Articles | Volume 16, issue 23
https://doi.org/10.5194/gmd-16-7059-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-7059-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An emulation-based approach for interrogating reactive transport models
Department of Earth Sciences, University of Cambridge, Cambridge, UK
Harold J. Bradbury
Department of Earth Sciences, University of Cambridge, Cambridge, UK
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
Jennifer L. Druhan
Department of Geology, University of Illinois at Urbana Champaign, Urbana, IL, United States of America
Alexandra V. Turchyn
Department of Earth Sciences, University of Cambridge, Cambridge, UK
Related authors
No articles found.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025, https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary
Short summary
Our research on Svalbard shows that glacier melt rivers can transport large amounts of methane, a potent greenhouse gas. By studying a glacier over one summer, we found that its river was highly concentrated in methane, suggesting that rivers could provide a significant source of methane emissions as the Arctic warms and glaciers melt. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as such processes are occurring across the Arctic.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Cited articles
Abd, A. S. and Abushaikha, A. S.: Reactive transport in porous media: a review of recent mathematical efforts in modeling geochemical reactions in petroleum subsurface reservoirs, SN Appl. Sci., 3, 401, https://doi.org/10.1007/s42452-021-04396-9, 2021.
Ahmmed, B., Mudunuru, M. K., Karra, S., James, S. C., and Vesselinov, V. V.: A comparative study of machine learning models for predicting the state of reactive mixing, J. Comput. Phys., 432, 110147, https://doi.org/10.1016/j.jcp.2021.110147, 2021.
Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R., Peacock, A., White, D. C., Lowe, M., and Lovley, D. R.: Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer, Applied and Environmental Microbiology, 69, 5884–5891, https://doi.org/10.1128/AEM.69.10.5884-5891.2003, 2003.
Arora, B., Dwivedi, D., Faybishenko, B., Wainwright, H. M., and Jana, R. B.: 10. Understanding and Predicting Vadose Zone Processes, in: Reviews in Mineralogy & Geochemistry, vol. 85, edited by: Druhan, J. L. and Tournassat, C., De Gruyter, 303–328, https://doi.org/10.1515/9781501512001-011, 2020.
Bain, J. G., Blowes, D. W., Robertson, W. D., and Frind, E. O.: Modelling of sulfide oxidation with reactive transport at a mine drainage site, J. Contam. Hydrol., 41, 23–47, https://doi.org/10.1016/S0169-7722(99)00069-8, 2000.
Bargar, J. R., Williams, K. H., Campbell, K. M., Long, P. E., Stubbs, J. E., Suvorova, E. I., Lezama-Pacheco, J. S., Alessi, D. S., Stylo, M., Webb, S. M., Davis, J. A., Giammar, D. E., Blue, L. Y., and Bernier-Latmani, R.: Uranium redox transition pathways in acetate-amended sediments, P. Natl. Acad. Sci. USA, 110, 4506–4511, https://doi.org/10.1073/pnas.1219198110, 2013.
Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q., and Flynn, T. M.: The Thermodynamic Ladder in Geomicrobiology, Am. J. Sci., 311, 183–210, https://doi.org/10.2475/03.2011.01, 2011.
Beucler, T., Rasp, S., Pritchard, M., and Gentine, P.: Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling, arXiv [preprint], https://doi.org/10.48550/ARXIV.1906.06622, 2019.
Bianchi, M., Zheng, L., and Birkholzer, J. T.: Combining multiple lower-fidelity models for emulating complex model responses for CCS environmental risk assessment, Int. J.. Green. Gas Con., 46, 248–258, https://doi.org/10.1016/j.ijggc.2016.01.009, 2016.
Bone, S. E., Dynes, J. J., Cliff, J., and Bargar, J. R.: Uranium(IV) adsorption by natural organic matter in anoxic sediments, P. Natl. Acad. Sci. USA, 114, 711–716, https://doi.org/10.1073/pnas.1611918114, 2017.
Cama, J., Soler, J. M., and Ayora, C.: 15. Acid Water–Rock–Cement Interaction and Multicomponent Reactive Transport Modeling, in: Reviews in Mineralogy & Geochemistry, vol. 85, edited by: Druhan, J. L. and Tournassat, C., De Gruyter, 459–498, https://doi.org/10.1515/9781501512001-016, 2020.
Castruccio, S., McInerney, D. J., Stein, M. L., Liu Crouch, F., Jacob, R. L., and Moyer, E. J.: Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs, J. Climate, 27, 1829–1844, https://doi.org/10.1175/JCLI-D-13-00099.1, 2014.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., and Zhou, T.: XGBoost: A Scalable Tree Boosting System, in: KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016, https://doi.org/10.1145/2939672.2939785, 2016.
