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Abstract. Digital twins of physical and human systems in-
formed by real-time data are becoming ubiquitous across
weather forecasting, disaster preparedness, and urban plan-
ning, but researchers lack the tools to run these models ef-
fectively and efficiently, limiting progress. One of the cur-
rent challenges is to assimilate observations in highly non-
linear dynamical systems, as the practical need is often to
detect abrupt changes. We have developed a software plat-
form to improve the use of real-time data in non-linear sys-
tem representations where non-Gaussianity limits the appli-
cability of data assimilation algorithms such as the ensemble
Kalman filter and variational methods. Particle-filter-based
data assimilation algorithms have been implemented within
a user-friendly open-source software platform in Julia – Par-
ticleDA.jl. To ensure the applicability of the developed plat-
form in realistic scenarios, emphasis has been placed on nu-
merical efficiency and scalability on high-performance com-
puting systems. Furthermore, the platform has been devel-
oped to be forward-model agnostic, ensuring that it is ap-
plicable to a wide range of modelling settings, for instance
unstructured and non-uniform meshes in the spatial domain
or even state spaces that are not spatially organized. Appli-
cations to tsunami and numerical weather prediction demon-
strate the computational benefits and ease of using the high-
level Julia interface with the package to perform filtering in
a variety of complex models.

1 Introduction

Data assimilation (DA) focuses on optimally combining ob-
servations with a dynamical model of a physical system to
estimate how the system state evolves over time. The field
of research has its origins within the numerical weather pre-
diction (NWP) community, where DA techniques are applied
iteratively to update current best estimates of the state of the
atmosphere. Recently the methods and practices developed
have been employed in diverse areas of geosciences, with
Carrassi et al. (2018) and Vetra-Carvalho et al. (2018) pro-
viding recent overviews. Further DA has seen a huge expan-
sion into other scientific disciplines with applications in, for
example, robotics (Berquin and Zell, 2022), economic mod-
elling (Nadler et al., 2019), and plasma physics (Sanpei et al.,
2021). In the era of digital twinning, which involves combin-
ing high-fidelity representations of reality with the optimal
use of observations, real-time data have become vital and
DA frameworks have naturally been incorporated. The area
of data learning has also emerged where DA approaches are
integrated with machine learning techniques (Buizza et al.,
2022).

There are various popular DA techniques, with variational
methods (3D-Var and 4D-Var) (Thépart et al., 1993) and
ensemble Kalman filters (EnKFs) (Evensen, 1994; Burgers
et al., 1998) being extensively used in operational and re-
search settings. Bannister (2017) provides a good overview
of operational methods. However, these methods have dif-
ficulties with handling non-linear problems and with repre-
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senting uncertainties accurately (Lei et al., 2010; Bocquet
et al., 2010). For instance Miyoshi (2005) and Kondo and
Miyoshi (2019) updated an ensemble of 10 240 particles us-
ing the EnKF to demonstrate the bimodality of some distribu-
tions due to inherent non-linearities. Furthermore, the contin-
uing growth in compute hardware performance has allowed
running increasingly complex and high-resolution models
which are able to resolve non-linear processes happening
at a fine spatial scale (Vetra-Carvalho et al., 2018), creat-
ing an increasing demand for DA methods which are able
to accurately quantify uncertainty in such settings. Particle
filters (PFs) (Gordon et al., 1993) are an alternative approach
which offer the promise of consistent DA for problems with
non-linear dynamics and non-Gaussian noise distributions.
Traditionally the main difficulty with particle filtering tech-
niques has been the “curse of dimensionality” (Bengtsson
et al., 2008; Bickel et al., 2008; Snyder, 2011), where in high-
dimensional settings, filtering leads to degeneracy of the im-
portance weights associated with each particle and loss of
diversity within an ensemble unless the ensemble size scales
exponentially with the observation dimension. To improve
the applicability of PFs, there have been many recent devel-
opments involving localization techniques (e.g. the reviews
in Farchi and Bocquet, 2018; Graham and Thiery, 2019), in-
corporation of tempering and/or mutation steps (e.g. Cotter
et al., 2020; Ruzayqat et al., 2022), hybrid approaches, im-
proved computational implementations, and combination of
the above with improved proposal distributions. The above
ongoing efforts have extended the applicability of PF meth-
ods within geoscientific domains. Leeuwen et al. (2019) pro-
vide an overview on the integration of particle filters in high-
dimensional geoscience applications.

The DA paradigm of optimally combining observations
and model has a wide range of applications. However, an
existing hurdle impeding the incorporation of data into pre-
existing dynamical models is the lack of readily available
software packages capable of bridging the two sources of in-
formation: model and observations. This is the motivation
behind ParticleDA.jl: to provide a generic and user-friendly
framework to enable the incorporation of particle filtering
techniques with pre-existing numerical models. ParticleDA.jl
is an open-source package in Julia which provides efficient
implementations of several particle filter algorithms and also
importantly offers an extensible framework to allow the sim-
ple addition of new filter implementations. It has been de-
veloped to be agnostic to the forward model to ensure appli-
cability in a wide range of settings, and emphasis has been
placed on computational efficiency and scalability on high-
performance computing systems. Initial efforts have been
focused on integration with spatially dependent numerical
models; however the implementation is applicable to a much
more general class of state space models (see Sect. 2), allow-
ing incorporation in a broad range of applications.

For a specific class of state space models with additive
Gaussian state and observation noise, as well as linear obser-

vation operators, ParticleDA.jl allows particle filtering with
the so-called “locally optimal” proposal distribution. Though
the latter is not amongst the latest contributions in the PF
literature (e.g. Doucet et al., 2000), it has not been exten-
sively explored in the systems driven by high-dimensional
partial differential equations (PDEs), which we use as case
studies in this work. As noted in Snyder (2011), improved
proposals used within PFs can in practice significantly im-
prove the performance of the algorithm but by themselves do
not overcome the curse of dimensionality. Our numerical ex-
periments illustrate that ParticleDA.jl can already be usefully
applied in practice to models with moderately high dimen-
sions; however, an important line of future work will be ex-
tending the framework with additional filter implementation
incorporating approaches such as localization and tempering
to allow scaling to very high-dimensional settings.

Within the Julia ecosystem, there are several existing pack-
ages which implement data assimilation algorithms. DataAs-
sim.jl (Barth et al., 2016) provides implementations of a
range of EnKF and extended Kalman filter (KF) methods
and an incremental variant of 4DVar. EnKF.jl (Le Provost,
2016) implements stochastic and deterministic (square-root)
variants of the EnKF which can be combined with vari-
ous approaches (e.g. covariance inflation) to avoid ensemble
collapse in models with deterministic dynamics. Kalman.jl
(Schauer et al., 2018) and KalmanFilters.jl (Schoenbrod,
2018) both provide implementations of the exact KF algo-
rithm for linear Gaussian models, with KalmanFilters.jl ad-
ditionally implementing unscented variants of the KF for use
in models with non-linear dynamics or observation operators.
ParticleFilters.jl (Sunberg et al., 2017) and LowLevelParti-
cleFilters.jl (Carlson et al., 2018) both provide PF implemen-
tations, with LowLevelParticleFilters.jl additionally provid-
ing KF implementations. SequentialMonteCarlo.jl (Lee and
Piibeleht, 2017) provides an interface for implementing (and
example implementations of) the wider class of sequential
Monte Carlo (SMC) methods, of which PFs can be consid-
ered a special case, with the ability to run particle ensembles
in parallel on multiple threads. EnsembleKalmanProcesses.jl
(Dunbar et al., 2022) implements several derivative-free op-
timization algorithms based on the EnKF, mainly targeted at
Bayesian inverse problem settings. Another package to note
in the Julia ecosystem is DataAssimilationBenchmarks.jl
(Grudzien and Bocquet, 2022; Grudzien et al., 2022), which
offers a framework to empirically validate and develop novel
DA techniques.

