Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7275-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-7275-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Representation of atmosphere-induced heterogeneity in land–atmosphere interactions in E3SM–MMFv2
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Walter M. Hannah
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
David C. Bader
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Related authors
Jungmin Lee, Virendra P. Ghate, Arka Mitra, Lee M. Miller, Raghavendra Krishnamurthy, and Ulrike Egerer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-108, https://doi.org/10.5194/wes-2025-108, 2025
Preprint under review for WES
Short summary
Short summary
This study compares weather model predictions to real-world measurements of wind and clouds off California's coast, where offshore wind farms are planned. It finds the model often underestimates wind speeds in cloudy conditions and shows larger errors in clear skies. These results highlight when and where the model is most accurate, helping improve wind forecasts and support better planning for offshore wind energy projects.
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci., 10, 483–495, https://doi.org/10.5194/wes-10-483-2025, https://doi.org/10.5194/wes-10-483-2025, 2025
Short summary
Short summary
Our study reveals how different weather patterns influence wind conditions off the US West Coast. We identified key weather patterns affecting wind speeds at potential wind farm sites using advanced machine learning. This research helps improve weather prediction models, making wind energy production more reliable and efficient.
Jungmin Lee, Virendra P. Ghate, Arka Mitra, Lee M. Miller, Raghavendra Krishnamurthy, and Ulrike Egerer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-108, https://doi.org/10.5194/wes-2025-108, 2025
Preprint under review for WES
Short summary
Short summary
This study compares weather model predictions to real-world measurements of wind and clouds off California's coast, where offshore wind farms are planned. It finds the model often underestimates wind speeds in cloudy conditions and shows larger errors in clear skies. These results highlight when and where the model is most accurate, helping improve wind forecasts and support better planning for offshore wind energy projects.
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci., 10, 483–495, https://doi.org/10.5194/wes-10-483-2025, https://doi.org/10.5194/wes-10-483-2025, 2025
Short summary
Short summary
Our study reveals how different weather patterns influence wind conditions off the US West Coast. We identified key weather patterns affecting wind speeds at potential wind farm sites using advanced machine learning. This research helps improve weather prediction models, making wind energy production more reliable and efficient.
Paul J. Durack, Karl E. Taylor, Peter J. Gleckler, Gerald A. Meehl, Bryan N. Lawrence, Curt Covey, Ronald J. Stouffer, Guillaume Levavasseur, Atef Ben-Nasser, Sebastien Denvil, Martina Stockhause, Jonathan M. Gregory, Martin Juckes, Sasha K. Ames, Fabrizio Antonio, David C. Bader, John P. Dunne, Daniel Ellis, Veronika Eyring, Sandro L. Fiore, Sylvie Joussaume, Philip Kershaw, Jean-Francois Lamarque, Michael Lautenschlager, Jiwoo Lee, Chris F. Mauzey, Matthew Mizielinski, Paola Nassisi, Alessandra Nuzzo, Eleanor O’Rourke, Jeffrey Painter, Gerald L. Potter, Sven Rodriguez, and Dean N. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2024-3729, https://doi.org/10.5194/egusphere-2024-3729, 2025
Short summary
Short summary
CMIP6 was the most expansive and ambitious Model Intercomparison Project (MIP), the latest in a history, extending four decades. CMIP engaged a growing community focused on improving climate understanding, and quantifying and attributing observed climate change being experienced today. The project's profound impact is due to the combining the latest climate science and technology, enabling the latest-generation climate simulations and increasing community attention in every successive phase.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Walter Hannah and Kyle Pressel
Geosci. Model Dev., 15, 8999–9013, https://doi.org/10.5194/gmd-15-8999-2022, https://doi.org/10.5194/gmd-15-8999-2022, 2022
Short summary
Short summary
A multiscale modeling framework couples two models of the atmosphere that each cover different scale ranges. Traditionally, fluctuations in the small-scale model are not transported by the flow on the large-scale model grid, but this is hypothesized to be responsible for a persistent, unphysical checkerboard pattern. A method is presented to facilitate the transport of these small-scale fluctuations, analogous to how small-scale clouds and turbulence are transported in the real atmosphere.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Walter Hannah, Kyle Pressel, Mikhail Ovchinnikov, and Gregory Elsaesser
Geosci. Model Dev., 15, 6243–6257, https://doi.org/10.5194/gmd-15-6243-2022, https://doi.org/10.5194/gmd-15-6243-2022, 2022
Short summary
Short summary
An unphysical checkerboard signal is identified in two configurations of the atmospheric component of E3SM. The signal is very persistent and visible after averaging years of data. The signal is very difficult to study because it is often mixed with realistic weather. A method is presented to detect checkerboard patterns and compare the model with satellite observations. The causes of the signal are identified, and a solution for one configuration is discussed.
