Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1497-2024
https://doi.org/10.5194/gmd-17-1497-2024
Development and technical paper
 | 
20 Feb 2024
Development and technical paper |  | 20 Feb 2024

Spatial spin-up of precipitation in limited-area convection-permitting simulations over North America using the CRCM6/GEM5.0 model

François Roberge, Alejandro Di Luca, René Laprise, Philippe Lucas-Picher, and Julie Thériault

Related authors

Assessing the contribution of extratropical cyclones to river floods that caused property damage in Quebec, Canada
Clarence Gagnon, Daniel F. Nadeau, Alejandro Di Luca, Benoit Brault, Romane Hamon, Nicolas L. Roy, Marc-André Bourgault, and François Anctil
EGUsphere, https://doi.org/10.5194/egusphere-2025-6192,https://doi.org/10.5194/egusphere-2025-6192, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Proposed improvement of the detection and measurements of light precipitation in the Canadian Arctic
Joseph Durat, Hadleigh David Thompson, Julie Mireille Thériault, and Philip Marsh
EGUsphere, https://doi.org/10.5194/egusphere-2025-5195,https://doi.org/10.5194/egusphere-2025-5195, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Can high-resolution convection-permitting climate models improve flood simulation in southern Quebec watersheds?
Behmard Sabzipour, Philippe Lucas-Picher, Richard Turcotte, and Gabriel Rondeau-Genesse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3436,https://doi.org/10.5194/egusphere-2025-3436, 2025
Short summary
Constructing Extreme Heatwave Storylines with Differentiable Climate Models
Tim Whittaker and Alejandro Di Luca
EGUsphere, https://doi.org/10.48550/arXiv.2506.10660,https://doi.org/10.48550/arXiv.2506.10660, 2025
Short summary
Leveraging a radar-based disdrometer network to develop a probabilistic precipitation phase model in eastern Canada
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025,https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary

Cited articles

Ahrens, B. and Leps, N.: Sensitivity of Convection Permitting Simulations to Lateral Boundary Conditions in Idealized Experiments, J. Adv. Model. Earth Sy., 13, e2021MS002519, https://doi.org/10.1029/2021MS002519, 2021. 
Antic, S., Laprise, R., Denis, B., and de Elía, R.: Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography, Clim. Dynam., 23, 473–493, https://doi.org/10.1007/s00382-004-0438-5, 2004. 
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass-flux convection scheme for regional and global models, Q. J. Roy. Meteor. Soc., 127, 869–886, https://doi.org/10.1002/qj.49712757309, 2001. 
Bélair, S., Mailhot, J., Girard, C., and Vaillancourt, P.: Boundary Layer and Shallow Cumulus Clouds in a Medium-Range Forecast of a Large-Scale Weather System, Mon. Weather Rev., 133, 1938–1960, https://doi.org/10.1175/MWR2958.1, 2005. 
Download
Short summary
Our study addresses a challenge in dynamical downscaling using regional climate models, focusing on the lack of small-scale features near the boundaries. We introduce a method to identify this “spatial spin-up” in precipitation simulations. Results show spin-up distances up to 300 km, varying by season and driving variable. Double nesting with comprehensive variables (e.g. microphysical variables) offers advantages. Findings will help optimize simulations for better climate projections.
Share