Table 1 summarizes the algorithm and parallelism sup-
port of existing Julia data assimilation packages along with
our package ParticleDA.jl. The existing packages LowLevel-
ParticleFilters.jl and SequentialMonteCarlo.jl, which support
parallelization of operations across ensemble members, both
use shared-memory parallelism, with tasks run simultane-
ously across multiple threads on the same device. In contrast,
as described in Sect. 3.3, our package ParticleDA.jl supports
both shared- and distributed-memory parallelism, which en-
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Table 1. Summary of algorithms implemented and parallelism support in existing Julia data assimilation packages.

Package name Algorithms Parallelism

DataAssim.jl (Barth et al., 2016) EnKF, 4DVar
EnKF.jl (Le Provost, 2016) EnKF
Kalman.jl (Schauer et al., 2018) KF
KalmanFilters.jl (Schoenbrod, 2018) KF
LowLevelParticleFilters.jl (Carlson et al., 2018) PF, KF Shared memory
ParticleFilters.jl (Sunberg et al., 2017) PF
SequentialMonteCarlo.jl (Lee and Piibeleht, 2017) PF (SMC) Shared memory
ParticleDA.jl PF, KF Shared and distributed memory

ables efficient deployment on high-performance computing
(HPC) systems.

We implemented ParticleDA.jl in the Julia programming
language (Bezanson et al., 2017) because of its combination
of performance and productivity, which enables rapid proto-
typing and development of high-performance numerical ap-
plications (Churavy et al., 2022; Giordano et al., 2022), with
the possibility of using both shared- and distributed-memory
parallelism strategies. In particular, Julia makes use of the
multiple-dispatch programming paradigm, which is particu-
larly well-suited for designing a program which combines
different models with different filtering algorithms, keeping
the two concerns separated. This allows domain experts and
software engineers to collaborate on the code using the same
high-level language.

The rest of this paper is organized as follows. The math-
ematical set-up of the particle-filtering algorithm is defined
in Sect. 2 along with the various filtering proposal distri-
butions implemented. Section 3 outlines the code structure
and parallelization schemes. Sections 4 and 5 illustrate ap-
plications of the framework to simple low-dimensional state
space models, namely a stochastically driven damped sim-
ple harmonic oscillator model and a stochastic variant of the
Lorenz 1963 chaotic attractor model (Lorenz, 1963). Sec-
tion 6 introduces an application to a spatially extended state
space model, specifically a tsunami modelling test case for-
mulated as a linear Gaussian state space model, with vali-
dation of the filtering approaches and parallel performance
scaling results. In Sect. 7 the incorporation with a more com-
plex non-linear atmospheric dynamical model is investigated
along with some results. Finally in Sect. 8 concluding re-
marks and future work are outlined.

2 Particle filtering

Let xt ∈ Rdx represent the state of the model at an integer
time index t and yt ∈ Rdy the vector of observations of the
system at this time index. We assume a state space model for-
mulation, with the states following a Markov process and the
observations depending only on the state at the correspond-

ing time index; that is

x0 ∼ p0(·), xt ∼ pt (·|xt−1), yt ∼ gt (·|xt ), t ≥ 1, (1)

where p0 : Rdx → R≥0 is the density of the initial state distri-
bution; pt : Rdx ×Rdx → R≥0, t ≥ 1 are the densities of the
state transition distributions; and gt : Rdy ×Rdx → R≥0, t ≥

1 are the densities of the conditional distribution of the ob-
servations given the current states.

A key assumption of the state space model formulation is
that the state of the system evolves stochastically in time. In
geophysical applications, commonly the models of interest
are specified as the solution to time-dependent PDEs or sys-
tems of ordinary differential equations (ODEs), for which
the state dynamics are inherently deterministic. Without a
stochastic element to the dynamics, the evolution of the state
over time is entirely determined by the initial state. To per-
form particle filtering in such models, we must therefore aug-
ment the deterministic dynamics of the model with stochastic
updates. These stochastic updates can be considered random
forcings of the model representing physical processes not
modelled in the deterministic model as well as the discretiza-
tion errors introduced when simulating ODE and PDE mod-
els (Leeuwen et al., 2019). Importantly the stochastic updates
should maintain any constraints or relationships between the
state variables in the underlying physical phenomena being
modelled – for example for state vectors corresponding to
spatial discretizations of a continuous field, the stochastic up-
dates should maintain any assumed smoothness properties of
the field.

For the most part, we will concentrate on a specialization
of this general state space model class, whereby the state and
observations are both subject to additive Gaussian noise and
the observations depend linearly on the state, which covers
a wide range of modelling scenarios in practice. Concretely
we consider a state update of the form

xt = Ft (xt−1)+ut , ut ∼N (0,Q), t ≥ 1, (2)

where Ft : Rdx → Rdx is the forward operator at time index
t , representing the deterministic dynamics of the system, and
ut ∈ Rdx is the additive Gaussian state noise at time index t ,
representing stochastic aspects of the system dynamics. The
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Algorithm 1 Particle filter.

1: Initialize particles {x(i)0 }
N
i=1, with x

(i)
0 ∼ p0(·), for 1≤ i ≤N .

2: for time index t = 1 to T do
3: for particle index i = 1 to N do
4: Sample proposed particle x̃

(i)
t ∼ qt (· |x

(i)
t−1,yt ).

5: Compute (unnormalized) importance weight w
(i)
t =

Wt (x̃
(i)
t ,x

(i)
t−1,yt )=

pt (x̃
(i)
t |x

(i)
t−1)gt (yt | x̃

(i)
t )

qt (x̃
(i)
t |x

(i)
t−1,yt )

.

6: end for
7: Generate new (equally weighted) particles {x(i)t }

N
i=1 by re-

sampling from the weighted empirical distribution

x
(i)
t ∼

∑N
i=1w

(i)
t δx̃(i)t

(·)∑N
i=1w

(i)
t

.

8: end for

observations are modelled as being generated according to

yt =H(xt )+ vt , vt ∼N (0,R), t ≥ 1, (3)

where H ∈ Rdy×dx is a linear observation operator and vt ∈

Rdy is the additive Gaussian observation noise. The distri-
butions of the state and observation noise are parameter-
ized by positive definite covariance matrices Q ∈ Rdx×dx and
R ∈ Rdy×dy respectively.

The objective of the particle filter is to estimate the filter-
ing distribution for each time index t , which is the condi-
tional probability distribution of the state xt given observa-
tions y1, . . .,yt up to time index t , with the density of the
filtering distribution at time index t denoted πt (xt |y1:t ).

