Articles | Volume 17, issue 7
https://doi.org/10.5194/gmd-17-2525-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-2525-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A one-dimensional urban flow model with an eddy-diffusivity mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)
School of Built Environment, University of New South Wales, Sydney, Australia
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia
Negin Nazarian
School of Built Environment, University of New South Wales, Sydney, Australia
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia
Melissa Anne Hart
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia
E. Scott Krayenhoff
School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
Alberto Martilli
Atmospheric Pollution Division, Environmental Department, CIEMAT, Madrid, Spain
Related authors
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Gianluca Pappaccogli, Andrea Zonato, Alberto Martilli, Riccardo Buccolieri, and Piero Lionello
EGUsphere, https://doi.org/10.5194/egusphere-2025-219, https://doi.org/10.5194/egusphere-2025-219, 2025
Short summary
Short summary
We present the MLUCM BEP+BEM model that bridges mesoscale and microscale phenomena within the urban canopy, capturing scale interactions and feedback. The accuracy and low computational cost of this one-dimensional model makes it ideal for offline climate projections to assess urban climate impacts under different emission scenarios. The model's features allow analyzing urban overheating, energy demands, and evaluating the efficiency of strategies like green/cool roofs, and photovoltaic panels.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Matthias Demuzere, Jonas Kittner, Alberto Martilli, Gerald Mills, Christian Moede, Iain D. Stewart, Jasper van Vliet, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, https://doi.org/10.5194/essd-14-3835-2022, 2022
Short summary
Short summary
Because urban areas are key contributors to climate change but are also susceptible to multiple hazards, one needs spatially detailed information on urban landscapes to support environmental services. This global local climate zone map describes this much-needed intra-urban heterogeneity across the whole surface of the earth in a universal language and can serve as a basic infrastructure to study e.g. environmental hazards, energy demand, and climate adaptation and mitigation solutions.
Mohsen Moradi, Benjamin Dyer, Amir Nazem, Manoj K. Nambiar, M. Rafsan Nahian, Bruno Bueno, Chris Mackey, Saeran Vasanthakumar, Negin Nazarian, E. Scott Krayenhoff, Leslie K. Norford, and Amir A. Aliabadi
Geosci. Model Dev., 14, 961–984, https://doi.org/10.5194/gmd-14-961-2021, https://doi.org/10.5194/gmd-14-961-2021, 2021
Short summary
Short summary
The Vertical City Weather Generator (VCWG) is an urban microclimate model developed to predict temporal and vertical variation of potential temperature, wind speed, and specific humidity. VCWG is forced by climate variables at a nearby rural site and coupled to radiation and building energy models. VCWG is evaluated against field observations of the BUBBLE campaign. It is run under exploration mode to assess its performance given urban characteristics, seasonal variations, and climate zones.
Brian N. Bailey, María A. Ponce de León, and E. Scott Krayenhoff
Geosci. Model Dev., 13, 4789–4808, https://doi.org/10.5194/gmd-13-4789-2020, https://doi.org/10.5194/gmd-13-4789-2020, 2020
Short summary
Short summary
Numerous models of plant radiation interception based on a range of assumptions are available in the literature, but the importance of each assumption is not well understood. In this work, we evaluate several assumptions common in simple models of radiation interception in canopies with widely spaced plants by comparing against a detailed 3-D model. This yielded a simple model based on readily measurable parameters that could accurately predict interception for a wide range of architectures.