Cited articles
Baker, I. T., Denning, A., Dazlich, D. A., Harper, A. B., Branson, M. D., Randall, D. A., Phillips, M. C., Haynes, K. D., and Gallup, S. M.: Surface-Atmosphere Coupling Scale, the Fate of Water, and Ecophysiological Function in a Brazilian Forest, J. Adv. Model. Earth Syst., 11, 2523–2546, https://doi.org/10.1029/2019MS001650, 2019.
Betts, A. K.: Idealized model for equilibrium boundary layer over land, J. Hydrometeorol., 1, 507–523, 2000.
Betts, A. K.: Understanding hydrometeorology using global models, B. Am. Meteorol. Soc., 85, 1673–1688, https://doi.org/10.1175/BAMS-85-11-1673, 2004.
Betts, A. K., Barr, A. G., Beljaars, A. C. M., Miller, M. J., and Viterbo, P. A.: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives, J. Geophys. Res., 101, 7209–7225, 1996.
Betts, A. K., Tawfik, A. B., and Desjardins, R. L.: Revisiting hydrometeorology using cloud and climate observations, J. Hydrometeorol., 18, 939–955, https://doi.org/10.1175/jhm-d-16-0203.1, 2017.
Dirmeyer, P. A. and Halder, S.: Sensitivity of numerical weather forecasts to initial soil moisture variations in CFSv2, Weather Forecast., 31, 1973–1983, https://doi.org/10.1175/waf-d-16-0049.1, 2016.
Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R., and Cooper, H. M.: Land-Atmosphere Interactions Exacerbated the Drought and Heatwave Over Northern Europe During Summer 2018, AGU Advances, 2, e2020AV000283, https://doi.org/10.1029/2020AV000283, 2021.
Ek, M. B. and Holtslag, A. A. M.: Influence of soil moisture on boundary layer cloud development, J. Hydrometeorol., 5, 86–99, 2004.
Findell, K. L. and Eltahir, E. A. B.: Atmospheric controls on soil moisture–boundary layer interactions: Part II: Feedbacks within the continental United States, J. Hydrometeorol., 4, 570–583, https://doi.org/10.1175/1525-7541(2003)004<0570:Acosml>2.0.Co;2, 2003a.
Findell, K. L. and Eltahir, E. A. B.: Atmospheric controls on soil moisture–boundary layer interactions: Part I: Framework development, J. Hydrometeorol., 4, 552–569, https://doi.org/10.1175/1525-7541(2003)004<0552:Acosml>2.0.Co;2, 2003b.
Gentine, P., Holtslag, A. A. M., D'Andrea, F., and Ek, M.: Surface and Atmospheric Controls on the Onset of Moist Convection over Land, J. Hydrometeorol., 14, 1443–1462, https://doi.org/10.1175/JHM-D-12-0137.1, 2013.
Gettelman, A., Bardeen, C. G., McCluskey, C. S., Järvinen, E., Stith, J., Bretherton, C., McFarquhar, C., Twohy, J., and D'Alessandro, W. Wu: Simulating observations of Southern Ocean clouds and implications for climate, J. Geograph. Res.-Atmos., 125, e2020JD032619, https://doi.org/10.1029/2020JD032619, 2020.