The particle-filtering algorithm builds on sequential im-
portance sampling by introducing additional resampling
steps. See Doucet et al. (2000) for an in-depth introduc-
tion, but the key features are introduced in Algorithm 1.
An ensemble of particles {x(i)t }

N
i=1 represents an approxima-

tion of the filtering distribution at each time index t ≥ 1 as
πt (dxt |y1:t )≈

1
N

∑N
i=1δx(i)t

(dxt ). In each filtering step, new
values for the particles are sampled from a proposal distribu-
tion (more details about the proposals implemented in Parti-
cleDA.jl are given in Sect. 2.1) and importance weights com-
puted for each proposed particle value. At the end of the fil-
tering step, the weighted proposed particle ensemble is re-
sampled to produce a new uniformly weighted ensemble to
use as the input to the next filtering step.

2.1 Proposal distributions

Two forms of proposal distributions are implemented in Par-
ticleDA.jl: the “naive” bootstrap proposal, applicable to gen-
eral state space models described by Eq. (1), and the locally
optimal proposal, which can be tractably computed only for a
restricted class of state space models, including importantly
those described by Eqs. (2) and (3).

The bootstrap proposal ignores the observations with the
particle proposals sampled from the state transition distribu-
tions,

qt (xt |xt−1,yt )= pt (xt |xt−1), (4)

with the unnormalized importance weights at time index t ≥
1 then simplifying to

Wt (xt ,xt−1,yt )= gt (yt |xt ) (=Wt (xt ,yt )). (5)

While appealingly simple and applicable to a wide class of
models, the bootstrap particle filter performs poorly when
observations are informative about the state due to the ob-
servations being ignored in the proposal. In such cases the
proposed particles will typically be far away from the mass of
the true filtering distribution, with the importance weights in
this setting tending to have high variance, leading to weight
degeneracy whereby all the normalized importance weights
but one are close to zero.

To alleviate the tendency to weight degeneracy, we can use
alternative proposal distributions which decrease the vari-
ance of the importance weights. For proposal distributions
qt (xt |xt−1,yt ) which condition only on the previous state
xt−1 and current observation yt , the optimal proposal, in the
sense of minimizing the variance of the importance weights,
can be shown (Doucet et al., 2000) to be

qt (xt |xt−1,yt )=
pt (xt |xt−1)gt (yt |xt )∫
pt (x̃t |xt−1)gt (yt | x̃t )dx̃t

, (6)

with corresponding unnormalized importance weights

Wt (xt ,xt−1,yt )=

∫
pt (x̃t |xt−1)gt (yt | x̃t )dx̃t

(=Wt (xt−1,yt )). (7)

Note that in this case the importance weights are independent
of the sampled values of the particle proposals.

For general state space models, sampling from this locally
optimal proposal and computing the importance weights can
be infeasible due to the integral in Eqs. (6) and (7) not having
a closed-form solution. However, for the specific case of a
state space model of the form described by Eqs. (2) and (3),
the proposal distribution has the tractable form

qt (xt |xt−1,yt )=N
(
xt |Ft (xt−1)+QHT

· (HQHT
+R)−1(yt −HFt (xt−1)),

Q−QHT (HQHT
+R)−1HQ

)
, (8)

with corresponding importance weights

Wt (xt ,xt−1,yt )=N
(
yt |HFt (xt−1),HQHT

+R
)
. (9)

To generate samples from the locally optimal proposal distri-
bution, we exploit the fact that for x̃t ∼N (Ft (xt−1),Q) and
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ỹt ∼N (Hx̃t ,R) – that is (x̃t , ỹt ) sampled from the joint dis-
tribution on the state and observation given the previous state
xt−1 under the state space model –

xt = x̃t +QHT (HQHT
+R)−1(yt − ỹt ) (10)

is distributed according to the locally optimal proposal dis-
tribution in Eq. (8). Importantly this means that to use the
locally optimal proposal distribution when filtering, we only
need to implement functions for sampling from the state tran-
sition and observation models and functions for evaluating
the matrix terms in Eq. (10) – that is QHT and HQHT

+R.
Note that unlike a direct implementation of sampling from
Eq. (8) by performing a Cholesky factorization of the pro-
posal covariance matrix, we do not need to explicitly evalu-
ate or store a dx×dx covariance matrix, and we only need to
perform an O(d3

y ) linear solver and O(dxdy) matrix–vector
multiplication rather than an O(d3

x ) Cholesky decomposi-
tion. As well as reducing the time and memory complexity of
the linear algebra operations, this approach reduces the im-
plementation burden on a user wishing to apply the locally
optimal proposal, by reusing functions required for simulat-
ing the forward model, and ensures any algorithmic efficien-
cies used in the implementation of simulating the forward
model are also leveraged in sampling from the locally opti-
mal proposal distribution.

In both the bootstrap and the locally optimal proposals, the
stochastic nature of the state transitions is essential to main-
taining diversity in the ensemble, ensuring any particles du-
plicated in the previous resampling step give rise to distinct
proposals. For state space models with the state update and
observation model described by Eqs. (2) and (3) specifically,
we can see that the bootstrap and locally optimal proposals
converge to the same degenerate distribution δFt (xt−1) as the
state noise vanishes. This emphasizes the importance of us-
ing stochastic state dynamics for the PF algorithms used here
to remain valid.

2.2 Resampling

A vital aspect of all PF algorithms is the resampling step
shown in Algorithm 1. Resampling multiplies particles found
at good positions in space that agree with observations and
removes unwanted particles, concentrating computational ef-
fort on the more plausible ensemble members. It is key for
establishing analytical results showing that Monte Carlo er-
rors in estimates of expectations under the filtering distri-
bution are controlled uniformly in time; see, for example,
the standard reference Del Moral (2004). Such a result pro-
vides a critical justification for the powerful performance of
PF-based algorithms in many applications. ParticleDA.jl im-
plements a systematic resampling scheme (Douc and Cappé,
2005), which uses a single uniform random variate to resam-
ple all the particle indices.

A useful metric for capturing the variability in the weights
before resampling and indicating whether weight degeneracy

Algorithm 2 Structure of ParticleDA.jl
run_particle_filter function.

1: Initialize model
2: Initialize states (‖)
3: Initialize filter
4: Initialize summary statistics (‖)
5: for time index t = 1 to T do
6: Sample proposal and compute (unnormalized) particle

weights for current observation yt (‖)
7: Gather particle weights (↔)
8: Normalize particle weights (◦)
9: Resample particle indices according to weights (◦)

10: Broadcast new particle indices (↔)
11: Copy particle states according to new indices (↔)
12: Update summary statistics (↔,‖)
13: Write outputs (◦)
14: end for

has occurred, is the estimated effective sample size (ESS),
which is defined as

ESSt =

{∑N
i=1w

(i)
t

}2∑N
i=1{w

(i)
t }

2
, (11)

where {w(i)t }
N
i=1 denotes the unnormalized particle impor-

tance weights. The estimated ESS approximates the num-
ber of independent samples that would produce estimates of
similar variance as the ones obtained by the available (corre-
lated) particles.

