Articles | Volume 17, issue 5
https://doi.org/10.5194/gmd-17-1975-2024
https://doi.org/10.5194/gmd-17-1975-2024
Model description paper
 | 
05 Mar 2024
Model description paper |  | 05 Mar 2024

Three-dimensional geological modelling of igneous intrusions in LoopStructural v1.5.10

Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit

Related authors

3D geological modelling of igneous intrusions in LoopStructural v1.4.4
Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-88,https://doi.org/10.5194/gmd-2022-88, 2022
Preprint withdrawn
Short summary

Related subject area

Numerical methods
Advances in land surface forecasting: a comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025,https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Introducing Iterative Model Calibration (IMC) v1.0: a generalizable framework for numerical model calibration with a CAESAR-Lisflood case study
Chayan Banerjee, Kien Nguyen, Clinton Fookes, Gregory Hancock, and Thomas Coulthard
Geosci. Model Dev., 18, 803–818, https://doi.org/10.5194/gmd-18-803-2025,https://doi.org/10.5194/gmd-18-803-2025, 2025
Short summary
Development of a high-order global dynamical core using the discontinuous Galerkin method for an atmospheric large-eddy simulation (LES) and proposal of test cases: SCALE-DG v0.8.0
Yuta Kawai and Hirofumi Tomita
Geosci. Model Dev., 18, 725–762, https://doi.org/10.5194/gmd-18-725-2025,https://doi.org/10.5194/gmd-18-725-2025, 2025
Short summary
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary

Cited articles

Alvarado-Neves, F.: Fer071989/loopstructural_intrusions_gmd_ paper2023: LS Intrusion GMD paper, Zenodo [data set], https://doi.org/10.5281/zenodo.10463777, 2024. 
Annen, C., Blundy, J. D., Leuthold, J., and Sparks, R. S. J.: Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism, Lithos, 230, 206–221, https://doi.org/10.1016/j.lithos.2015.05.008, 2015. 
Barnett, Z. A. and Gudmundsson, A.: Numerical modelling of dykes deflected into sills to form a magma chamber, J. Volcanol. Geotherm. Res., 281, 1–11, https://doi.org/10.1016/j.jvolgeores.2014.05.018, 2014. 
Braga, F. C. S., Rosiere, C. A., Santos, J. O. S., Hagemann, S. G., and Salles, P. V.: Depicting the 3D geometry of ore bodies using implicit lithological modeling: An example from the Horto-Baratinha iron deposit, Guanhães block, MG, REM – Int. Eng. J., 72, 435–443, https://doi.org/10.1590/0370-44672018720167, 2019. 
Brown, M.: Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences, J. Geol. Soc. London., 164, 709–730, https://doi.org/10.1144/0016-76492006-171, 2007. 
Download
Short summary
Previous work has demonstrated that adding geological knowledge to modelling methods creates more accurate and reliable models. Following this reasoning, we added constraints from magma emplacement mechanisms into existing modelling frameworks to improve the 3D characterisation of igneous intrusions. We tested the method on synthetic and real-world case studies, and the results show that our method can reproduce intrusion morphologies with no manual processing and using realistic datasets.
Share