending on the local bedrock slope. We em-
phasise that a more sophisticated approach than ours is likely
to require a global domain, which we want to avoid here.

In summary, allowing for a time-variable ocean surface is
the main adaptation of the sea-level treatment described in

7We refer the reader to Adhikari et al. (2020) for an alternative
treatment.

Figure 4. (a, b) Schematic representation of the trapezoidal approx-
imation used to solve the nonlinear dependence between BSL s

and ocean surface A. We hereby use Ak as shorthand for A(sk).
(c) Present-day ocean surface and ocean-surface function A(s) as
computed by the trapezoidal approximation of the basin evolution.
(d) BSL computed for a change in ice volume equivalent to the
LGM, for fixed boundaries compared to the trapezoidal approxima-
tion.

Figure 5. Interface between FastIsostasy and an ice-sheet model,
adapted from De Boer et al. (2017) and Coulon et al. (2021).

previous work (Coulon et al., 2021; Goelzer et al., 2020), and
it constitutes ReSeLeM. FastIsostasy involves, as depicted in
Fig. 5, a coupling between LV-ELVA and ReSeLeM.

2.5 Limitations

LV-ELVA presents limitations, since it relies on a linear PDE
describing the macroscopic behaviour of the solid Earth as
a Maxwell body. Therefore it does not account for transient
rheologies (Caron et al., 2017; Ivins et al., 2021), nonlinear
rheologies (Gasperini et al., 2004; Kang et al., 2021), com-
posite rheologies (van der Wal et al., 2010, 2015), anisotropy
(Accardo et al., 2014; Beghein et al., 2006) or microscale
properties of the material (Van Calcar et al., 2023). LV-ELVA
only computes the vertical displacement of GIA and neglects
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the horizontal one, which has a negligible impact on ice-sheet
dynamics. Nonetheless, the horizontal displacement might
be used to constrain GIA models through GNSS (global nav-
igation satellite system) measurements, and its implementa-
tion is left for future versions of the model.

The governing equation of LV-ELVA was postulated here
in an ad hoc way, as described in Sect. A, but lacks a for-
mal derivation. Since the depth dimension is not resolved
in LV-ELVA, Stokes flow of the mantle is not fully repre-
sented, similar to depth-integrated solvers of ice-sheet dy-
namics and shallow-water approximations used in general
circulation models. In addition, the regional nature of the do-
main makes it inherently complicated to ensure BCs that are
consistent with a global conservation of mass. Therefore, the
sea level is only solved in an approximate way, and the feed-
back from perturbations in Earth’s rotation, which will be
small near the poles, is not accounted for. In particular, we
emphasise that the update of the BSL described in Eq. (30)
fails to give good results if most of the contribution stems
from an ice sheet that is not included in the domain. For
instance, the BSL computed in FastIsostasy over a glacial
cycle cannot be correct if the domain only covers Antarc-
tica, since most of the contribution stems from the Northern
Hemisphere ice sheets. However, this can however be by set-
ting up a domain for the Northern Hemisphere and coupling
it to the Antarctic one or simply by taking the BSL obtained
from proxies or global GIA models.

Future releases of FastIsostasy will focus on addressing
some of these problems. We emphasise that, despite these
limitations, the results presented in Sect. 4 show that FastI-
sostasy is a significant improvement compared to ELRA and
ELVA, since it represents the near-field GIA response of lat-
erally variable Earth structures with improved accuracy and
a negligible increase in computational cost. We believe that
this adequately covers the needs of most ice-sheet modellers.

3 Implementation, performance and further remarks

FastIsostasy has been implemented in Julia (FastIsostasy.jl)
and in Fortran. Julia (Bezanson et al., 2017) is a high-
performance language with a vast ecosystem, on which FastI-
sostasy.jl relies to offer convenient features and efficient
computation.

1. To evaluate the right-hand side of the ODE obtained in
Eq. (14) and perform the convolutions used to compute
the elastic and the gravitational response, FastIsostasy.jl
uses forward and inverse fast Fourier transforms (FFTs),
which are implemented in an optimised way in FFTW.jl
(Frigo and Johnson, 2005). Evaluating the right-hand
side therefore scales with a computational complexity
of O

(
N log2N

)
, for a matrix of size N =Nx ×Ny . To

achieve an even better speed increase, (1)Nx andNy are
generally chosen as powers of 2, (2) FFTs are precom-
puted as far as possible, and (3) the transforms are com-

puted in place to reduce the memory allocation. FastI-
sostasy owes its name to fast-earth, an early implemen-
tation of ELVA (referred to in the Acknowledgements)
and to its reliance on FFTs to perform all the expensive
computations.

2. To subsequently integrate the right-hand side in time,
FastIsostasy.jl uses OrdinaryDiffEq.jl (Rackauckas and
Nie, 2017), a package that offers a wide range of op-
timised routines. We restrict ourselves here to explicit
methods, which range from the simplest explicit Euler
scheme up to schemes of order 14. For all the results
presented here, we used the Runge–Kutta method pro-
posed in Bogacki and Shampine (1996). Explicit inte-
gration schemes typically require decreasing the time
step with increasing spatial resolution, which is handled
by the adaptive time-stepping methods of OrdinaryDif-
fEq.jl to prevent instabilities. This requires more evalu-
ations of the right-hand side and increases the compu-
tational complexity of the full problem to higher than
O
(
N log2N

)
. By providing keyword arguments, the

user is able to influence any option related to the inte-
gration in time, such as the scheme, the error tolerance
and the minimal time step.

3. FastIsostasy.jl uses CUDA.jl (Besard et al., 2019) and
ParallelStencil.jl to optionally run performance-relevant
computations on a GPU (so far restricted to NVIDIA
hardware). Due to their heavily parallelised architec-
ture, GPUs are able to scale better than CPUs for some
computations. The speed increase thus obtained will be
illustrated in Test 1 of the model validation. Offering
a GPU-parallelised GIA code is unprecedented to our
knowledge and only requires the user to set the keyword
argument use_cuda=true.