3 Code structure

As previously stated, ParticleDA.jl is designed to be forward-
model agnostic (i.e. capable of running with arbitrary state
space models). To enable this, the model and filter portions of
ParticleDA.jl are carefully delineated. The high-level struc-
ture of the main run_particle_filter function used
to perform filtering with a state space model given a se-
quence of observations y1, . . .,yT is summarized in Algo-
rithm 2, where T is the total number of observation times.
Operations which use thread-based parallelism are labelled
with (‖). When run across multiple processes, operations in-
volving communication across ranks are labelled with (↔)
and those which only run on the coordinating rank are la-
belled with (◦). Further details on the filter and model in-
terface and parallelization implementation are given in the
following sections.

3.1 Filter interface

Implementing a filtering algorithm in Par-
ticleDA.jl requires providing implementa-
tions of two functions, init_filter and
sample_proposal_and_compute_log_weights!,

https://doi.org/10.5194/gmd-17-2427-2024 Geosci. Model Dev., 17, 2427–2445, 2024



2432 D. Giles et al.: ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package

with the corresponding methods dispatched on a fil-
ter type argument which is a concrete subtype of the
ParticleFilter abstract type. Implementations are
currently provided for particle filters with bootstrap pro-
posals (with corresponding type BootstrapFilter)
and locally optimal proposals (with corresponding type
OptimalFilter).

The init_filter method deals with initializing any
filter-specific data structures, including allocating arrays to
hold the particle weights and resampling indices and en-
semble summary statistics. A set of shared filter parameters
are passed to the init_filter method as an instance of
a dedicated FilterParameters type, with functionality
provided for reading these parameters from a YAML file.
Key parameters include the number of particles in the ensem-
ble, the number of tasks used when scheduling parallelizable
operations in multi-threaded code segments (see Sect. 3.3),
the seed for the pseudo-random number generator used to
generate random variates during filtering, and the file path to
write filtering outputs to, as well as options for controlling
the verbosity of the filter output.

The sample_proposal_and_compute_log_
weights! method provides an implementation of gen-
erating new values for an ensemble of particles from
the proposal distribution associated with the filter type
and computing the corresponding unnormalized particle
weights (in particular their logarithms to maintain numerical
stability), corresponding to lines 4 and 5 in Algorithm 1
respectively. As hinted at by the presence of an ! suffix
in the function name, a convention in Julia for indicating
functions which mutate one or more of their arguments, the
sample_proposal_and_compute_log_weights!
function computes the updates to the arrays representing the
particle states and weights in place. The proposal generation
and weight computation stages are combined into a single
function rather than two separate functions to allow the filter
implementation to avoid redundant computations of quanti-
ties required in both sampling the proposals and computing
the weights. For example, both the locally optimal proposal
distribution in Eq. (8) and corresponding weights in Eq. (9)
require the values of the particles after the deterministic
update Ft but before addition of the state noise.

3.2 Model interface

To support filtering in general state space models while still
allowing filters to exploit additional structure in the model
when present, we define an extensible model interface, with
a core set of functions requiring implementation for all state
space models, with model classes with additional structure
able to extend this core interface. In particular we exploit
this approach for conditionally Gaussian state space models
having a state update and observation models of the form
described by Eqs. (2) and (3) respectively to allow filtering
using the locally optimal proposal distribution in Eq. (8).

Table 2 summarizes the key functions requiring implemen-
tation within the core interface both for general state space
models and for the restricted class of models for which the
locally optimal proposal can be applied, along with a brief
description of what operations they perform in the notation
of Sect. 2.

A key pair of functions in Table 2 are
update_state_deterministic! and
update_state_stochastic!, which for general
state space models when applied in sequence corre-
spond to sampling from the state transition distribution
xt ∼ pt (·|xt−1), while for models with state updates of
the specific form in Eq. (2), they correspond to updating
the state by applying the deterministic forward operator
Ft and incrementing by a state noise vector ut ∼N (0,Q)
respectively. While the state transitions for general state
space models may not factor into a composition of de-
terministic and stochastic updates, full generality is still
maintained as update_state_deterministic! can
leave the state vector unchanged (corresponding to an
identity operation) with update_state_stochastic!
then solely responsible for sampling from the state transition
distribution.

The functions get_covariance_state_observation
_given_previous_state and
get_covariance_observation_observation
_given_previous_state are required for computing
the locally optimal proposal update in Eq. (10). In both
cases the models’ implementations of these functions are
required to evaluate a scalar covariance value for a pair
of integer state or observation indices in 1 : dx and 1 : dy
respectively. Providing the state noise covariance Qij can be
evaluated in O(1) (with respect to dx and dy) operations for
pairs of state indices i,j ∈ 1 : dx , which will typically be the
case if the state noise corresponds to the discretization of a
Gaussian random field with an explicit covariance function
and the observation operator H is sparse (for example
each observation depends on the state at only one or a few
indices); then both functions can be evaluated in O(1) cost.
The dy × dx and dy × dy matrices HQ and HQHT

+R are
then evaluated by calling the functions for grids of state
and observation indices, with O(dydx) and O(d2

y ) costs
respectively, without requiring explicit construction of the
dx×dx matrix Q, which is particularly important when dx is
large.

As a further optimization, models can imple-
ment a get_state_indices_correlated_to_
observations function, which returns a subset of the
state indices 1 : dx that excludes indices for which the cor-
responding state variable is uncorrelated to all observation
variables (that is i ∈ 1 : dx such that (HQ)ij = 0 for all
values of j ∈ 1 : dy). For example, if the state corresponds
to the discretization of a set of spatial fields with the obser-
vations corresponding to only one of these fields, then only
the state indices corresponding to the observed field would
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Table 2. Summary of the main functions defining the model interface. Functions in rows marked ? are only required when using the locally
optimal proposal.

Function name Description

get_state_dimension Get value of dx
get_observation_dimension Get value of dy
sample_initial_state! Sample x0 ∼ p0(·)
sample_observation_given_state! Sample yt ∼ gt (·|xt )

get_log_density_observation_given_state Get value of loggt (yt |xt )
update_state_deterministic!

}
Sample xt ∼ pt (·|xt−1)update_state_stochastic!

get_observation_mean_given_state! Get value of Hxt ?

get_covariance_state_noise Get value of Qi,j ?

get_covariance_observation_noise Get value of Ri,j ?

get_covariance_state_observation_given_previous_state Get value of (HQ)i,j ?

get_covariance_observation_observation_given_previous_state Get value of (HQHT +R)i,j ?

need to be returned. This is then used to avoid needing to
compute the known zero-covariance terms.

The functions get_covariance_observation_
noise and get_covariance_state_noise are not
required directly for the locally optimal proposal update.
However, typically they will be used in the definitions of
other model methods, and models are required to provide im-
plementations to allow testing the model methods for internal
consistency and to support a Kalman filter implementation
for linear Gaussian models.

As well as providing implementation of the func-
tions in Table 2, models are required to implement an
initialization function which is passed to the top-level
run_particle_filter function and used to initialize
an instance of the model data structure type that the model in-
terface functions are dispatched on. This initialization func-
tion is passed a dictionary of model-specific parameter values
read from a YAML file and the number of tasks that may be
simultaneously scheduled when running model functions in
parallel (see Sect. 3.3), allowing the assignment of per-task
buffers for use in computing intermediate results while re-
maining thread-safe.