Claesen, M. and De Moor, B.: Hyperparameter Search in Machine Learning, arXiv [preprint], https://doi.org/10.48550/arxiv.1502.02127, 2015.
Doherty, J.: PEST model-independent parameter estimation user manual, Watermark Numerical Computing, Brisbane, Australia, 3338, 3349, 2004.
Dolgaleva, I. V., Gorichev, I. G., Izotov, A. D., and Stepanov, V. M.: Modeling of the Effect of pH on the Calcite Dissolution Kinetics, Theor. Found. Chem. Eng., 39, 614–621, https://doi.org/10.1007/s11236-005-0125-1, 2005.
Druhan, J. L. and Tournassat, C.: Preface, Rev. Mineral. Geochem., 85, IV–V, https://doi.org/10.2138/rmg.2019.85.0, 2019.
Druhan, J. L., Steefel, C. I., Williams, K. H., and DePaolo, D. J.: Calcium isotope fractionation in groundwater: Molecular scale processes influencing field scale behavior, Geochim. Cosmochim. Ac., 119, 93–116, https://doi.org/10.1016/j.gca.2013.05.022, 2013.
Druhan, J. L., Steefel, C. I., Conrad, M. E., and DePaolo, D. J.: A large column analog experiment of stable isotope variations during reactive transport: I. A comprehensive model of sulfur cycling and δ34S fractionation, Geochim. Cosmochim. Ac., 124, 366–393, https://doi.org/10.1016/j.gca.2013.08.037, 2014.
Druhan, J. L., Winnick, M. J., and Thullner, M.: 8. Stable Isotope Fractionation by Transport and Transformation, in: Reviews in Mineralogy & Geochemistry, vol. 85, edited by: Druhan, J. L. and Tournassat, C., De Gruyter, 239–264, https://doi.org/10.1515/9781501512001-009, 2020.
Dullies, F., Lutze, W., Gong, W., and Nuttall, H. E.: Biological reduction of uranium—From the laboratory to the field, Sci. Total Environ., 408, 6260–6271, https://doi.org/10.1016/j.scitotenv.2010.08.018, 2010.
Dwivedi, D., Steefel, I. C., Arora, B., and Bisht, G.: Impact of Intra-meander Hyporheic Flow on Nitrogen Cycling, Proced. Earth Plan. Sc., 17, 404–407, https://doi.org/10.1016/j.proeps.2016.12.102, 2017.
Dwivedi, D., Steefel, C. I., Arora, B., Newcomer, M., Moulton, J. D., Dafflon, B., Faybishenko, B., Fox, P., Nico, P., Spycher, N., Carroll, R., and Williams, K. H.: Geochemical Exports to River From the Intrameander Hyporheic Zone Under Transient Hydrologic Conditions: East River Mountainous Watershed, Colorado, Water Resour. Res., 54, 8456–8477, https://doi.org/10.1029/2018WR023377, 2018.
Finsterle, S., Commer, M., Edmiston, J. K., Jung, Y., Kowalsky, M. B., Pau, G. S. H., Wainwright, H. M., and Zhang, Y.: iTOUGH2: A multiphysics simulation-optimization framework for analyzing subsurface systems, Comput. Geosci., 108, 8–20, https://doi.org/10.1016/j.cageo.2016.09.005, 2017.
Fotherby, A.: a-fotherby/dissertation_xgboost: Initial release (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7113324, 2022a.
Fotherby, A.: a-fotherby/GMD_2022: Archival release, (v1.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.7113380, 2022b.
Fotherby, A. and Bradbury, H.: a-fotherby/Omphalos: Initial release (v0.9.0), Zenodo [code], https://doi.org/10.5281/zenodo.7113299, 2022.
Frazier, P. I.: A Tutorial on Bayesian Optimization, arXiv [cs, math, stat], arXiv:1807.02811, 2018.
Gatel, L., Lauvernet, C., Carluer, N., Weill, S., Tournebize, J., and Paniconi, C.: Global evaluation and sensitivity analysis of a physically based flow and reactive transport model on a laboratory experiment, Environ. Model. Softw., 113, 73–83, https://doi.org/10.1016/j.envsoft.2018.12.006, 2019.
Gaus, I., Azaroual, M., and Czernichowski-Lauriol, I.: Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chem. Geol., 217, 319–337, https://doi.org/10.1016/j.chemgeo.2004.12.016, 2005.