Golaz, J.-C., Caldwell, P. M., Van Roekel, Luke P., et al.: The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution, J. Adv. Model. Earth Syst., 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019.
Grabowski, W. W.: An improved framework for superparameterization, J. Atmos. Sci., 61, 1940–1952, 2004.
Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J., and Seneviratne, S. I.: Reconciling spatial and temporal soil moisture effects on 300 afternoon rainfall, Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443, 2015.
Guo, Z.: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis, J. Hydrometeorol., 7, 611–625, 2006.
Hannah, W. M., Jones, C. R., Hillman, B. R., Norman, M. R., Bader, D. C., Taylor, M. A., Leung, L. R., Pritchard, M. S., Branson, M. D., Lin, G., Pressel, K. G., and Lee, J. M.: Initial Results From the Super-Parameterized E3SM, J. Adv. Model. Earth Syst., 12, e2019MS001863, https://doi.org/10.1029/2019MS001863, 2020.
Hirsch, A. L., Kala, J., Pitman, A. J., Carouge, C., Evans, J. P., Haverd, V., and Mocko, D.: Impact of land surface initialization approach on subseasonal forecast skill: A regional analysis in the Southern Hemisphere, J. Hydrometeorol., 15, 300–319, https://doi.org/10.1175/jhm-d13-05.1, 2014.
Huang, H.-Y. and Margulis, S. A.: On the impact of surface heterogeneity on a realistic convective boundary layer, Water Resour. Res., 45, W04425, https://doi.org/10.1029/2008WR007175, 2009.
Huang, H.-Y. and Margulis, S. A.: Impact of soil moisture heterogeneity length scale and gradients on daytime coupled land-cloudy boundary layer interactions, Hydrol. Process., 27, 1988–2003, https://doi.org/10.1002/hyp.9351, 2013.
Jimenez, P. A., de Arellano, J. V., Navarro, J., and Gonzalez-Rouco, J. F.: Understanding land–atmosphere interactions across a range of spatial and temporal scales, B. Am. Meteorol. Soc., 95, ES14–ES17, 2014.
Khairoutdinov, M. F. and Randall, D. A.: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, 315 and sensitivities, J. Atmos. Sci., 60, 607–625, 2003.
Khairoutdinov, M. F., Randall, D. A., and DeMotte, C.: Simulations of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical processes, J. Atmos. Sci., 62, 2136–2154, 2005.
Koster, R. D.: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment, Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009gl041677, 2010.
Lee, J.: E3SM-MMF code with MAML implementation and data used to produce figures, Zenodo [data set], https://doi.org/10.5281/zenodo.6554887, 2023.
Lee, J. M., Zhang, Y., and Klein, S. A.: The Effect of Land Surface Heterogeneity and Background Wind on Shallow Cumulus Clouds and the Transition to Deeper Convection, J. Atmos. Sci., 76, 401–419, https://doi.org/10.1175/JAS-D-18-0196.1, 2019.
Lin, G., Leung, L. R., Lee, J., Harrop, B. E., Baker, I. T., Branson, M. D., Denning, A. S., Jones, C. R., Ovchinnikov, M., Randall, D. A., and Yang, Z.: Modeling Land-Atmosphere Coupling at Cloud-Resolving Scale Within the Multiple Atmosphere Multiple Land (MAML) Framework in SP-E3SM, J. Adv. Model. Earth Syst., 15, e2022MS003101, https://doi.org/10.1029/2022MS003101, 2023.
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and de Arellano, J. V.-G.: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation, Nat. Geosci., 7, 345–349, 2014.
Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., and Yang, Z.-L.: Technical description of version 4.5 of the Community Land Model (CLM) (No. NCAR/TN-503+STR), https://doi.org/10.5065/D6RR1W7M, 2013.