3.3 Parallelization scheme

As stated, both shared- and distributed-memory paralleliza-
tion approaches can be leveraged within ParticleDA.jl to ex-
ploit both multiple processing elements sharing memory on
a single node (for example central processing unit (CPU)
cores) and multiple nodes (potentially each with multiple
processing elements) in a cluster. Particle and weight updates
are parallelized across multiple threads on shared-memory
systems using the native task-based multi-threading support
in Julia. In distributed-memory environments, ParticleDA.jl
allows parallelizing across processes (ranks) with communi-
cation between processes performed using the Julia package
MPI.jl (Byrne et al., 2021), which acts as a wrapper around

a message passing interface (MPI) implementation installed
on the system. MPI.jl has been found to be able to achieve
little to no overhead in applications with thousands of MPI
ranks (Giordano et al., 2022). ParticleDA.jl uses HDF5 files
for file-based input (of the observed data used for filtering)
and output (of statistics computed during filtering), using the
HDF5.jl Julia package; when running in the distributed set-
ting, file input–output is performed only on a single coordi-
nating rank.

An illustration of how per-particle operations are dis-
tributed in the two-level parallelization scheme is given in
Fig. 1. Each MPI rank is assigned an equal proportion of the
total number of particles in the ensemble. Within each MPI
rank, operations which can be parallelized across particles
are scheduled across multiple tasks, each associated with a
subset of the particles assigned to the rank. The tasks are run
simultaneously across multiple threads, with the flexibility
in number of tasks per rank allowing a trade-off between im-
proved load balancing across processing elements on a rank
by having multiple tasks scheduled per parallel thread and
the increased overhead involved in scheduling more tasks.

A sketch of the key operations in the main filtering loop
and how they are distributed across multiple ranks is shown
in Fig. 2. A key principle is to reduce as much as possible
the requirement to communicate the full particle state vec-
tors between ranks. Particles remain local to specific ranks
for all operations other than when copying states as part of
the resampling step, with this step potentially requiring parti-
cles with large weight which are duplicated after resampling
to be copied point-to-point to other ranks. Communication
between ranks is also required when gathering the unnor-
malized particle weights to the coordinating rank to allow
normalization and when broadcasting the resampled particle
indices from the coordinating rank to other ranks; however
these operations only require communicating a single scalar
per particle.
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Figure 1. Visualization of the hierarchical parallelization model in ParticleDA.jl for an example case where updates to 24 particles are
distributed across three MPI ranks. Each rank splits the particles across four tasks, with these tasks scheduled to run in parallel across two or
more threads on each rank.

Figure 2. An overview of how the key stages in the filtering loop are distributed across R ranks in ParticleDA.jl. Rank 0 is the coordinating
rank which mediates communication across ranks and performs file input and output. Shaded nodes indicate stages which are run in parallel
across multiple threads on each rank. Edges between nodes indicate stages which involve communication across ranks.

Communication between ranks is also required when com-
puting any summary statistics of the estimated filtering dis-
tributions at each time index. ParticleDA.jl currently sup-
ports estimating the mean and, optionally, the variance of
the filtering distributions for each state dimension, with a
summary statistic type argument passed to the top-level
run_particle_filter function allowing specification
of which summary statistics to compute. Sufficient statistics
of the local particles for the relevant summary statistics are
computed on each rank before these local sufficient statis-
tics are accumulated on the coordinating rank using an MPI
reduce operation and are used to compute the statistics of in-
terest. For CPU architectures for which MPI.jl supports us-
ing custom reductions (https://github.com/JuliaParallel/MPI.

jl/issues/404, last access: 27 February 2023), a more numer-
ically stable “pooled” algorithm (Chan et al., 1982) is used
for computing the mean and variance (adapting the example
code given in Byrne et al., 2021); implementations of the less
numerically stable naive algorithms which directly accumu-
late the sum and sum of squares, which can be performed
using standard MPI sum reductions, are also provided as a
fallback for running on other CPU architectures.
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Figure 3. RMSE in particle filter estimates of filtering distribu-
tion means and (log) variances against number of particles for the
damped simple harmonic oscillator model. The RMSE values are
calculated against ground truth values computed using a Kalman
filter and are computed for the mean of the squared errors across all
state components and time steps.

4 Stochastically driven damped simple harmonic
oscillator

As a tractable first test case, we consider a two-dimensional
state space model corresponding to the time discretization of
a stochastic differential equation

dx(τ )=

(
0 1
−ω2

0 −ω0/Q

)
x(τ )dτ +

(
0
1

)
dW(τ),

representing a damped simple harmonic oscillator driven by
a Wiener noise process W(τ), with τ the (continuous) time
coordinate, ω0 the frequency of the undamped oscillator,
and Q a quality factor for the oscillator. This process has
been proposed as a model for astronomical time series data
(Foreman-Mackey et al., 2017), with details of its formula-
tion as a state space model given in Jordán et al. (2021). Im-
portantly, the state space model is linear Gaussian, so we can
use a Kalman filter to exactly compute the true Gaussian fil-
tering distributions.

We use an instance of the model with parameters ω0 =

1 and Q= 2. We assume an observation model yt ∼

N (xt ,0.52I), with xt = x(0.2t) (that is a fixed time step 0.2
between observation times), and simulate observations from
the model for T = 200 time steps with initial state distribu-
tion x0 ∼N (0,I). Figure 3 shows the root mean squared er-
rors (RMSEs) in particle filter estimates of the means and log
variances of the Gaussian filtering distributions (compared
to ground truth values computed using a Kalman filter), as a
function of the number of particles used in the ensemble, for
filters using both the bootstrap and the locally optimal pro-
posal. We see that the locally optimal proposal gives a small
but consistent improvement in RMSE for a given ensemble
size, reflecting the lower variance in the empirical estimates

compared to the filtering distributions. As expected, the er-
rors in the filter estimates appear to be asymptotically tending
to zero at a polynomial rate in the ensemble size, providing
some assurance of the correctness of the ParticleDA.jl filter
implementations.

5 Lorenz system

The Lorenz 63 system was introduced by Lorenz (1963) and
is a non-linear dynamical model capturing a simplified rep-
resentation of thermal convection. The model is defined by
the ODE system

dx1(τ )

dτ
= σ(x2(τ )− x1(τ )),

dx2(τ )

dτ
= ρx1(τ )− x2(τ )− x1(τ )x3(τ ),

dx3(τ )

dτ
= x1(τ )x2(τ )−βx3(τ ), (12)

where τ is the time coordinate; x1(τ ),x2(τ ), and x3(τ ) are
the prognostic variables of the model; and σ , ρ, and β are
free parameters. As outlined by Lorenz (1963), we have set
the free parameters to σ = 10, ρ = 28, and β = 8

3 as this set-
up will lead to chaotic behaviour. To formulate this as a state
space model with state transitions of the form described by
Eq. (2), we set Ft to the flow map corresponding to numer-
ically solving the initial value problem for the ODE system
in Eq. (12) over a fixed inter-observation time interval of 0.1
time units such that xt = (x1(0.1t),x2(0.1t),x3(0.1t)) and
use additive isotropic state noise with covariance Q= 0.52I.
The Tsit5 solver with adaptive time stepping from the Ju-
lia package DifferentialEquations.jl (Rackauckas and Nie,
2017) is used to solve the ODE system. The initial state
distribution is taken to be x0 ∼N (0,0.52I). We assume an
observation model yt ∼N (xt ,1.02I) and simulate observa-
tions for T = 500 times from the model to use for filtering.

