Articles | Volume 17, issue 5
https://doi.org/10.5194/gmd-17-1975-2024
https://doi.org/10.5194/gmd-17-1975-2024
Model description paper
 | 
05 Mar 2024
Model description paper |  | 05 Mar 2024

Three-dimensional geological modelling of igneous intrusions in LoopStructural v1.5.10

Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit

Related authors

3D geological modelling of igneous intrusions in LoopStructural v1.4.4
Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-88,https://doi.org/10.5194/gmd-2022-88, 2022
Preprint withdrawn
Short summary

Related subject area

Numerical methods
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary

Cited articles

Alvarado-Neves, F.: Fer071989/loopstructural_intrusions_gmd_ paper2023: LS Intrusion GMD paper, Zenodo [data set], https://doi.org/10.5281/zenodo.10463777, 2024. 
Annen, C., Blundy, J. D., Leuthold, J., and Sparks, R. S. J.: Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism, Lithos, 230, 206–221, https://doi.org/10.1016/j.lithos.2015.05.008, 2015. 
Barnett, Z. A. and Gudmundsson, A.: Numerical modelling of dykes deflected into sills to form a magma chamber, J. Volcanol. Geotherm. Res., 281, 1–11, https://doi.org/10.1016/j.jvolgeores.2014.05.018, 2014. 
Braga, F. C. S., Rosiere, C. A., Santos, J. O. S., Hagemann, S. G., and Salles, P. V.: Depicting the 3D geometry of ore bodies using implicit lithological modeling: An example from the Horto-Baratinha iron deposit, Guanhães block, MG, REM – Int. Eng. J., 72, 435–443, https://doi.org/10.1590/0370-44672018720167, 2019. 
Brown, M.: Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences, J. Geol. Soc. London., 164, 709–730, https://doi.org/10.1144/0016-76492006-171, 2007. 
Download
Short summary
Previous work has demonstrated that adding geological knowledge to modelling methods creates more accurate and reliable models. Following this reasoning, we added constraints from magma emplacement mechanisms into existing modelling frameworks to improve the 3D characterisation of igneous intrusions. We tested the method on synthetic and real-world case studies, and the results show that our method can reproduce intrusion morphologies with no manual processing and using realistic datasets.