4. In FastIsostasy.jl, the nonlinearity introduced by the
time-dependent ocean surface is solved by using NL-
solve.jl, in combination with an interpolation of A(s),
which is constructed at initialisation using Interpola-
tions.jl. Since A(s) is monotonic and initial guesses are
close to the solution, the computation time associated
with this step is negligible. Furthermore, whereas the
adaptive time stepping is convenient for enforcing the
stability of the viscous displacement, updating the di-
agnostics – such as the elastic displacement, the ocean
surface and sea level – can be done less frequently. For
instance 1t = 10 years is used in the present work and
can be determined by the user through a keyword argu-
ment.

As illustrated above, FastIsostasy.jl relies on numerous Ju-
lia packages. Since it is a registered package, it can how-
ever be easily installed, along with all its dependencies,
by simply running add FastIsostasy in Julia’s pack-
age manager. Furthermore, it is thoroughly documented at
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https://janjereczek.github.io/FastIsostasy.jl/dev/ (last access:
4 July 2024), including a description of the application pro-
gramming interface; a tutorial; and practical examples, which
are a simplified version of the code used for the results shown
in Sect. 4. Additionally, FastIsostasy.jl is designed in a mod-
ular way that facilitates its coupling to an ice-sheet model,
and we therefore believe that the implementation burden as-
sociated with its use is very low.

Since Julia does not yet support compilation to binaries,
FastIsostasy is additionally programmed in Fortran to allow
for compatibility with most existing ice-sheet models and has
already been coupled to Yelmo (Robinson et al., 2020). Since
Fortran does not provide packages that are as convenient as
those of the Julia ecosystem, the Fortran version (1) does not
allow for computation on a GPU, (2) only provides explicit
Euler schemes for integration in time and (3) does not allow
for time-evolving ocean boundaries.

4 Model validation and benchmarks

We now validate FastIsostasy with series of tests.

– Test 1 is a comparison to an analytical solution for an
idealised load on a homogeneous, flat Earth. This aims
to check that the numerics are implemented well for
the simplest case and that our results are comparable
to Bueler et al. (2007).

– Test 2 is a comparison to benchmark solutions of three
different 1D GIA models, presented in Spada et al.
(2011). This aims to understand the discrepancies which
can arise from the lumping of depth-dependent viscos-
ity profiles and the regional approximations of the SSH
perturbation.

– Test 3 is a comparison to the 3D GIA model Seakon
(Gomez et al., 2018; Latychev et al., 2005) for idealised
cases of LV. This aims to check whether Eq. (9) and its
discretisation, Eq. (14), are valid approximations of the
deformational response in the presence of LV. Here we
will also compare the elastic displacement of Seakon
and FastIsostasy.

– Test 4 is a comparison to Seakon with realistic LV and
forced by the ice loading of a full glacial cycle. This
aims to check whether loads and Earth structures of typ-
ical applications can be represented reasonably well.

These tests are summarised in Table 4 and aim to quantify,
as independently as possible, each source of error between
FastIsostasy and the baseline solutions listed above. This is
measured by an absolute and a relative value respectively de-

fined as

eabs(x,y, t)= |uFI(x,y, t)− uBL(x,y, t)|, (31)

e(x,y, t)=
eabs(x,y, t)

max
x,y,t
|uBL(x,y, t)|

, (32)

with the indices “FI” and “BL” respectively indicating the
FastIsostasy and baseline solutions. We refer to the mean and
maximal errors over space as ē(t) and ê(t). In the forthcom-
ing analysis, we will often mention a tight upper bound for
these time series to quantify them in a scalar way and will
emphasise the maximal error, since the spatial mean can hide
important local discrepancies.

4.1 Test 1 – analytical solution for an idealised load on
a homogeneous Earth

We first reproduce the test proposed in Bueler et al. (2007)
by using a two-layer model with Wx =Wy = 3000 km, N =
Nx =Ny = 256 and h' 23 km. The first layer is parame-
terised by the lithospheric thickness T (x,y)= 88 km, and
the underlying half-space is parameterised by the mantle vis-
cosity η(x,y)= 1021 Pa s. The load is a Heaviside function
in time that represents a flat cylinder of ice, with radius
R = 1000 km and thickness H = 1 km, placed at the centre
of the computation domain. For this idealised case, an ana-
lytical solution of the viscous solution is provided in Bueler
et al. (2007), yielding

u(r, t)= ρicegHR

∞∫
0

ψ(κ)dκ, (33)

ψ(κ)= β−1
[

exp
(
−
βt

2ηκ

)
− 1

]
J1 (κR0)J0(κr), (34)

with J0 and J1 as the Bessel functions of the first kind and are
respectively of order 0 and 1 and β = β(κ)= ρmg+Dκ4. To
make the solution of FastIsostasy comparable to this, we set
Ki,j to 1 and ρl to 0, which neglects distortion and prevents
the elastic displacement from contributing to the pressure
term. Figure 6a shows cross-sections of the domain along
the x dimension, demonstrating that the numerical solution
closely follows the analytical one. Complementarily, Fig. 6b
shows the corresponding maximal and mean error over time.
For t ≥ 5000 years, the viscous displacement is captured
with ēabs < êabs < 1 m. For t ≤ 2000 years, the displacement
surface is well captured in terms of shape but appears to be
slightly shifted along the z dimension due to the approximate
treatment of the BCs as written in Eq. (15), leading to a larger
upper bound on the error êabs(t) < 5.8 m, which corresponds
to ê < 0.021. Whereas in Bueler et al. (2007) a correction of
this effect is applied based on the knowledge of the analyti-
cal solution, we decide not to do so here, first, because such
a correction only applies to this specific case and, second,
because users should be informed about the potential numer-
ical error that will arise in their experiments. When imposing
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Table 4. Summary of the tests performed using FastIsostasy. The two last columns provide tight upper bounds on the mean and maximal
errors over space. The Antarctic LV used in Test 4 is the same as in Pan et al. (2022).