Figure 4 illustrates the performance of a filtering run with
N = 100 particles applied to the simulated observations us-
ing the locally optimal proposal. The left subplot shows the
(noisy) observations and estimated mean of the filtering dis-
tributions at each of the observation times; note the appear-
ance of the Lorenz attractor. The right subplot shows the evo-
lution of the RMSE calculated for the estimated mean against
the observations for different number of particles (N ) with
the locally optimal proposal.

5.1 Non-linear observation operator

The effect of a non-linear observation operator on the perfor-
mance of the bootstrap filter proposal is explored; note that
the locally optimal proposal cannot be readily applied in this
set-up, and therefore only the bootstrap filter is used. Two
observation operators are introduced: the linear H(xt )= xt
and the non-linear H(xt )= log |xt | case.
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Figure 4. (a) Mean of the particles and the observations at each time step in state space for N = 100. (b) The RMSE calculated through time
for different numbers of particles (N ).

Simulations of the Lorenz system (Eq. 12) are carried out
with a similar set-up to in Sect. 5: an initial state distribution
taken to be x0 ∼N (0,0.52I), an observation model yt ∼

N (H(xt ),1.02I), and additive isotropic state noise with co-
variance Q= 0.52I. The bootstrap filter is used, and the ob-
servations are assimilated every 0.1 time units. For the non-
linear case, the observation operator acts upon the observa-
tion values, which are then perturbed by draws from the in-
dependent observation error.

The system is simulated for T = 5000 time steps, and a
time-averaged RMSE is calculated for the last 4500 steps for
the linear observation, the non-linear observation, and a no-
assimilation case. The time-averaged RMSE results are plot-
ted in Fig. 5.

6 Tsunami model

As a more complex test case, we now consider a tsunami
modelling example. Tsunamis are rare events which have the
capacity to cause severe loss of life and damage. At present,
tsunami warning centres rely on crude decision matrices, pre-
computed databases of high-resolution simulations, or “on-
the-fly” real-time simulations to rapidly deduce the hazard
associated with an event (Gailler et al., 2013). These exist-
ing approaches have been developed with seismically gen-
erated tsunamis in mind, and the alternative tsunamigenic
sources (landslide and volcanic eruptions) are less well con-
strained. The ongoing efforts of incorporating data assimi-
lation techniques within tsunami modelling could augment
warning centres’ capability in this regard (Maeda et al., 2015;
Gusman et al., 2016). It should be noted that the tsunami
model built into ParticleDA.jl is a drastic simplification of
tsunami models used in operational practice but provides a

Figure 5. Time-averaged RMSE for three different runs with var-
ious numbers of particles: a naive ensemble (no assimilation), the
linear observation case H(xt )= xt , and the non-linear observation
case H(xt )= log |xt |.

useful test case for users and showcases the potential of parti-
cle filters within tsunami modelling efforts. Further, it allows
for direct validation with a Kalman filter as the resulting state
space model is linear Gaussian.

As a first-order approximation, two-dimensional linear
long-wave equations (Goto, 1984), corresponding to a lin-
earization of the shallow-water equations, are used to capture
the tsunami dynamics. Assuming a state space model with
state transitions of the form described in Eq. (2), the (linear)
deterministic forward operator Ft (xt ) for the test case is de-
fined by numerically solving the PDEs
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∂η(τ,s1, s2)

∂τ
=−

∂u(τ,s1, s2)

∂s1
−
∂v(τ,s1, s2)

∂s2
,

∂u(τ,s1, s2)

∂τ
=−gh(s1, s2)

∂η(τ,s1, s2)

∂s1
,

∂v(τ,s1, s2)

∂τ
=−gh(s1, s2)

∂η(τ,s1, s2)

∂s2
, (13)

where τ is the time coordinate, (s1, s2) denotes the spatial
coordinates, η(τ,s1, s2) is the free-surface elevation (wave
height), h(s1, s2) is the (static) water depth, g is the accel-
eration due to gravity, and u(τ,s1, s2) and v(τ,s1, s2) are
the components of the depth-averaged horizontal velocities.
The system of linear PDEs in Eq. (13) is solved using a
first-order finite-difference scheme with absorbing boundary
conditions, using a Julia reimplementation of the tsunami
data assimilation code (TDAC) accompanying Gusman et al.
(2016).

The state vector xt is defined as the concatenation of the
flattened vectors formed by the spatial discretizations of the
fields η, u, and v on a 51×51 uniform grid over a square spa-
tial domain [0,2×105

]×[0,2×105
] (resulting in an overall

state dimension dx = 3×512
= 7803), with uniform interval

of 2 time units between observation times; that is

xt =
(
η(2t,0,0),η(2t,0,4× 103), . . .,η(2t,0,2× 105),

η(2t,4× 103,0), . . .,η(2t,2× 105,2× 105),

u(2t,0,0),u(2t,0,4× 103), . . .,u(2t,0,2× 105),

u(2t,4× 103,0), . . .,u(2t,2× 105,2× 105),

v(2t,0,0),v(2t,0,4× 103), . . .,v(2t,0,2× 105),

v(2t,4× 103,0), . . .,v(2t,2× 105,2× 105)
)
.

The additive state noise is chosen as the spatial discretiza-
tions of independent Gaussian random fields for each of
the variables η, u, and v, with a Matérn covariance ker-
nel with length-scale parameter λ= 500, smoothness param-
eters µ= 2.5, and marginal standard deviation parameter
σ = 0.01 used for all three fields. The spatially correlated
nature of the state noise distribution ensures the perturbed
spatial fields remain smooth. A circulant embedding method
(Dietrich and Newsam, 1997) implemented in the Julia pack-
age GaussianRandomFields.jl (Robbe, 2017) is used to effi-
ciently simulate Gaussian random fields on a uniform grid
using fast Fourier transforms, resulting in an O(dx logdx)
operation cost complexity for each realization. For filtering,
the initial state distribution is also chosen to correspond to
a zero-mean Gaussian distribution corresponding to the spa-
tial discretizations of independent Gaussian random fields for
each of the variables η, u, and v, with a Matérn covariance
kernel with the same parameters (λ,µ,σ ) as above.

We assumed noisy pointwise observations of the
free-surface-elevation field η at 15 “station” locations
{s
(m)
1 , s

(m)
2 }

15
m=1, chosen as grid points randomly sampled

from a uniform distribution over the spatial grid for simplic-
ity, with independent observation noise with standard devi-
ation 0.01; that is yt ∼N

(
(η(2t, s(m)1 , s

(m)
2 ))15

m=1,0.012I
)

.
For the simulation of the observations, to produce an ini-
tial wave-producing perturbation, the mean of the initial state
distribution for the free-surface-elevation components is al-
tered to correspond to the function

η̄0(s1, s2)=


((1+ cos(π(s1 − a)/c))
(1+ cos(π(s2 − a)/c)))d/4 (s1 − a)

2
+ (s2 − a)

2
≤ c2,

0 otherwise,

(14)

evaluated at the grid points with a = 104, b = 104, c = 3×
104, and d = 30, with the mean of the velocity components
left as zero. As the initial state distribution assumed when
filtering differs, we have a small degree of model mismatch.
The observations are simulated for T = 640 times, with the
PDE system numerically integrated in time for four time
steps of 0.5 time units between each pair of observation
times.

