Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-3897-2024
https://doi.org/10.5194/gmd-17-3897-2024
Model experiment description paper
 | 
15 May 2024
Model experiment description paper |  | 15 May 2024

Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations

Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng

Related authors

Enhancing Extended Weather Forecasts in the TCWAGFS Model Using Deep Learning Method for SST Bias Correction
Katherine Shu-Min Li, Nadun Sinhabahu, Ben-Jei Tsuang, Fang-Chi Wu, Wan-Ling Tseng, Pei-Hsuan Kuo, Sying-Jyan Wang, Pang-Yen Liu, Jen-Her Chen, Bin-Ming Wang, Yung-Yao Lan, and Sun-Yuan Kung
EGUsphere, https://doi.org/10.5194/egusphere-2025-142,https://doi.org/10.5194/egusphere-2025-142, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Embedding a one-column ocean model in the Community Atmosphere Model 5.3 to improve Madden–Julian Oscillation simulation in boreal winter
Yung-Yao Lan, Huang-Hsiung Hsu, Wan-Ling Tseng, and Li-Chiang Jiang
Geosci. Model Dev., 15, 5689–5712, https://doi.org/10.5194/gmd-15-5689-2022,https://doi.org/10.5194/gmd-15-5689-2022, 2022
Short summary
Taiwan Earth System Model Version 1: description and evaluation of mean state
Wei-Liang Lee, Yi-Chi Wang, Chein-Jung Shiu, I-chun Tsai, Chia-Ying Tu, Yung-Yao Lan, Jen-Ping Chen, Hua-Lu Pan, and Huang-Hsiung Hsu
Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020,https://doi.org/10.5194/gmd-13-3887-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025,https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Assessing the climate impact of an improved volcanic sulfate aerosol representation in E3SM
Ziming Ke, Qi Tang, Jean-Christophe Golaz, Xiaohong Liu, and Hailong Wang
Geosci. Model Dev., 18, 4137–4153, https://doi.org/10.5194/gmd-18-4137-2025,https://doi.org/10.5194/gmd-18-4137-2025, 2025
Short summary
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025,https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkini, E.: The Version 2.1 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeor., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. 
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute globe relief model: Procedures, data sources and analysis, NOAA Tech. Memo. NESDIS NGDC-24, NOAA, Silver Spring, MD, 19 pp., https://doi.org/10.7289/V5C8276M, 2009. 
Banzon, V. F., Reynolds, R. W., Stokes, D., and Xue, Y.: A 1/4-spatial-resolution daily sea surface temperature climatology based on a blended satellite and in situ analysis, J. Climate, 27, 8221–8228, https://doi.org/10.1175/JCLI-D-14-00293.1, 2014. 
Behringer, D. W. and Xue, Y.: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean, Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11–15 January 2004, https://ams.confex.com/ams/pdfpapers/70720.pdf (last access: 8 May 2024), 2004. 
Chang, M.-Y., Li, T., Lin, P.-L., and Chang, T.-H.: Forecasts of MJO Events during DYNAMO with a Coupled Atmosphere-Ocean Model: Sensitivity to Cumulus Parameterization Scheme, J. Meteorol. Res., 33, 1016–1030, https://doi.org/10.1007/s13351-019-9062-5, 2019. 
Download
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Share