Gharasoo, M., Elsner, M., Van Cappellen, P., and Thullner, M.: Pore-Scale Heterogeneities Improve the Degradation of a Self-Inhibiting Substrate: Insights from Reactive Transport Modeling, Environ. Sci. Technol., 56, 13008–13018, https://doi.org/10.1021/acs.est.2c01433, 2022.
Grzeszczuk, R., Terzopoulos, D., and Hinton, G.: NeuroAnimator: fast neural network emulation and control of physics-based models, in: Proceedings of the 25th annual conference on Computer graphics and interactive techniques – SIGGRAPH '98, Orlando, Florida, United States of America 19–24 July 1998, 9–20, https://doi.org/10.1145/280814.280816, 1998.
Gu, X., Rempe, D. M., Dietrich, W. E., West, A. J., Lin, T.-C., Jin, L., and Brantley, S. L.: Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate, Geochim. Cosmochim. Ac., 269, 63–100, https://doi.org/10.1016/j.gca.2019.09.044, 2020.
Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H., Bouskill, N., Brodie, E., Carroll, R., Dafflon, B., Dwivedi, D., Falco, N., Faybishenko, B., Maxwell, R., Nico, P., Steefel, C., Steltzer, H., Tokunaga, T., Tran, P. A., Wainwright, H., and Varadharajan, C.: The East River, Colorado, Watershed: A Mountainous Community Testbed for Improving Predictive Understanding of Multiscale Hydrological–Biogeochemical Dynamics, Vadose Zone J., 17, 180061, https://doi.org/10.2136/vzj2018.03.0061, 2018.
Hubbard, S. S., Agarwal, D., Arora, B., Banfield, J. F., Bouskill, N., Brodie, E., Carroll, R. W. H., Dwivedi, D., Gilbert, B., Maavara, T., Maxwell, R. M., Newcomer, M. E., Nico, P. S., Sorensen, P., Steefel, C. I., Steltzer, H., Tokunaga, T. K., Varadharajan, C., Wainwright, H. M., Wan, J., and Williams, K. H.: Key Controls on Water and Nitrogen Exports occurring across Lifezones, Compartments and Interfaces of the Mountainous East River Watershed, in: AGU Fall Meeting Abstracts, CO, H23B-01, 2019.
Jin, Q. and Bethke, C. M.: A New Rate Law Describing Microbial Respiration, Appl. Environ. Microb., 69, 2340–2348, https://doi.org/10.1128/AEM.69.4.2340-2348.2003, 2003.
Jin, Q. and Bethke, C. M.: Predicting the rate of microbial respiration in geochemical environments, Geochim. Cosmochim. Ac., 69, 1133–1143, 2005.
Jin, Q. and Bethke, C. M.: The thermodynamics and kinetics of microbial metabolism, Am. J. Sci., 307, 643–677, https://doi.org/10.2475/04.2007.01, 2007.
Jin, Q. and Kirk, M. F.: Thermodynamic and Kinetic Response of Microbial Reactions to High CO2, Front. Microbiol., 7, 1696, https://doi.org/10.3389/fmicb.2016.01696, 2016.
Jin, Q. and Kirk, M. F.: pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective, Frontiers in Environmental Science, 6, 21, https://doi.org/10.3389/fenvs.2018.00021, 2018.
Johnson, J. W., Nitao, J. J., and Knauss, K. G.: Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning, Geological Society, London, Special Publications, 233, 107–128, https://doi.org/10.1144/GSL.SP.2004.233.01.08, 2004.
Jung, H. and Navarre-Sitchler, A.: Scale effect on the time dependence of mineral dissolution rates in physically heterogeneous porous media, Geochim. Cosmochim. Ac., 234, 70–83, https://doi.org/10.1016/j.gca.2018.05.009, 2018.
Kashinath, K., Mustafa, M., Albert, A., Wu, J.-L., Jiang, C., Esmaeilzadeh, S., Azizzadenesheli, K., Wang, R., Chattopadhyay, A., Singh, A., Manepalli, A., Chirila, D., Yu, R., Walters, R., White, B., Xiao, H., Tchelepi, H. A., Marcus, P., Anandkumar, A., Hassanzadeh, P., and Prabhat: Physics-informed machine learning: case studies for weather and climate modelling, Philos. T. R. Soc. A,, 379, 20200093, https://doi.org/10.1098/rsta.2020.0093, 2021.
Komlos, J., Peacock, A., Kukkadapu, R. K., and Jaffé, P. R.: Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions, Geochim. Cosmochim. Ac., 72, 3603–3615, https://doi.org/10.1016/j.gca.2008.05.040, 2008.