6.1 Validation

We performed an initial filtering run on the simulated ob-
servations using an ensemble of N = 50 particles using the
locally optimal proposals. Snapshots of the simulated free-
surface-elevation field used to generate the observations and
the corresponding particle estimate of the mean of the filter-
ing distribution on the free-surface-elevation field are shown
in Fig. 6.

As the tsunami state space model implemented here is lin-
ear Gaussian, a Kalman filter was used to compute ground
truth values for the means (and covariances) of the filtering
distributions, and these were then compared to the filtering
estimates for various ensemble sizes N and proposal distri-
butions. Figure 7a shows the RMSE in the estimate of the
filtering distribution mean for each observation time for PF
using both the locally optimal and the bootstrap proposals
with the same ensemble size (N = 50). The filter using the
locally optimal proposal can be observed to give a consistent
improvement in the accuracy of the filtering distribution esti-
mates across time. Figure 7b instead shows the RMSE in the
estimate of the filtering distribution mean at a single obser-
vation time τ = 200, for filtering runs with varying ensemble
sizes N for both bootstrap and locally optimal proposals; the
results indicate a consistent gain in accuracy of the filtering
estimates when using the locally optimal compared to boot-
strap proposal, across a range of different ensemble sizes N .

6.2 Parallelization performance

As discussed in Sect. 3.3, ParticleDA.jl is capable of leverag-
ing both shared- and distributed-memory parallelism. Scal-
ing runs on ARCHER2, which is the UK’s Tier-1 supercom-
puter, have been carried out to highlight the performance in
practice. A weak-scaling study, using the same experimen-
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Figure 6. Snapshots of the surface elevation used to generate the simulated observations (a) and the corresponding estimated filtering
distribution means using N = 50 particles (b).

tal set-up as described in Sect. 6.1, is run with the bootstrap
proposal, keeping the number of particles per core constant
while increasing the number of nodes. The compute nodes on
ARCHER2 consist of 2× AMD EPYC 7742, 2.25 GHz, 64-
core, with 8 non-uniform memory access (NUMA) regions
per node (16 cores per NUMA region, 8 cores per core com-
plex die (CCD) and 4 cores per core complex (CCX) (shared
L3 cache)). The weak-scaling runs try to optimize for this
hardware architecture with various runs targeting an MPI
rank per NUMA/CCD/CCX region and an appropriate num-

ber of threads per MPI rank (Fig. 8). The weak-scaling effi-
ciency is defined as E(N)= T (2)

T (N)
, where T (N) is the wall

time for running on N MPI ranks. There are 2 particles per
core, so at the maximum number of cores (2048) and ranks
(128) tested here, there are 4096 particles.

As stated in Sect. 3.3, the main performance bottlenecks
are the communication steps: the copying of states and the
gathering of particle weights, which require point-to-point
communications and a global communication step respec-
tively. Another component which contributes to poor scal-
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Figure 7. (a) RMSE in particle filter estimates of filtering distribution across observation times for the tsunami models with a fixed ensemble
size ofN = 50 for filters using both bootstrap and locally optimal proposals. (b) RMSEs in particle filter estimates of the filtering distribution
mean for both the bootstrap and the locally optimal proposal at τ = 200 for varying ensemble size N . Note that the RMSE values are
calculated against the true mean of the filtering distributions coming from a Kalman filter run.

ing for large node counts is updating the summary statistics,
which requires a reduction in the mean and optionally the
variance for each state dimension over all MPI ranks. For the
results presented here, we have mostly remedied this loss of
performance by collecting statistics at the final filtering iter-
ation only. However, it should be noted that for cases which
need frequent outputted statistics, this will contribute to a
degradation of the parallel performance.

7 Atmospheric general circulation model (AGCM)

An integration of ParticleDA.jl with an atmospheric dynami-
cal model, Simplified Parameterizations, primitivE-Equation
DYnamics (SPEEDY), showcases the efforts involved in cou-
pling the software with pre-existing model implementations.
SPEEDY is an AGCM which was developed by Molteni
(2003) and consists of a spectral primitive-equation dynamic
core along with a set of simplified physical parameterization
schemes. The SPEEDY model retains the core characteris-
tics of the current state-of-the-art AGCMs but requires drasti-
cally reduced (orders of magnitude) computational resources
(Molteni, 2003). This computational efficiency allows one
to utilize the model to carry out large ensemble and/or data
assimilation experiments. According to Molteni (2003) the
SPEEDY model accurately simulates the general structure of
global atmospheric circulation and exhibits similar system-
atic errors to the state-of-the-art AGCM, albeit with larger
error amplitudes. The model implementation used here (Hat-
field, 2018) is written in Fortran and provides an interesting
example of the integration steps required to interface with
ParticleDA.jl. The coupling with ParticleDA.jl relies on the
SPEEDY implementation being set up to output its data fields
at set intervals.

As stated, SPEEDY is a simplified AGCM model. The
prognostic variables consist of the zonal and meridional wind
velocity components (u,v), temperature (T ), specific humid-
ity (q), and surface pressure (ps). A T30 resolution of the
model is used here, which corresponds to a horizontal grid
size of 96× 48 with eight vertical layers. The vertical layers
are defined by sigma levels, where the pressure is normalized
by the surface pressure (p/ps).

We extend the deterministic SPEEDY model to a state
space model setting using a state transition update of the
form described by Eq. (2), with numerical simulation of the
SPEEDY model forward in time by 6 simulated hours cor-
responding to the deterministic forward operator Ft . The
state vector xt is defined as the concatenation of the flat-
tened vectors corresponding to the spatial discretizations of
the prognostic variable fields u, v, T , q, and ps, with each
of the first four variables being defined in three dimensions
across a 96×48×8 spatial grid, while the final surface pres-
sure variable ps is defined in two dimensions on a 96× 48
spatial grid, resulting in an overall state dimension of dx =
4× 96× 48× 8+ 96× 48= 152064.

The additive Gaussian state noise is assumed to cor-
respond to spatial discretizations of independent two-
dimensional Gaussian random fields for the surface pressure
ps and for each vertical level for the prognostic variables u,
v, T , and q. To reflect the underlying spherical geometry over
which the spatial grid is defined, a non-stationary covariance
function using a Matérn kernel applied to the geodesic (great-
circle) distance between the points on the sphere the grid
points correspond to is used, with the Matérn kernels using
common values of λ= 1 and µ= 2.5 for the length scale and
smoothness parameters respectively, while the marginal stan-
dard deviation parameter σ is set separately for each prog-
nostic variable, with σ = 1 m s−1 for u and v, σ = 1 K for T ,
σ = 0.001 kg kg−1 for q, and σ = 100 Pa for ps. The Gaus-
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Figure 8. Weak-scaling parallel efficiency for the tsunami model test case with different set-ups of ranks per node and cores per rank on
ARCHER2. A drop-off in performance can be seen when moving from single-node to multi-node runs.

sianRandomFields.jl package is again used to generate real-
izations of the (spatially discretized) random fields, with the
use of a non-stationary covariance function in this case ne-
cessitating an approach which uses an eigendecomposition
of the full 4608×4608 covariance matrix for each discretized
two-dimensional field to generate the samples. The geodesic-
distance-based covariance function used is not guaranteed to
be positive definite, which is heuristically dealt with by set-
ting all negative eigenvalues to zero. We recognize that this
approach of introducing state noise into the dynamics has
some limitations but for the purposes here is sufficient.