Cited articles
Abdella, K. and Petersen, A.: Third-Order Moment Closure Through A Mass-Flux Approach, Bound.-Lay. Meteorol., 95, 303–318, https://doi.org/10.1023/A:1002629010090, 2000. a
Agbaglah, G. and Mavriplis, C.: Three-dimensional wakes behind cylinders of square and circular cross-section: early and long-time dynamics, J. Fluid Mech., 870, 419–432, https://doi.org/10.1017/jfm.2019.265, 2019. a
Akinlabi, E., Maronga, B., Giometto, M. G., and Li, D.: Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study, Bound.-Lay. Meteorol., 185, 93–128, https://doi.org/10.1007/s10546-022-00725-6, 2022. a, b
Ayotte, K. W., Finnigan, J. J., and Raupach, M. R.: A Second-Order Closure for Neutrally Stratified Vegetative Canopy Flows, Bound.-Lay. Meteorol., 90, 189–216, https://doi.org/10.1023/A:1001722609229, 1999. a
Best, M. J. and Grimmond, C. S. B.: Key Conclusions of the First International Urban Land Surface Model Comparison Project, B. Am. Meteorol. Soc., 96, 805–819, https://doi.org/10.1175/BAMS-D-14-00122.1, 2015. a
Blunn, L. P., Coceal, O., Nazarian, N., Barlow, J. F., Plant, R. S., Bohnenstengel, S. I., and Lean, H. W.: Turbulence Characteristics Across a Range of Idealized Urban Canopy Geometries, Bound.-Lay. Meteorol., 182, 275–307, https://doi.org/10.1007/s10546-021-00658-6, 2022. a, b, c
Boeing, G.: Urban spatial order: street network orientation, configuration, and entropy, Appl. Network Sci., 4, 67, https://doi.org/10.1007/s41109-019-0189-1, 2019. a
Bougeault, P. and Lacarrere, P.: Parameterization of Orography-Induced Turbulence in a Mesobeta–Scale Model, Mon. Weather Rev., 117, 1872–1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989. a
Brown, M., Lawson, R., DeCroix, D., and Lee, R.: Comparison of Centerline Velocity Measurements Obtained Around 2D and 3D Building Arrays in a Wind Tunnel, article, 1 July 2001, New Mexico, University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu/ark:/67531/metadc716934/m1/1/ (last access: 2 April 2024), 2001. a
Castro, I. P.: Are Urban-Canopy Velocity Profiles Exponential?, Bound.-Lay. Meteorol., 164, 337–351, https://doi.org/10.1007/s10546-017-0258-x, 2017. a, b, c
Cheng, W.-C. and Porté-Agel, F.: A Simple Mixing-Length Model for Urban Canopy Flows, Bound.-Lay. Meteorol., 181, 1–9, https://doi.org/10.1007/s10546-021-00650-0, 2021. a
Christen, A., Rotach, M. W., and Vogt, R.: The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer, Bound.-Lay. Meteorol., 131, 193–222, https://doi.org/10.1007/s10546-009-9359-5, 2009. a
Coceal, O. and Belcher, S. E.: A canopy model of mean winds through urban areas, Q. J. Roy. Meteor. Soc., 130, 1349–1372, https://doi.org/10.1256/qj.03.40, 2004. a
Coceal, O., Thomas, T. G., Castro, I. P., and Belcher, S. E.: Mean Flow and Turbulence Statistics Over Groups of Urban-like Cubical Obstacles, Bound.-Lay. Meteorol., 121, 491–519, https://doi.org/10.1007/s10546-006-9076-2, 2006. a
Coceal, O., Dobre, A., Thomas, T. G., and Belcher, S. E.: Structure of turbulent flow over regular arrays of cubical roughness, J. Fluid Mech., 589, 375–409, https://doi.org/10.1017/S002211200700794X, 2007. a
Couvreux, F., Hourdin, F., and Rio, C.: Resolved Versus Parametrized Boundary-Layer Plumes. Part I: A Parametrization-Oriented Conditional Sampling in Large-Eddy Simulations, Bound.-Lay. Meteorol., 134, 441–458, https://doi.org/10.1007/s10546-009-9456-5, 2010. a
Davis, K. A., Pawlak, G., and Monismith, S. G.: Turbulence and Coral Reefs, Annu. Rev. Mar. Sci., 13, 343–373, https://doi.org/10.1146/annurev-marine-042120-071823, 2021. a