Test Compared to Load T ,η L ē(t) < ê(t) <

1 Analytical solution Ice cylinder Homogeneous 1 0.019 0.021
2 1D GIA models Ice cylinder & ice cap Homogeneous 2 0.11 0.19
3 3D GIA model Ice cylinder Gaussian (cf. Appendix D) 2 0.05 0.15
4 3D GIA model Glacial cycle (ICE6G_D) Antarctic LV 3 0.05 0.16

Figure 6. (a) Transient cross-sections of bedrock displacement
along the x axis, from the centre of the domain until x =
1800 km. The resolution used here is Nx =Ny = 28, with h'

23 km. (b) Corresponding mean and maximal errors over time.
(c) Resolution dependence of the maximum and mean error at equi-
librium with respect to the analytical solution, with the dashed light-
and dark-grey lines representing the corresponding linear regres-
sions respectively with slopes of −0.4 and −0.33 in log2− log10
space. (d) Resolution dependence of the computation time on a CPU
versus a GPU, with the dashed light- and dark-grey lines represent-
ing the corresponding linear regressions respectively with slopes of
0.73 and 0.17 in log2− log10 space.

Eq. (15), the unrealistically high forcing rate resulting from
the Heaviside load leads to errors that are higher than what
is expected from a load that is coherent in time. The discreti-
sation error presented here should be therefore understood as
an upper bound for a flat Earth.

Figure 6c shows that the maximal and mean equilib-
rium error respectively decrease with a slope of −0.4 and
−0.33 in log2− log10 space, showing that convergence to
the analytical solution of equilibrium can be achieved rela-
tively quickly with increasing resolution. The runtime on a

CPU (Intel i7-10750H, 2.60 GHz) versus a GPU (NVIDIA
GeForce RTX 2070) is depicted in Fig. 6d and shows that us-
ing a GPU is advantageous for N ≥ 64, which corresponds
to the typical problem size for ice-sheet modelling. More
specifically, the CPU and GPU computation time respec-
tively increase with a slope of 0.73 and 0.17 in log2− log10
space, thus giving a clear advantage to GPU computation for
large problems. Thanks to the hybrid FDM–FCM scheme
used to evaluate Eq. (14), the scaling of computation time
on both a CPU and GPU is better than is usually obtained
from FDM, FVM and FEM since all of them rely on solving
a large system of linear equations.

4.2 Test 2 – 1D GIA solutions of idealised loads on a
layered Earth

In Spada et al. (2011), a range of 1D GIA models are bench-
marked against each other and show excellent agreement on
various experiments. Here, we reproduce the benchmark tests
called “1/2” (geodetic quantities) and “2/2” (geodetic rates),
which are similar to Test 1 but present the following differ-
ences.

– The computation domain is a stereographic projection
of the spherical Earth, centred at colatitude θ = 0°, and
the effect of distortion is therefore included, unlike for
Test 1. We apply ice loads with ρice

= 931 kg m−3, cho-
sen in agreement with Spada et al. (2011), and the fol-
lowing geometries:

a. an ice cap with maximal height Hmax = 1.5 km, ra-
dius θ = 10° and a shape defined by a cosine func-
tion;

b. a cylindrical ice load of thickness H = 1 km and
radius θ = 10°,

– Earth’s structure has three layers, namely (1) a litho-
sphere of thickness T0 = 70 km and shear modulus
G0 = 5×1011 Pa, (2) an upper mantle of thickness T1 =

600 km and viscosity η1 = 1021 Pa s, and (3) a lower
mantle reaching down to the core–mantle boundary
with viscosity η2 = 2× 1021Pa s. For any further detail,
we refer the reader to the M3-L70-V01 profile shown
in Spada et al. (2011). In FastIsostasy, these layers are
translated into an elastic plate, a viscous channel and a
viscous half-space.
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Figure 7. Comparison of FastIsostasy and Spada et al. (2011) on
tests 1/2 and 2/2. From top to bottom: viscous displacement u,
viscous displacement rate u̇ and the resulting SSH perturbation N .
From left to right: cylinder and cap of ice applied as the load.

– The results of SSH perturbation provided in Spada et al.
(2011) allow us to check the validity of Eq. (19), used
in FastIsostasy.

Figure 7 demonstrates that the viscous displacement, its
rate and the SSH computed in FastIsostasy qualitatively fol-
low the results of Spada et al. (2011). The latter corresponds
to the outputs of PMTF, VILMA and VEENT, which show
such a good agreement that they are gathered into a sin-
gle output. Quantitatively, the mean displacement error be-
tween FastIsostasy and Spada et al. (2011) is small, with
ēabs(t) < 27.0 m for both loading cases. In addition, the equi-
librium displacement is represented well by a maximal er-
ror of êabs(t = 100 kyr) < 7 m and êabs(t = 100kyr) < 12 m
and a mean error of ēabs(t = 100kyr) < 5 m and ēabs(t =

100kyr) < 7 m, for the cap and the disc load respectively.
The maximal difference arises at t = 10 kyr for the cylindri-
cal load and yields êabs < 47 m, i.e. ê < 0.19. In both cases,
the difference in vertical displacement is propagated to the
computation of the SSH perturbation according to Eq. (19).
As shown in the last row of Fig. 7, this leads to a maximal
difference between FastIsostasy and the 1D GIA models that

reaches at most 6 m but less than 2 m on average, for maximal
SSH perturbations around 40 m in both models.

Since the experimental setup is as similar as possible for
the 1D GIA models and FastIsostasy, these differences can be
largely attributed to (1) the lumping of the depth dimension
as performed in Eq. 4, which leads the two approaches to
solve different equations, and (2) to the regional domain used
here, which only allows for an approximate treatment of the
BCs as described in Eq. (15).