The data assimilation experiments carried out here fol-
lowed a similar set-up to that used in Miyoshi (2005). A
linear Gaussian observation model of the form described by
Eq. (3) is used, with observations assumed to be available
only for the surface pressure field (in this regard differing
from the set-up used by Miyoshi, 2005) at 50 spatial loca-
tions corresponding to randomly sampled grid points, with
additive independent observation noise with standard devi-
ation 1000 Pa. The initial state used to generate the simu-
lated observations is generated by performing 1-simulated-
year “spin-up” of the deterministic SPEEDY model from a
resting atmosphere (u= v = 0) initial condition, with simu-
lated observations then generated for 250 observation times
at 6-hourly intervals using the state space model. Initial state
values for a filtering run using N = 256 particles and locally
optimal proposals were generated by performing a long-
term (10 simulated years) run of the deterministic SPEEDY
model, with the state selected randomly from the simulated
times in the final month of simulation and state noise of the
same distribution used in state transitions added.

7.1 Results

In Fig. 9 snapshots of the true surface pressure (top left)
and the ensemble estimate of the mean surface pressure (top
right) after 250 assimilation cycles are shown. Minimal dif-
ferences can be observed. The subplots in the bottom row
showcase the time-averaged L2 error for ensemble mean es-
timates with and without assimilation. The L2 error is cal-
culated against the true-surface-pressure fields used to sim-
ulate the observations at each grid cell over the 250 assim-
ilation cycles. The time-averaged errors are dominated by
mid-latitude patterns, but the ensemble run without assimi-
lation exhibits larger errors. This error comparison validates
the claim that the assimilation is giving improved estimates
of the state of the system.

As stated in the Introduction, one of the key benefits of par-
ticle filters is to provide the promise of non-linear and non-
Gaussian DA. To highlight this, sample distributions of the
surface pressure at various observation locations at different
time points are shown in Fig. 10. The distributions across the
N = 256 particles exhibit heavy tails towards the true surface
pressure at the given locations. It should be noted that similar
non-Gaussian distributions were showcased by Miyoshi et al.
(2014) and Kondo and Miyoshi (2019) in a near-identical ex-
perimental set-up but with an ensemble Kalman filter. How-
ever, a key difference to be highlighted here is the relative
size of the ensembles used, 256 particles here versus a 10 240
ensemble size used by Miyoshi et al. (2014) to generate the
non-Gaussian distributions.
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Figure 9. (a, b) Snapshot of the true surface pressure (a) and mean assimilated surface pressure (b) (N = 256) after 250 assimilation cycles
(12:00:00 UTC, 4 March 1982). (c, d) Time-averaged L2 error for the mean of the assimilation run (c) and for the mean of an ensemble run
without assimilation (d). The 50 observation locations are highlighted by the black stars.

8 Conclusions

We have developed a flexible Julia package, ParticleDA.jl,
for performing particle-filter-based data assimilation, with
the potential of offering improved filtering accuracy when
working with models exhibiting non-Gaussianity in the filter-
ing distributions. The use of a high-level language Julia sim-
plifies the process both for users wanting to apply the pack-
age to their own models and for developers wishing to ex-
tend the package with new filter implementations while still
maintaining similar computational efficiency to lower-level
compiled languages like Fortran and C++.

Particular attention has been paid to ensuring ParticleDA.jl
is suitable for performing filtering on HPC systems, with a
versatile two-level model used to support both shared- and
distributed-memory parallelism. This is important in allow-

ing efficient exploitation of the typically complex hierarchies
of processing elements used in modern HPC systems (see
for example the description of the hardware architecture of
ARCHER2 in Sect. 6.2), both when running large ensembles
of models where each particle can be simulated on a single
processing element and for the perhaps more practically rel-
evant setting of running smaller ensembles of more complex
models which require multiple processing elements to simu-
late a single particle.

ParticleDA.jl currently provides implementations of par-
ticle filters using bootstrap and locally optimal proposals,
with the former applicable to general state space models and
the latter to a more restricted subset of state space models
with Gaussian state transition distributions and linear Gaus-
sian observation models. As illustrated in our numerical ex-
periments, particle filters using the locally optimal proposal
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Figure 10. Normalized histograms corresponding to the estimates of the marginal filtering distributions of the surface pressure at various
observation locations and at different points in time from a filtering run with an ensemble of N = 256 particles. The true surface pressures
are highlighted by the vertical red line, and the mean surface pressures of the particles are highlighted by the vertical black line. The green
line represents a fitted Gaussian distribution.
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distributions can offer significantly improvements in the ac-
curacy of filtering estimates for a given ensemble size where
applicable. However, as noted in the Introduction, particle fil-
ters using the locally optimal proposal distribution are known
to still suffer from a curse of dimensionality requiring the
ensemble size to scale exponentially with the system dimen-
sion to avoid weight degeneracy (Snyder, 2011). An impor-
tant future extension to ParticleDA.jl will therefore be in pro-
viding implementations of filtering algorithms exploiting ap-
proaches such as spatial localization (Farchi and Bocquet,
2018) to allow scaling to very high-dimensional geophysi-
cal applications. Implementations of filters exploiting spatial
localization will be necessarily applicable to a restricted sub-
class of spatially extended state space models; similar to the
approach used for implementing the locally optimal proposal
filter, the extensible nature of the model interface in Parti-
cleDA.jl should allow model-agnostic localized filter imple-
mentations to be added by simply defining additional func-
tions required to be implemented by the model interface.

Another key element that a user should be aware of is the
generation of state noise and the role that it plays (Evensen
et al., 2022). For some geophysical applications, this can be
a non-trivial task as the definition of the state noise should
respect the smoothness of the state variable and any under-
lying physical constraints. For example, particular efforts
have been made in the AGCM case (Sect. 7) to capture
the underlying spherical geometry by implementing a non-
stationary covariance function using a Matérn kernel based
on the geodesic distance between points on the sphere. This
approach of introducing state noise into the dynamics of-
fers an improvement to a stationary covariance function but
still has limitations and does not guarantee that physical con-
straints are conserved. This example highlights the important
role of the state noise, and potential users should be aware of
the efforts needed to accurately capture this in their systems
of interest.

Overall, the aim of our platform is to enable easily accessi-
ble and accurate, fast DA for a wide range of users. We hope
that various scientific communities will adopt ParticleDA.jl,
possibly leading to fast step changes in some geoscientific
investigations and beyond.

Code and data availability. The code is freely available at
https://github.com/Team-RADDISH/ParticleDA.jl (last ac-
cess: 19 March 2024). The version used here can be found at
https://doi.org/10.5281/zenodo.10814467 (Koskela et al., 2019).
No external data sets were used in this article.
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