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound.-Lay. Meteorol., 18, 495–527, https://doi.org/10.1007/BF00119502, 1980. a
Finnigan, J., Harman, I., Ross, A., and Belcher, S.: First-order turbulence closure for modelling complex canopy flows: First-Order Turbulence Closure for Canopy Flows, Q. J. Roy. Meteor. Soc., 141, 2907–2916, https://doi.org/10.1002/qj.2577, 2015. a
Finnigan, J. J.: Turbulent Transport in Flexible Plant Canopies, Springer Netherlands, Dordrecht, 443–480, ISBN 978-94-009-5305-5, https://doi.org/10.1007/978-94-009-5305-5_28, 1985. a
Finnigan, J. J. and Belcher, S. E.: Flow over a hill covered with a plant canopy, Q. J. Roy. Meteor. Soc., 130, 1–29, https://doi.org/10.1256/qj.02.177, 2004. a
Finnigan, J. J. and Shaw, R. H.: Double-averaging methodology and its application to turbulent flow in and above vegetation canopies, Acta Geophys., 56, 534–561, https://doi.org/10.2478/s11600-008-0034-x, 2008. a
Frigo, M. and Johnson, S.: FFTW: an adaptive software architecture for the FFT, in: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181),IEEE, Seattle, WA, USA, ISBN 978-0-7803-4428-0, vol. 3, 1381–1384, https://doi.org/10.1109/ICASSP.1998.681704, 1998. a
Ghonima, M. S., Yang, H., Kim, C. K., Heus, T., and Kleissl, J.: Evaluation of WRF SCM Simulations of Stratocumulus‐Topped Marine and Coastal Boundary Layers and Improvements to Turbulence and Entrainment Parameterizations, J. Adva. Model. Earth Sy., 9, 2635–2653, https://doi.org/10.1002/2017MS001092, 2017. a
Giometto, M. G., Christen, A., Meneveau, C., Fang, J., Krafczyk, M., and Parlange, M. B.: Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface, Bound.-Lay. Meteorol., 160, 425–452, https://doi.org/10.1007/s10546-016-0157-6, 2016. a, b, c
Glazunov, A. V., Debolskiy, A. V., and Mortikov, E. V.: Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its Evaluation Based on Large-Eddy Simulations, Supercomputing Frontiers and Innovations, 8, https://doi.org/10.14529/jsfi210409, 2021. a, b
Han, J. and Bretherton, C. S.: TKE-Based Moist Eddy-Diffusivity Mass-Flux (EDMF) Parameterization for Vertical Turbulent Mixing, Weather Forecast., 34, 869–886, https://doi.org/10.1175/WAF-D-18-0146.1, 2019. a
Harman, I. N., Böhm, M., Finnigan, J. J., and Hughes, D.: Spatial Variability of the Flow and Turbulence Within a Model Canopy, Bound.-Lay. Meteorol., 160, 375–396, https://doi.org/10.1007/s10546-016-0150-0, 2016. a
Hendricks, E. A., Knievel, J. C., and Wang, Y.: Addition of Multilayer Urban Canopy Models to a Nonlocal Planetary Boundary Layer Parameterization and Evaluation Using Ideal and Real Cases, J. Appl. Meteorol. Clim., 59, 1369–1392, https://doi.org/10.1175/JAMC-D-19-0142.1, 2020. a, b
Kondo, H., Genchi, Y., Kikegawa, Y., Ohashi, Y., Yoshikado, H., and Komiyama, H.: Development of a Multi-Layer Urban Canopy Model for the Analysis of Energy Consumption in a Big City: Structure of the Urban Canopy Model and its Basic Performance, Bound.-Lay. Meteorol., 116, 395–421, https://doi.org/10.1007/s10546-005-0905-5, 2005. a
Krayenhoff, E. S.: A multi-layer urban canopy model for neighbourhoods with trees., Ph.D. thesis, University of British Columbia, https://doi.org/10.14288/1.0167084, 2014. a
Krayenhoff, E. S., Santiago, J. L., Martilli, A., Christen, A., and Oke, T. R.: Parametrization of Drag and Turbulence for Urban Neighbourhoods with Trees, Bound.-Lay. Meteorol., 156, 157–189, https://doi.org/10.1007/s10546-015-0028-6, 2015. a