PaiMazumder, D. and Done, J. M.: Potential predictability sources of the 2012 U.S. drought in observations and a regional model ensemble, J. Geophys. Res.-Atmos., 121, 12581–12592, https://doi.org/10.1002/2016JD025322, 2016.
Pincus, R., Mlawer, E. J., and Delamere, J. S.: Balancing Accuracy, Efficiency, and Flexibility in Radiation Calculations for Dynamical Models, J. Adv. Model. Earth Syst., 11, 3074–3089, https://doi.org/10.1029/2019MS001621, 2019.
Rasch, P. J., Xie, S., Ma, P.-L., Lin, W., Wang, H., Tang, Q., Burrows, S. M., Caldwell, P., Zhang, K., Easter, R. C., Cameron-Smith, P., Singh, B., Wan, H., Golaz, J.-C., Harrop, B. E., Roesler, E., Bacmeister, J., Larson, V. E., Evans, K. J., Qian, Y., Taylor, M., Leung, L. R., Zhang, Y., Brent, L., Branstetter, M., Hannay, C., Mahajan, S., Mametjanov, A., Neale, R., Richter, J. H., Yoon, J.-H., Zender, C. S., Bader, D., Flanner, M., Foucar, J. G., Jacob, R., Keen, N., Klein, S. A., Liu, X., Salinger, A., Shrivastava, M., and Yang, Y.: An Overview of the Atmospheric Component of the Energy Exascale Earth System Model, J. Adv. Model. Earth Syst., 11, 2377–2411, https://doi.org/10.1029/2019MS001629, 2019.
Rieck, M., Hohenegger, C., and van Heerwaarden, C. C.: The influence of land surface heterogeneities on cloud size development, Mon. Weather Rev., 142, 3830–3846, 2014.
Rieck, M., Hohenegger, C., and Gentine, P.: The effect of moist convection on thermally induced mesoscale circulations, Q. J. Roy. Meteorol. Soc., 141, 2418–2428, 2015.
Rochetin, N., Couvreux, F., and Guichard, F.: Morphology of breeze circulations induced by surface flux heterogeneities and their impact on convection initiation, Q. J. Roy. Meteorol. Soc., 143, 463–478, 2017.
Roundy, J. K. and Santanello, J. A.: Utility of satellite remote sensing for land–atmosphere coupling and drought metrics, J. Hydrometeor., 345, 863–877, 2017.
Roundy, J. K., Ferguson, C. R., and Wood, E.: Temporal variability of land–atmosphere coupling and its implications for drought over the Southeast United States, J. Hydrometeor., 14, 622–635, 2013.
Teuling, A. J.: Observational evidence for cloud cover enhancement over western European forests, Nat. Commun., 8, 14065, 2017.
Vilà-Guerau de Arellano, J., Ouwersloot, H. G., Baldocchi, D., and Jacobs, C. M. J.: Shallow cumulus rooted in photosynthesis, Geophys. Res. Lett., 41, 1796–1802, https://doi.org/10.1002/2014GL059279, 2014.
Wang, S.-Y. S., Santanello, J., Wang, H., Barandiaran, D., Pinker, R. T., Schubert, S., Gillies, R. R., Oglesby, R., Hilburn, K., Kilic, A., and Houser, P.: An intensified seasonal transition in the Central U.S. that enhances summer drought, J. Geophys. Res.-Atmos., 120, 8804–8816, https://doi.org/10.1002/2014JD023013, 2015.
Short summary
Representing accurate land–atmosphere interaction processes is overlooked in weather and climate models. In this study, we propose three methods to represent land–atmosphere coupling in the Energy Exascale Earth System Model (E3SM) with the Multi-scale Modeling Framework (MMF) approach. In this study, we introduce spatially homogeneous and heterogeneous land–atmosphere interaction processes within the cloud-resolving model domain. Our 5-year simulations reveal only small differences.
Representing accurate land–atmosphere interaction processes is overlooked in weather and climate...