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Chalikov, D. V.: New Approach to Calculation of Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave Radiation in a Climate Model, Mon. Weather Rev., 133, 1370–1383, https://doi.org/10.1175/MWR2923.1, 2005.
Kyas, S., Volpatto, D., Saar, M. O., and Leal, A. M. M.: Accelerated reactive transport simulations in heterogeneous porous media using Reaktoro and Firedrake, Comput. Geosci., 26, 295–327, https://doi.org/10.1007/s10596-021-10126-2, 2022.
Laloy, E. and Jacques, D.: Speeding up reactive transport simulations in cement systems by surrogate geochemical modeling: deep neural networks and k-nearest neighbors, arXiv, arXiv:2107.07598, 30 November 2021.
Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E. W., Brantley, S. L., Dietrich, W. E., Mayer, K. U., Steefel, C. I., Valocchi, A., Zachara, J., Kocar, B., Mcintosh, J., Tutolo, B. M., Kumar, M., Sonnenthal, E., Bao, C., and Beisman, J.: Expanding the role of reactive transport models in critical zone processes, Earth-Sci. Rev., 165, 280–301, https://doi.org/10.1016/j.earscirev.2016.09.001, 2017.
Li, Y., Lu, P., and Zhang, G.: An artificial-neural-network-based surrogate modeling workflow for reactive transport modeling, Petroleum Research, 7, 13–20, https://doi.org/10.1016/j.ptlrs.2021.06.002, 2022.
Long, P. E., Williams, K. H., Davis, J. A., Fox, P. M., Wilkins, M. J., Yabusaki, S. B., Fang, Y., Waichler, S. R., Berman, E. S. F., Gupta, M., Chandler, D. P., Murray, C., Peacock, A. D., Giloteaux, L., Handley, K. M., Lovley, D. R., and Banfield, J. F.: Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer, Geochim. Cosmochim. Ac., 150, 106–124, https://doi.org/10.1016/j.gca.2014.11.013, 2015.
Lu, H., Ermakova, D., Wainwright, H. M., Zheng, L., and Tartakovsky, D. M.: DATA-INFORMED EMULATORS FOR MULTI-PHYSICS SIMULATIONS, J. Mach. Learn Model Comput., 2, 33–54, https://doi.org/10.1615/JMachLearnModelComput.2021038577, 2021.
Maavara, T., Siirila-Woodburn, E. R., Maina, F., Maxwell, R. M., Sample, J. E., Chadwick, K. D., Carroll, R., Newcomer, M. E., Dong, W., Williams, K. H., Steefel, C. I., and Bouskill, N. J.: Modeling geogenic and atmospheric nitrogen through the East River Watershed, Colorado Rocky Mountains, PLOS ONE, 16, e0247907, https://doi.org/10.1371/journal.pone.0247907, 2021a.
Maavara, T., Siirila-Woodburn, E. R., Maina, F., Maxwell, R. M., Sample, J. E., Chadwick, K. D., Carroll, R., Newcomer, M. E., Dong, W., Williams, K. H., Steefel, C. I., and Bouskill, N. J.: Nitrate, ammonium, and DON mass time series output for East River stream, vadose zone and groundwater subwatersheds from HAN-SoMo model, Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE), United States; Watershed Function SFA, https://doi.org/10.15485/1766811, 2021b.
Maher, K. and Mayer, K. U.: The art of reactive transport model building, Elements, 15, 117–118, 2019.
Malaguerra, F., Albrechtsen, H.-J., and Binning, P. J.: Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques, J. Hydrol., 476, 321–331, https://doi.org/10.1016/j.jhydrol.2012.11.010, 2013.
Martinez, B. C., DeJong, J. T., and Ginn, T. R.: Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow, Comput. Geotech., 58, 1–13, https://doi.org/10.1016/j.compgeo.2014.01.013, 2014.
Molins, S. and Knabner, P.: 2. Multiscale Approaches in Reactive Transport Modeling, in: Reviews in Mineralogy & Geochemistry, vol. 85, edited by: Druhan, J. L. and Tournassat, C., De Gruyter, 27–48, https://doi.org/10.1515/9781501512001-003, 2020.
Moon, H. S., McGuinness, L., Kukkadapu, R. K., Peacock, A. D., Komlos, J., Kerkhof, L. J., Long, P. E., and Jaffé, P. R.: Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics, Water Res., 44, 4015–4028, https://doi.org/10.1016/j.watres.2010.05.003, 2010.
Paper, J. M., Flynn, T. M., Boyanov, M. I., Kemner, K. M., Haller, B. R., Crank, K., Lower, A., Jin, Q., and Kirk, M. F.: Influences of pH and substrate supply on the ratio of iron to sulfate reduction, Geobiology, 19, 405–420, https://doi.org/10.1111/gbi.12444, 2021.