4.3 Test 3 – 3D GIA solution of idealised load on an
idealised LV Earth

Seakon is a global 3D GIA model that includes all the pro-
cesses mentioned in Sect. 1.4.6. It solves the deformational
response of the solid Earth with FVM on an unstructured
grid, which is typically finer at the poles, where the bedrock
displacement is largest. It has been extensively used in GIA
studies (e.g. Austermann et al., 2021; Mitrovica et al., 2009;
Pan et al., 2021, 2022) and coupled to an ice-sheet model in
Gomez et al. (2018). For further details about the model and
the adaptive grid refinement, we refer the reader to Latychev
et al. (2005) and Gomez et al. (2018). We benchmark FastI-
sostasy against Seakon here for idealised cases with LV simi-
lar to that estimated across Antarctica. Here again, a cylindri-
cal ice load with H = 1 km and R = 1000 km is applied on a
domain with Wx =Wy = 3000 km and Nx =Ny = 128. To
isolate the error from the lumping of the depth dimension,
the vertical structure of the solid Earth is kept as simple as
possible, with a mantle viscosity that is constant along z.

We distinguish four cases (a–d), which are all parame-
terised by a Gaussian-shaped anomaly that is almost 0 on
the boundary and yields its largest value at the interior of the
domain. For case a (case b), this anomaly represents a de-
crease (increase) from T = 150 km down to T = 50 km (up
to T = 250 km) of the lithospheric thickness towards the in-
terior of the domain. For case c (case d), this anomaly rep-
resents an exponential decrease (increase) from η = 1021 Pa s
down to η = 1020 Pa s (up to η = 1022 Pa s) of the mantle vis-
cosity towards the interior of the domain. The heterogeneities
(a–d) are shown in Appendix D and are used to generate
results that are referred to as “LV-ELVA”. To quantify the
improvement resulting from the use of LV-ELVA instead of
ELVA (or ELRA), we also generate results with the nominal,
homogeneous parameters T (x,y)= 150 km and η(x,y)=
1021 Pa s (or τ = 3000 years) and index them with “ELVA”
(or “ELRA”).

As can be seen in the top and middle row of Fig. 8, LV-
ELVA closely follows Seakon on cases a–b by showing sim-
ilar timescales, amplitudes and shapes of the bedrock dis-
placement. In the bottom row of Fig. 8, the maximal and
mean relative differences respectively remain at ê(t) < 0.07
and ē(t) < 0.03 over time. In comparison, ELVA yields sim-
ilar errors for case a and slightly higher ones in case b, with
values of ê(t) < 0.12 and ē(t) < 0.05. For ELRA, the max-
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imal error over time is slightly higher, although not signifi-
cantly. We recall that the lithospheric thickness is an impor-
tant control on the shape of the bedrock displacement but
only an indirect one on its magnitude and timescale. This
can be seen in Eq. (9), where the lithospheric rigidity D is
only multiplied with spatial derivatives of the displacement.
Misrepresenting the LV of lithospheric thickness therefore
only has a marginal effect for cases a–b, but we emphasise
that its impact on the displacement magnitude can however
become important when the load presents localised features,
as later shown in Test 4. Furthermore, accounting for a het-
erogeneous lithospheric thickness can impact the bedrock
slopes significantly, which are an important control on ice-
sheet grounding-line stability and therefore on the evolution
of ice sheets. Finally, as shown in an additional experiment
presented in Appendix D, (LV-)ELVA yields equally low er-
ror values in the absence of a lithosphere. This is the extreme
case of a thin lithosphere, where the absence of flexural mo-
ments effectively decouples the displacement of neighbour-
ing cells – a behaviour that is present in both Seakon and
(LV-)ELVA.

The advantage of using LV-ELVA over ELVA and ELRA
becomes significant when studying cases c–d. For these
cases, ELVA yields large transient differences compared to
Seakon, with ê(t) < 0.37 and ē(t) < 0.11. Here again, ELRA
shows marginally higher error values. This clearly shows that
neither ELRA nor ELVA are suited to represent the typical
variations of viscosity over Antarctica. In comparison, LV-
ELVA yields errors of only ê < 0.11 and ē < 0.04, similar
to those obtained in test cases a–b. Since these values are
systematically lower than what was obtained in Test 2, it ap-
pears that the error in LV-ELVA mainly stems from the lay-
ered Earth structure that can only be partially accounted for
on a 2D grid and not from the LV generalisation presented
in Eq. (9). This is further supported by an additional test,
presented in Sect. D, where Seakon and LV-ELVA adopt a
1D Earth structure following PREM. This leads to errors of
ê < 0.16 and ē < 0.06, which are very close to what was ob-
served in Test 2.

For cases a–b, it should be noted that ELRA, ELVA and
LV-ELVA present the same equilibrium state because of the
constant lithospheric thickness, as can be formally deduced
by setting the time derivative to 0 in the equations presented
in Appendix A. We stress that the higher transient error in
ELVA and ELRA can therefore be easily missed when con-
sidering equilibrium states. This is the case in Le Meur and
Huybrechts (1996), where the only spatial comparison across
models is made for a quasi-equilibrium state. We further
draw attention to the fact that the transient error metrics used
in the present study are stricter than plotting the mean spa-
tial displacement of each model over time, which is done in
Le Meur and Huybrechts (1996) and which potentially hides
large localised differences between ELRA and the 1D GIA
model used for comparison.

Throughout Test 3, LV-ELVA underestimates the periph-
eral forebulge by about [10,15]m, which is a systematic
error. When considering a layered Earth, as shown in Ap-
pendix D, this value becomes as big as 40 m for early time
steps but evolves to less than 20 m at equilibrium. Konrad
et al. (2014) observed a similar behaviour when comparing
ELRA to a 1D GIA. This comparatively large transient is
the source of the aforementioned error of ē(t) < 0.16. This
most likely arises because the mantle flow contributing to
the amplitude of the forebulge is not resolved in LV-ELVA.
Since the forebulge forms in the vicinity of the ice margin,
this might be an important error source to keep in mind when
comparing FastIsostasy to a 3D GIA model in a coupled ice-
sheet context, especially when studying the possibility of a
forebulge feedback as proposed in Albrecht et al. (2023).

