Articles | Volume 17, issue 6
https://doi.org/10.5194/gmd-17-2427-2024
https://doi.org/10.5194/gmd-17-2427-2024
Model description paper
 | 
28 Mar 2024
Model description paper |  | 28 Mar 2024

ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package

Daniel Giles, Matthew M. Graham, Mosè Giordano, Tuomas Koskela, Alexandros Beskos, and Serge Guillas

Related authors

The VOLNA-OP2 tsunami code (version 1.5)
Istvan Z. Reguly, Daniel Giles, Devaraj Gopinathan, Laure Quivy, Joakim H. Beck, Michael B. Giles, Serge Guillas, and Frederic Dias
Geosci. Model Dev., 11, 4621–4635, https://doi.org/10.5194/gmd-11-4621-2018,https://doi.org/10.5194/gmd-11-4621-2018, 2018
Short summary

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982, 2017. a
Barth, A., Saba, E., Carlsson, K., and Kelman, T.: DataAssim.jl: Implementation of various ensemble Kalman Filter data assimilation methods in Julia, https://github.com/Alexander-Barth/DataAssim.jl (last access: 27 February 2023), 2016. a, b
Bengtsson, T., Bickel, P., and Li, B.: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems, in: Probability and statistics: Essays in honor of David A. Freedman, 316–334, Institute of Mathematical Statistics, 2008. a
Berquin, Y. and Zell, A.: A physics perspective on LIDAR data assimilation for mobile robots, Robotica, 40, 862–887, https://doi.org/10.1017/S0263574721000850, 2022. a
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing, SIAM Review, 59, 65–98, https://doi.org/10.1137/141000671, 2017. a
Download
Short summary
Digital twins of physical and human systems informed by real-time data are becoming ubiquitous across a wide range of settings. Progress for researchers is currently limited by a lack of tools to run these models effectively and efficiently. A key challenge is the optimal use of high-performance computing environments. The work presented here focuses on a developed open-source software platform which aims to improve this usage, with an emphasis placed on flexibility, efficiency, and scalability.