Krayenhoff, E. S., Jiang, T., Christen, A., Martilli, A., Oke, T. R., Bailey, B. N., Nazarian, N., Voogt, J. A., Giometto, M. G., Stastny, A., and Crawford, B. R.: Urban Climate A multi-layer urban canopy meteorological model with trees (BEP- Tree): Street tree impacts on pedestrian-level climate, Urban Clim., 32, 100590, https://doi.org/10.1016/j.uclim.2020.100590, 2020. a, b, c
Kusaka, H., Kondo, H., and Kikegawa, Y.: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models, Bound.-Lay. Meteorol. 101, 329–358, https://doi.org/10.1023/A:1019207923078, 2001. a
Li, Q. and Bou-Zeid, E.: Contrasts between momentum and scalar transport over very rough surfaces, J. Fluid Mech., 880, 32–58, https://doi.org/10.1017/jfm.2019.687, 2019. a, b, c, d
Li, Q., Bou‐Zeid, E., Grimmond, S., Zilitinkevich, S., and Katul, G.: Revisiting the relation between momentum and scalar roughness lengths of urban surfaces, Q. J. Roy. Meteor. Soc., 146, 3144–3164, https://doi.org/10.1002/qj.3839, 2020. a
Lim, H. D., Hertwig, D., Grylls, T., Gough, H., Reeuwijk, M. v., Grimmond, S., and Vanderwel, C.: Pollutant dispersion by tall buildings: laboratory experiments and Large-Eddy Simulation, Exp. Fluids, 63, 92, https://doi.org/10.1007/s00348-022-03439-0, 2022. a
Lipson, M. J., Grimmond, S., Best, M., Abramowitz, G., Coutts, A., Tapper, N., Baik, J., Beyers, M., Blunn, L., Boussetta, S., Bou‐Zeid, E., De Kauwe, M. G., De Munck, C., Demuzere, M., Fatichi, S., Fortuniak, K., Han, B., Hendry, M. A., Kikegawa, Y., Kondo, H., Lee, D., Lee, S., Lemonsu, A., Machado, T., Manoli, G., Martilli, A., Masson, V., McNorton, J., Meili, N., Meyer, D., Nice, K. A., Oleson, K. W., Park, S., Roth, M., Schoetter, R., Simón‐Moral, A., Steeneveld, G., Sun, T., Takane, Y., Thatcher, M., Tsiringakis, A., Varentsov, M., Wang, C., Wang, Z., and Pitman, A. J.: Evaluation of 30 urban land surface models in the Urban‐PLUMBER project: Phase 1 results, Q. J. Roy. Meteor. Soc., 150, 126–169, https://doi.org/10.1002/qj.4589, 2023. a, b
Lopez‐Gomez, I., Cohen, Y., He, J., Jaruga, A., and Schneider, T.: A Generalized Mixing Length Closure for Eddy‐Diffusivity Mass‐Flux Schemes of Turbulence and Convection, J. Adv. Model. Earth Sy., 12, e2020MS002161, https://doi.org/10.1029/2020MS002161, 2020. a
Lu, J.: Coherent Structures Sampling and a Stochastic Eddy-Diffusivity/Mass-Flux Parameterization for the Transition from Stratocumulus to Cumulus, Master's thesis, UC San Diego, https://escholarship.org/uc/item/6tc324jj (last access: 2 April 2024), 2019. a
Lu, J., Nazarian, N., Anne Hart, M., Krayenhoff, E. S., and Martilli, A: Code for “A one-dimensional urban flow model with an Eddy-diffusivity Mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)” Submitted to GMD, Zenodo [code], https://doi.org/10.5281/zenodo.10207052, 2023c. a
Macdonald, R. W.: Modelling the mean velocity profile in the urban, Bound.-Lay. Meteorol. 97, 25–45, https://doi.org/10.1023/A:1002785830512, 2000. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Martilli, A., Clappier, A., and Rotach, M. W.: An Urban Surface Exchange Parameterisation for Mesoscale Models, Bound.-Lay. Meteorol., 104, 261–304, https://doi.org/10.1023/A:1016099921195, 2002. a, b, c
Martilli, A., Santiago, J. L., and Salamanca, F.: On the representation of urban heterogeneities in mesoscale models, Environ. Fluid Mech., 15, 305–328, https://doi.org/10.1007/s10652-013-9321-4, 2015. a