When performing Test 3, we noticed that a large litho-
spheric thickness, a large gradient of the lithospheric thick-
ness or low viscosity all lead to a higher computational cost.
This is consistent with theoretical insights, since all of these
cases lead to a larger value of the right-hand side in Eq. (14),
thus making the ODE stiffer and requiring smaller time steps
to resolve this with sufficient accuracy in time. For quanti-
tative values, we refer the reader to the comparative table of
runtimes provided in Appendix D.

4.4 Test 4 – 3D GIA solution of the last glacial cycle on
a realistic Earth

Thus far, FastIsostasy has been tested with idealised loads
and parameter fields. We now consider the more realis-
tic case of simulating the GIA response of two different
Earth structures to the last glacial cycle, as reconstructed in
ICE6G_D (Peltier et al., 2018), which is an updated version
of ICE6G_C (Argus et al., 2014; Peltier et al., 2015) after
a mismatch with the present-day uplift was pointed out in
Purcell et al. (2016). The first structure is a 1D Earth that
does not present any LV. The second structure is a 3D Earth
with the lithospheric thickness and the mantle viscosity fields
from Pan et al. (2022), which are similar to those depicted in
Fig. 2. We now compare the results of five different models:
ELRA, ELVA, LV-ELVA, Seakon 1D (SK1D) and Seakon
3D (SK3D). It should be noted that the present comparison
omits LV-ELRA, since its implementation goes beyond the
scope of the present work.

For the regional models to be comparable with each other,
ELRA, ELVA and LV-ELVA are coupled to ReSeLeM, which
uses a BSL forcing derived from SK3D instead of Eq. (30), in
accordance with the comment made in Sect. 2.5. To perform
the lumping of the depth dimension for LV-ELVA, we define
the viscous half-space as beginning at 300 km. We observed
that this yields error metrics lower than 400 and 500 km,
which appears coherent since, according to Eq. (4), deeper
models might overestimate the contribution of the deeper
layers of the mantle to the effective viscosity. We recall that
the effective viscosity should primarily capture the response
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Figure 8. Comparison of FastIsostasy and Seakon for (a–b) heterogeneous lithospheric thickness and (c–d) upper-mantle viscosity. The
top row shows the cross-section of the domain along the x dimension, displaying the displacement of both models and, in the middle row,
the corresponding difference. The bottom row shows the transient evolution of the mean and maximal relative errors in ELRA, ELVA and
LV-ELVA compared to Seakon.

to loads with characteristic lengths of continental ice sheets
and that deeper layers are mostly excited by loads with larger
wavelengths.

The error plot shown in Fig. 9a depicts, for all time steps,
the displacement of SK3D, considered to be closest to real-
ity, against ELRA, ELVA, SK1D and LV-ELVA. We hereby
only represent the points within the activation mask A, rep-
resented by the black contours of Fig. 9c–h and correspond-
ing to the typical region of interest for ice-sheet modellers.
The position around the identity shows that ELVA leads to
displacements that are biased towards lower values, espe-
cially for uSK3D ≤−300 m, where the error comes close to
eabs
' 130 m. Although this bias is somewhat smaller for

SK1D, it still reaches similar maximal values. In compar-
ison, LV-ELVA is centred around the identity and presents
no such bias. This can be explained by the fact that a thin-
ner lithosphere and a less viscous mantle in West Antarctica
allows for larger transient displacements around LGM. Fur-
thermore, the spread around the identity, especially around
the lower, unbiased displacement values, is an additional
metric to take into account. For uSK3D ≥−300 m, SK1D,
LV-ELVA and ELVA respectively present the smallest, the in-
termediate and the largest spread. As expected, ELRA shows
a larger bias than LV-ELVA but, surprisingly, a smaller one

than SK1D and ELVA. However, the spread of ELRA is
larger than for any other model.

Figure 9b depicts the mean and maximal relative dif-
ference for ELRA, ELVA, LV-ELVA and SK1D with re-
spect to SK3D. The mean and maximal value respectively
relate to the spread around the identity and the bias ob-
served in Fig. 9a. In Fig. 9b, the error metrics are com-
puted for the full domain and therefore include the far field,
where the rotational feedback dominates the displacement.
Since none of the regional models are capable of captur-
ing this, SK1D shows the smallest mean error over time,
with ēSK1D(t) < 0.01. In comparison, ELRA, ELVA and LV-
ELVA show larger mean error metrics that are however simi-
lar among each other, with ē(t) < 0.04. When computing the
mean error only over the active mask, this difference between
SK1D and the regional models vanishes, with ē ≤ 0.01 for all
models. We believe that this latter definition of the mean er-
ror is closer than what is relevant to most ice-sheet modellers,
but highlighting the larger error in regional models in the far
field ensures that the users of FastIsostasy are aware of this
limitation. The low values of the mean error that are observed
regardless of the model can be explained by the fact that most
of the regions, especially the bulk of East Antarctica, can be
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Figure 9. Comparison of Seakon and FastIsostasy, forced by the ice loading from ICE6G_D (Peltier et al., 2018). (a) Displacements at
all time steps of ELRA, ELVA, SK1D and LV-ELVA against SK3D for cells within the active mask. (b) Transient mean and maximal
displacement errors respectively denoted by ē(t) and ê(t) of ELRA, ELVA, SK1D and LV-ELVA with respect to SK3D, for all domain cells.
(c–e) Displacement of ELVA, SK3D and their differences for the time step of maximal error. (f–h) Same as (c–e) for LV-ELVA.

represented well by intermediate mantle viscosity and litho-
spheric thickness.