Richter, F. M. and DePaolo, D. J.: Numerical models for diagenesis and the Neogene Sr isotopic evolution of seawater from DSDP Site 590B, Earth Planet. Sc. Lett., 83, 27–38, https://doi.org/10.1016/0012-821X(87)90048-3, 1987.
Rolle, M. and Borgne, T. L.: 5. Mixing and Reactive Fronts in the Subsurface, in: Reviews in Mineralogy & Geochemistry. vol. 85, edited by: Druhan, J. L. and Tournassat, C., De Gruyter, 111–142, https://doi.org/10.1515/9781501512001-006, 2020.
Seigneur, N., Vriens, B., Beckie, R. D., and Mayer, K. U.: Reactive transport modelling to investigate multi-scale waste rock weathering processes, J. Contam. Hydrol., 236, 103752, https://doi.org/10.1016/j.jconhyd.2020.103752, 2021.
Steefel, C. I., DePaolo, D. J., and Lichtner, P. C.: Reactive transport modeling: An essential tool and a new research approach for the Earth sciences, Earth Planet. Sc. Lett., 240, 539–558, https://doi.org/10.1016/j.epsl.2005.09.017, 2005a.
Steefel, C. I., DePaolo, D. J., and Lichtner, P. C.: Reactive transport modeling: An essential tool and a new research approach for the Earth sciences, Earth Planet. Sc. Lett., 240, 539–558, https://doi.org/10.1016/j.epsl.2005.09.017, 2005b.
Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, J. C. L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S. B., and Yeh, G. T.: Reactive transport codes for subsurface environmental simulation, Comput. Geosci., 19, 445–478, https://doi.org/10.1007/s10596-014-9443-x, 2015.
Torres, E., Couture, R. M., Shafei, B., Nardi, A., Ayora, C., and Van Cappellen, P.: Reactive transport modeling of early diagenesis in a reservoir lake affected by acid mine drainage: Trace metals, lake overturn, benthic fluxes and remediation, Chem. Geol., 419, 75–91, https://doi.org/10.1016/j.chemgeo.2015.10.023, 2015.
van Breukelen, B. M., Griffioen, J., Röling, W. F. M., and van Verseveld, H. W.: Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume, J. Contam. Hydrol., 70, 249–269, https://doi.org/10.1016/j.jconhyd.2003.09.003, 2004.
Williams, K. H., Long, P. E., Davis, J. A., Wilkins, M. J., N'Guessan, A. L., Steefel, C. I., Yang, L., Newcomer, D., Spane, F. A., Kerkhof, L. J., McGuinness, L., Dayvault, R., and Lovley, D. R.: Acetate Availability and its Influence on Sustainable Bioremediation of Uranium-Contaminated Groundwater, Geomicrobiol. J., 28, 519–539, https://doi.org/10.1080/01490451.2010.520074, 2011.
Wu, W.-M., Carley, J., Gentry, T., Ginder-Vogel, M. A., Fienen, M., Mehlhorn, T., Yan, H., Caroll, S., Pace, M. N., Nyman, J., Luo, J., Gentile, M. E., Fields, M. W., Hickey, R. F., Gu, B., Watson, D., Cirpka, O. A., Zhou, J., Fendorf, S., Kitanidis, P. K., Jardine, P. M., and Criddle, C. S.: Pilot-Scale in Situ Bioremedation of Uranium in a Highly Contaminated Aquifer. 2. Reduction of U(VI) and Geochemical Control of U(VI) Bioavailability, Environ. Sci. Technol., 40, 3986–3995, https://doi.org/10.1021/es051960u, 2006.
Yoo, A. B., Jette, M. A., and Grondona, M.: SLURM: Simple Linux Utility for Resource Management, in: Job Scheduling Strategies for Parallel Processing, vol. 2862, edited by: Feitelson, D., Rudolph, L., and Schwiegelshohn, U., Springer Berlin Heidelberg, Berlin, Heidelberg, 44–60, https://doi.org/10.1007/10968987_3, 2003.
Short summary
We demonstrate how, given a simulation of fluid and rock interacting, we can emulate the system using machine learning. This means that, for a given initial condition, we can predict the final state, avoiding the simulation step once the model has been trained. We present a workflow for applying this approach to any fluid–rock simulation and showcase two applications to different fluid–rock simulations. This approach has applications for improving model development and sensitivity analyses.
We demonstrate how, given a simulation of fluid and rock interacting, we can emulate the system...