McNorton, J. R., Arduini, G., Bousserez, N., Agustí‐Panareda, A., Balsamo, G., Boussetta, S., Choulga, M., Hadade, I., and Hogan, R. J.: An Urban Scheme for the ECMWF Integrated Forecasting System: Single‐Column and Global Offline Application, J. Adv. Model. Earth Sy., 13, e2020MS002375, https://doi.org/10.1029/2020MS002375, 2021. a
Nazarian, N. and Kleissl, J.: Urban Climate CFD simulation of an idealized urban environment: Thermal effects of geometrical characteristics and surface materials, Urban Clim., 12, 141–159, https://doi.org/10.1016/j.uclim.2015.03.002, 2015. a
Nazarian, N., Krayenhoff, E. S., and Martilli, A.: A one-dimensional model of turbulent flow through “urban” canopies (MLUCM v2.0): updates based on large-eddy simulation, Geosci. Model Dev., 13, 937–953, https://doi.org/10.5194/gmd-13-937-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa
Piacsek, S. A. and Williams, G. P.: Conservation properties of convection difference schemes, J. Comput. Phys., 6, 392–405, https://doi.org/10.1016/0021-9991(70)90038-0, 1970. a
Poggi, D. and Katul, G. G.: The effect of canopy roughness density on the constitutive components of the dispersive stresses, Exp. Fluids, 45, 111–121, https://doi.org/10.1007/s00348-008-0467-7, 2008a. a
Poggi, D. and Katul, G. G.: Micro- and macro-dispersive fluxes in canopy flows, Acta Geophys., 56, 778–799, https://doi.org/10.2478/s11600-008-0029-7, 2008b. a, b, c
Raupach, M. R. and Shaw, R. H.: Averaging procedures for flow within vegetation canopies, Bound.-Lay. Meteorol., 22, 79–90, https://doi.org/10.1007/BF00128057, 1982. a
Redon, E., Lemonsu, A., and Masson, V.: An urban trees parameterization for modeling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance model (TEB-SURFEX v8.0), Geosci. Model Dev., 13, 385–399, https://doi.org/10.5194/gmd-13-385-2020, 2020. a
Ross, A. N.: Boundary-layer flow within and above a forest canopy of variable density, Q. J. Roy. Meteor. Soc., 138, 1259–1272, https://doi.org/10.1002/qj.989, 2012. a
Salamanca, F., Krpo, A., and Martilli, A.: A new building energy model coupled with an urban canopy parameterization for urban climate simulations – part I. formulation, verification, and sensitivity analysis of the model, Theor. Appl. Climatol., 99, 331–344, https://doi.org/10.1007/s00704-009-0142-9, 2010. a
Santiago, J. L. and Martilli, A.: A Dynamic Urban Canopy Parameterization for Mesoscale Models Based on Computational Fluid Dynamics Reynolds-Averaged Navier-Stokes Microscale Simulations, Bound.-Lay. Meteorol., 137, 417–439, https://doi.org/10.1007/s10546-010-9538-4, 2010a. a
Santiago, J. L., Coceal, O., and Martilli, A.: How to Parametrize Urban-Canopy Drag to Reproduce Wind-Direction Effects Within the Canopy, Bound.-Lay. Meteorol., 149, 43–63, https://doi.org/10.1007/s10546-013-9833-y, 2013. a, b
Santiago, J. L., Krayenhoff, E. S., and Martilli, A.: Urban Climate Flow simulations for simplified urban configurations with microscale distributions of surface thermal forcing, Urban Clim., 9, 115–133, https://doi.org/10.1016/j.uclim.2014.07.008, 2014. a
Schmid, M. F., Lawrence, G. A., Parlange, M. B., and Giometto, M. G.: Volume Averaging for Urban Canopies, Bound.-Lay. Meteorol., 173, 349–372, https://doi.org/10.1007/s10546-019-00470-3, 2019. a
Schoetter, R., Kwok, Y. T., de Munck, C., Lau, K. K. L., Wong, W. K., and Masson, V.: Multi-layer coupling between SURFEX-TEB-v9.0 and Meso-NH-v5.3 for modelling the urban climate of high-rise cities, Geosci. Model Dev., 13, 5609–5643, https://doi.org/10.5194/gmd-13-5609-2020, 2020. a