Interestingly, the peak values of êSK1D and êELVA are
very close to each other, yielding about 0.22, correspond-
ing to êabs

' 130 m. In both cases, these values are observed
over t ∈ [−22,−12] kyr, which corresponds to the 10 kyr of
rapid deglaciation following LGM. In comparison, ELRA

presents a peak maximal error with a similar timing and
a marginally smaller amplitude êELRA < 0.19. However, it
presents large errors over the last 6 kyr of simulation. This
points out that high errors in ELRA, ELVA and SK1D are to
be expected when rapid changes in ice thickness occur – a
situation that could be triggered by sustained anthropogenic
climate warming. For ELVA, the peak difference to SK3D
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is observed at t =−18 kyr. The corresponding displacement
fields and their difference are plotted in Fig. 9c–e, corrobo-
rating that ELVA does not allow for enough displacement in
West Antarctica after the LGM. The location of the peak er-
ror points out that the use of ELVA, coupled to an ice-sheet
model, may lead to significant errors since the WAIS is based
on a retrograde bedrock below sea level and is therefore par-
ticularly sensitive to the GIA response, as pointed out in the
Introduction.

Compared to ELRA, ELVA and SK1D, LV-ELVA reduces
the maximal error down to about êLV−ELVA ≤ 0.14, which
corresponds to êabs

≤ 80 m. The displacement fields for the
time t =−14 kyr are plotted in Fig. 9f–h and show that the
near-field displacement is reasonably well matched, even for
the time step showing the largest error metrics. In particular,
the displacement is slightly underestimated in most of the
active mask. Since this appears to be a systematic offset, it
could easily be corrected by tuning the density and/or the
viscosity chosen for LV-ELVA.8 We however decide not to
do so to highlight the differences to SK3D without additional
tuning.

Throughout Test 4, SK3D has been used as the baseline
model. In Sect. D, we show a similar analysis that compares
ELRA and ELVA by using SK1D as a baseline. There it ap-
pears (1) that ELVA presents smaller errors than ELRA and
(2) that LV-ELVA presents smaller errors compared to SK3D
than ELVA compared to SK1D.

Runtime analysis. Despite the errors compared to Seakon
and potentially to any 3D GIA model, we believe that FastI-
sostasy can be a particularly appealing tool, since the 122 kyr
run takes only about 9 min to compute for a horizontal reso-
lution of h= 20 km, resulting in 350× 350 grid points. For
ELVA, the absence of LV leads to a reduced computation
time of only about 4 min and outperforms ELRA, which re-
quires about 6 min. These computations were performed on
an NVIDIA GeForce RTX 2070, a low-cost GPU with mod-
erate performance by the standards of 2024. Although the
time stepping is adaptive, no values beyond dt = 10 years
are used. This potentially provides the ice-sheet model with
an input that is very dense in time, for instance as opposed to
Gomez et al. (2018).

In comparison, the Seakon simulation takes about 4.5 d on
150 CPUs with a time step of dt ∈ [125,1000] years. As-
suming an ideal parallelisation scaling of 100 %, this corre-
sponds to about 1× 106 min of CPU runtime, which roughly
corresponds to 5 orders of magnitude more than what FastI-
sostasy requires. The models used in Albrecht et al. (2023)
and Zhong et al. (2022) present smaller computation times,
reducing this down to 4 orders of magnitude.

8This could simply be done by hand or, for instance, with an
unscented Kalman inversion, as shown in the code documentation.

Furthermore, the power consumption of the GPU used in
the present study is 185 W,9 compared to a typical value
of more than 100 W for a single, modern CPU. As the en-
ergy consumption is expressed as the product of power and
computation time, FastIsostasy appears to be less energy-
consuming than Seakon by several orders of magnitude. Fi-
nally, we draw attention to the fact that the acquisition price
of the GPU used here is a few hundred euros, which is far
less than that of a large CPU cluster.

Of course, the runtime of Seakon and FastIsostasy are not
directly comparable: Seakon solves the global GIA problem,
which requires a grid with many more degrees of freedom
that reaches down to the core–mantle boundary. The output
of Seakon is much richer, since it includes, among others,
the rotational feedback, the position of migrating shorelines,
the horizontal displacement of the bedrock and the relative
sea level at any point on Earth. Nonetheless, these quantities
tend to be less relevant for stand-alone ice-sheet modelling,
and FastIsostasy therefore offers an opportunity to regionally
mimic the behaviour of a 3D GIA model at very low compu-
tational, energy and financial cost.

5 Conclusions

Throughout all the tests, FastIsostasy displays a maximal and
mean error over space of ê(t) < 0.2 and ē(t) < 0.05, both
being typically much smaller for most time steps. In partic-
ular, Test 1 has shown that the discretisation error of FastI-
sostasy is very small and that, with an increasing problem
size, its computational expense scales better than what is typ-
ically obtained with FDM, FVM and FEM solvers. Test 2
has shown that FastIsostasy represents the deformational re-
sponse and the SSH perturbation with a relatively low error
compared to 1D GIA models, despite solving the problem
on a 2D regional grid. Test 3 and Test 4 have shown that LV-
ELVA produces greatly reduced errors with respect to SK3D,
compared to ELRA and ELVA and even to SK1D for the
near-field GIA response. This means that the model uncer-
tainty between FastIsostasy and Seakon is smaller than the
upper bound on parametric uncertainty, given by the differ-
ence between a 1D and a 3D Earth structure (Albrecht et al.,
2023).

