Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7275-2023
https://doi.org/10.5194/gmd-16-7275-2023
Model description paper
 | 
18 Dec 2023
Model description paper |  | 18 Dec 2023

Representation of atmosphere-induced heterogeneity in land–atmosphere interactions in E3SM–MMFv2

Jungmin Lee, Walter M. Hannah, and David C. Bader

Related authors

Linking weather patterns to observed and modelled turbine hub-height winds offshore U.S. West Coast
Ye Liu, Timothy W. Juliano, Raghavendra Krishnamurthy, Brian J. Gaudet, and Jungmin Lee
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-76,https://doi.org/10.5194/wes-2024-76, 2024
Revised manuscript under review for WES
Short summary

Related subject area

Atmospheric sciences
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary

Cited articles

Baker, I. T., Denning, A., Dazlich, D. A., Harper, A. B., Branson, M. D., Randall, D. A., Phillips, M. C., Haynes, K. D., and Gallup, S. M.: Surface-Atmosphere Coupling Scale, the Fate of Water, and Ecophysiological Function in a Brazilian Forest, J. Adv. Model. Earth Syst., 11, 2523–2546, https://doi.org/10.1029/2019MS001650, 2019. 
Betts, A. K.: Idealized model for equilibrium boundary layer over land, J. Hydrometeorol., 1, 507–523, 2000. 
Betts, A. K.: Understanding hydrometeorology using global models, B. Am. Meteorol. Soc., 85, 1673–1688, https://doi.org/10.1175/BAMS-85-11-1673, 2004. 
Betts, A. K., Barr, A. G., Beljaars, A. C. M., Miller, M. J., and Viterbo, P. A.: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives, J. Geophys. Res., 101, 7209–7225, 1996. 
Betts, A. K., Tawfik, A. B., and Desjardins, R. L.: Revisiting hydrometeorology using cloud and climate observations, J. Hydrometeorol., 18, 939–955, https://doi.org/10.1175/jhm-d-16-0203.1, 2017. 
Download
Short summary
Representing accurate land–atmosphere interaction processes is overlooked in weather and climate models. In this study, we propose three methods to represent land–atmosphere coupling in the Energy Exascale Earth System Model (E3SM) with the Multi-scale Modeling Framework (MMF) approach. In this study, we introduce spatially homogeneous and heterogeneous land–atmosphere interaction processes within the cloud-resolving model domain. Our 5-year simulations reveal only small differences.