Siebesma, A. P., Soares, P. M. M., and Teixeira, J.: A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer, J. Atmos. Sci., 64, 1230–1248, https://doi.org/10.1175/JAS3888.1, 2007. a, b, c
Simón-moral, A., Santiago, J. L., and Martilli, A.: Effects of Unstable Thermal Stratification on Vertical Fluxes of Heat and Momentum in Urban Areas, Bound.-Lay. Meteorol., 163, 103–121, https://doi.org/10.1007/s10546-016-0211-4, 2016. a, b, c, d
Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y. S. E., Dauphin, Y., Keysers, D., Neumann, M., Cisse, M., and Quinn, J.: Continental-Scale Building Detection from High Resolution Satellite Imagery, arXiv [preprint], https://doi.org/10.48550/arXiv. 2107.12283, 2021. a
Stiperski, I. and Calaf, M.: Dependence of near‐surface similarity scaling on the anisotropy of atmospheric turbulence, Q. J. Roy. Meteor. Soc., 144, 641–657, https://doi.org/10.1002/qj.3224, 2018. a
Sun, J., Takle, E. S., and Acevedo, O. C.: Understanding Physical Processes Represented by the Monin–Obukhov Bulk Formula for Momentum Transfer, Bound.-Lay. Meteorol., 177, 69–95, https://doi.org/10.1007/s10546-020-00546-5, 2020. a
Sušelj, K., Teixeira, J., and Matheou, G.: Eddy Diffusivity/Mass Flux and Shallow Cumulus Boundary Layer: An Updraft PDF Multiple Mass Flux Scheme, J. Atmos. Sci., 69, 1513–1533, https://doi.org/10.1175/JAS-D-11-090.1, 2012. a
Sützl, B. S., Rooney, G. G., Finnenkoetter, A., Bohnenstengel, S. I., Grimmond, S., and van Reeuwijk, M.: Distributed urban drag parametrization for sub‐kilometre scale numerical weather prediction, Q. J. Roy. Meteor. Soc., 147, 3940–3956, https://doi.org/10.1002/qj.4162, 2021a. a, b
Sützl, B. S., Rooney, G. G., and van Reeuwijk, M.: Drag Distribution in Idealized Heterogeneous Urban Environments, Bound.-Lay. Meteorol., 178, 225–248, https://doi.org/10.1007/s10546-020-00567-0, 2021b. a
Williamson, J.: Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 48–56, https://doi.org/10.1016/0021-9991(80)90033-9, 1980. a
Wilson, J. D.: A second-order closure model for flow through vegetation, Bound.-Lay. Meteorol., 42, 371–392, https://doi.org/10.1007/BF00121591, 1988. a
Xie, Z.-T., Coceal, O., and Castro, I. P.: Large-Eddy Simulation of Flows over Random Urban-like Obstacles, Bound.-Lay. Meteorol., 129, 1–23, https://doi.org/10.1007/s10546-008-9290-1, 2008. a
Ye, Q., Schrijer, F. F., and Scarano, F.: Geometry effect of isolated roughness on boundary layer transition investigated by tomographic PIV, International J. Heat Fluid Flow, 61, 31–44, https://doi.org/10.1016/j.ijheatfluidflow.2016.05.016, 2016. a
Yuan, C., Shan, R., Zhang, Y., Li, X.-X., Yin, T., Hang, J., and Norford, L.: Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas, Sci. Total Environ., 647, 255–267, https://doi.org/10.1016/j.scitotenv.2018.07.409, 2019. a
Short summary
This study enhances urban canopy models by refining key assumptions. Simulations for various urban scenarios indicate discrepancies in turbulent transport efficiency for flow properties. We propose two modifications that involve characterizing diffusion coefficients for momentum and turbulent kinetic energy separately and introducing a physics-based
mass-fluxterm. These adjustments enhance the model's performance, offering more reliable temperature and surface flux estimates.
This study enhances urban canopy models by refining key assumptions. Simulations for various...