In conclusion, FastIsostasy can greatly reduce the tran-
sient error in bedrock displacement compared to ELRA and
ELVA and even to 1D GIA models for regions of significant
LV. This was achieved by introducing LV-ELVA, which gen-
eralises the work of Bueler et al. (2007) and Coulon et al.
(2021) and was coupled to ReSeLeM, which regionally ap-
proximates the transient changes in ocean load. Whereas the
differences between FastIsostasy and global GIA models are
within the range of parametric uncertainties, the computation

9This tabulated value is found at https://www.nvidia.com/es-es/
geforce/graphics-cards/compare/?section=compare-20 (last access:
4 July 2024).
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time is typically reduced by 3 to 5 orders of magnitude. For
most ice-sheet models, FastIsostasy can thus represent a leap
in GIA comprehensiveness at very low computational cost,
even for high-resolution runs on the timescale of glacial cy-
cles. This has straightforward applications, since the GIA re-
sponse is particularly relevant for the many marine-based re-
gions of the AIS, where significant LV of the solid Earth can
be present. This is the case for the Amundsen sector, which
could become the largest source of sea-level rise in the com-
ing century and therefore requires projections that account,
as accurately as possible, for the stabilising effect of GIA.

Since fields of the lithospheric thickness and the upper-
mantle viscosity can be easily found in the literature, FastI-
sostasy reduces the difficulty of creating meaningful ensem-
bles compared to relaxed rheologies (Coulon et al., 2021).
The very short runtime of FastIsostasy offers an efficient
method of propagating the uncertainties of the solid-Earth
parameters to past and future climatic scenarios.

We believe that GIA modellers, as well as the few ice-sheet
models that are coupled to a 3D GIA model, can benefit from
FastIsostasy, since it can be used as a fast-prototyping tool.
In particular, a scheme to tune the parameters of FastIsostasy
can turn it into an emulator of a 3D GIA model with better in-
terpretability than, for instance, machine learning techniques.
Nonetheless, it should be emphasised that some scientific
questions can only be answered with a global 3D GIA model
and that FastIsostasy is a complementary tool that does not
aim to replace it. Finally, we believe that the relatively abbre-
viated code of FastIsostasy and its few equations compared
to 1D or 3D GIA models are particularly well suited for ed-
ucational purposes.

Appendix A: From ELRA to LV-ELVA

Following Le Meur and Huybrechts (1996), the governing
equations of ELRA yield

ρmgueq
+D∇4ueq

= σ zz, (A1)
∂u

∂t
=

1
τ
(u− ueq), (A2)

with ueq as the equilibrium displacement and all further
quantities already introduced in this paper. Equation (A1)
can be solved by convolving the load with a Green’s func-
tion derived from a Kelvin function of order 0, as described
in Le Meur and Huybrechts (1996). In FastIsostasy, the con-
volution is performed via FFTs, which is much faster than
a computation in a time domain. Coulon et al. (2021) gen-
eralised the equations of ELRA to a laterally variable litho-
spheric thickness and relaxation time (LV-ELRA):

ρmgueq
+
∂2M

eq
xx

∂x2 + 2
∂2M

eq
xy

∂x∂y
+
∂2M

eq
yy

∂y2 = σ
zz, (A3)

∂u

∂t
=

1
τ(x,y)

(u− ueq), (A4)

with Meq
xx , Meq

xy and Meq
yy as the flexural moments at equi-

librium, computed by introducing ueq into Eqs. (10)–(12).
For ELRA as well as LV-ELRA, a relaxed rheology is used,
which presents the limitations explained in Sect. 1.3. ELVA,
as proposed by Bueler et al. (2007), Cathles (1975), and Lin-
gle and Clark (1985), addresses this limitation because its
governing equation is directly parameterised by viscosity:

2η|∇|
∂u

∂t
+ ρmgueq

+D∇4u= σ zz. (A5)

However, this assumes a constant lithospheric thickness
T (x,y)= T and sub-lithospheric mantle viscosity η(x,y)=
η throughout the domain, which therefore prevents the rep-
resentation of LV. We tried to generalise the derivation pre-
sented in Cathles (1975) to LV; however this was unsuccess-
ful. Instead, we combined Eqs. (A3) and (A5), thus obtaining

2η(x,y)|∇|
∂u

∂t
+ ρmgueq

+
∂2Mxx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2Myy

∂y2 = σ
zz, (A6)

with the flexural moments accounting for the laterally vari-
able lithospheric thickness. By introducing a pressure term,
as done in Eq. (8), and accounting for the distortion K ,
we obtain the governing equation of LV-ELVA, as written
in Eq. (9). For constant parameters, LV-ELVA simplifies to
the equation of ELVA and can be therefore understood as
an ad hoc generalisation that reduces the error made com-
pared to a 3D GIA model. Using ELVA in FastIsostasy is
simply achieved by running LV-ELVA with constant param-
eters. This seamless approach offers a code that is easier to
maintain and an interface that is simpler to use, at the expense
of a minor increase in computational expense compared to
the use of a specific solver that takes advantage of the sim-
plifications made in ELVA.

Appendix B: Ocean surface function

The function Ã(s) : R→ R is here computed by summing
the surfaces of cells situated below the BSL s, based on
the 1 arcmin global topography of ETOPO1 (Amante and
Eakins, 2009). Note that this slightly overestimates the ocean
surface, since all regions below sea level are counted as part
of the ocean, including, for instance, parts of the Nether-
lands. To tackle this, we introduce a bias correction scaling
γ , which avoids any offset for the present-day value Apd and
depends on the uncorrected value Ã(s):

A(s)= γ Ã(s), with γ =
Apd

Ã(s = 0)
. (B1)

To reduce the runtime, we precompute A(s) as a piece-
wise linear interpolator for s ∈ [−150,70] years with a dis-
cretisation of 1s = 0.1 m. The resulting function is depicted
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in Fig. 4c and shows that, for the range of realistic sea-level
contributions over glacial cycles, the trapezoidal approxima-
tion leads to variations of the ocean surface between −7 %
and +4 % around the present-day value.

Appendix C: Scaling the effective viscosity

Two important characteristics of the mantle have to be ac-
counted for such that the Maxwell time τ = ηE−1 of FastI-
sostasy is comparable to that of a 3D GIA model. This is
done by introducing two correction factors. First, one of the
underlying assumptions made by Cathles (1975) is that the
mantle is incompressible; i.e. νi

= 0.5 is assumed as opposed
to ν0 = 0.28 for the elastic lithosphere. In reality, the man-
tle is however a compressible medium with νc

' 0.28. We
now look for ηi, the viscosity that has to be used in the in-
compressible case in order to match the Maxwell time of
the compressible case. By introducing the shear modulus
G= E (2 (1+ ν))−1, we obtain

ηi

2G(1+ νi)
=

ηc

2G(1+ νc)
, (C1)

⇔ ηi
=

1+ νi

1+ νc η
c
= αc ηc. (C2)

In essence, this means that compressible media have a
larger Maxwell time and that we need to slightly increase the
viscosity values to render this, since Eq. (A5) is used to pos-
tulate Eq. (9) and assumes an incompressible viscous flow.
This is supported by Fig. C1, which shows that a 1D GIA
model displays longer decay times for a compressible man-
tle, compared to an incompressible one.

Second, both the shear modulus and the viscosity depend
on the temperature of the medium. For instance, a posi-
tive temperature anomaly in the mantle leads to a negative
anomaly of both viscosity and shear modulus. This means
that the decrease in the Maxwell time due to the decrease
in viscosity is somewhat compensated by the decrease in the
shear modulus. We have chosen to compute this scaling by
calibrating FastIsostasy to results of a 3D GIA model:

η = exp
(

log10

(
η0

ηi

))
ηi
= αG(ηi) · ηi, (C3)

with η0 = 1021 Pa s the calibration constant used throughout
this work. We thus obtain a relation between the viscosity
ηc, inferred from seismic measurements, and the corrected
effective viscosity η, ultimately used in FastIsostasy:

η = αG αc ηc
= α ηc. (C4)

If the depth dimension is lumped according to Eq. (B1),
then the viscosity field ηeff

1 , representing the compound of
layers from l = 1 to l = L, is used for ηc.

Figure C1. Decay times of a 1D GIA model with νc
= 0.28 (com-

pressible) and νi
= 0.5 (incompressible).

Appendix D: Complementary information on Test 3 and
Test 4

The anomalies of lithospheric thickness and upper-mantle
viscosity used in Test 3 are represented in Fig. D1 and re-
sult from a scaled Gaussian distribution N (0,σ ) with σ =
(W/4)2 I and I ∈ R2×2 as the identity matrix.

In addition to Test 3, we perform two simulations with lat-
erally constant Earth structures in Seakon. The first one cor-
responds to PREM (Dziewonski and Anderson, 1981), and
the second corresponds to a single-layer mantle without an
elastic lithosphere. The results are respectively depicted in
Fig. D2a and b. Unsurprisingly, the first case shows a very
similar error pattern to what is obtained in Test 2 and high-
lights that the main error source for FastIsostasy comes from
the lumped depth dimension rather than from the generalisa-
tion of ELVA to LV-ELVA. The second case shows that, in
the absence of a lithosphere, the match between Seakon and
FastIsostasy yields ē(t) < 0.04 and ê(t) < 0.08. In particu-
lar, this example shows that, in both models, the absence of
a lithosphere effectively decouples neighbouring cells due to
the absence of flexural moments.

Whereas Fig. 9 uses SK3D as a baseline for the error met-
rics, we propose using SK1D as a baseline to compare ELRA
and ELVA in Fig. D3. In Fig. D3, it appears that ELRA is
more biased towards large displacements than ELVA. Fur-
thermore, the mean error is similar for both models, but the
maximal error is higher overall for ELRA, with ê(t) < 0.21.
In comparison, the maximum error in ELVA yields ê(t) <
0.16. The middle row of Fig. D3 highlights that the higher
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error in ELRA stems from an overestimated displacement in
Marie Byrd Land. In comparison, the bottom row shows that
ELVA displays a much more homogeneously distributed er-
ror.

Figure D1. Gaussian-shaped LV used in Test 3 for (a) a lithospheric thinning, (b) a lithospheric thickening, (c) a viscosity decrease and (d) a
viscosity increase towards the centre of the domain.

Figure D2. Comparison of FastIsostasy and Seakon for (a) a layered mantle following PREM and (b) a mantle with a single layer and no
lithosphere.
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Table D1. Runtime of FastIsostasy in Test 3 for a resolution of Nx =Ny = 128, on a single CPU (Intel i7-10750H, 2.60 GHz).

Case Decreasing T Increasing T Decreasing η Increasing η PREM T = 0 ELRA

Runtime (s) 35.6 40.7 33.8 25.0 24.1 24.9 14.2

Figure D3. Comparison of ELRA, ELVA and SK1D forced by ICE6G_D (Peltier et al., 2018). (a) Displacements at all time steps of ELRA
and ELVA against SK1D, for cells within the active mask. (b) Transient mean and maximal errors in ELRA and ELVA with respect to SK1D.
(c–e) Displacement of ELRA, SK1D and their differences for the time step of maximal error. (f–h) Same as (c–e) for ELVA.
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Code and data availability. FastIsostasy is available un-
der the GNU General Public License v3.0 at https:
//github.com/JanJereczek/FastIsostasy.jl (last access: 4 July 2024)
(Julia version) and https://github.com/palma-ice/FastIsostasy (last
access: 4 July 2024) (Fortran version). The data used in the present
work can be found at https://github.com/JanJereczek/isostasy_data
(last access: 4 July 2024). The archived versions of
the code and data used for this paper can be found at
https://doi.org/10.5281/zenodo.10419117 (Swierczek-Jereczek,
2024a) and https://doi.org/10.5281/zenodo.11175418 (Swierczek-
Jereczek, 2024b).

Video supplement. Animations of the results obtained by FastI-
sostasy on Test 4 can be found at https://github.com/JanJereczek/
FastIsostasy.jl (Swierczek-Jereczek, 2024c).
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