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S1 Machine Learning 

S1.1 Decision Tree Schematic 

.  

Figure S1: An example decision tree, in which for an input of (x=0.7, y=0.6) traversing 

the tree returns z=3. 

 

 

S1.2 The Gradient Boosting of Decision Trees 

Tree boosting is a statistical learning approach whereby decision trees are iteratively added to 

an ensemble of such trees, with the aim of predicting a value (y) from a vector of inputs (xi). 

At each level of the tree, there is an inequality presented, (for a schematic of this see Figure 

S1) and the model will traverse the tree based on whether that inequality is true or false for a 

given input. After the whole sequence of decisions has been evaluated, the tree has been 

traversed and arrives at an output—the prediction y. By itself, a single tree is a poor predictor 

of a complex system but tree boosting combines the weighted, averaged output of many trees, 

which does constitute a powerful predictor (Schapire, 1990). The gradient boosting of 

decision trees (Friedman, 2001, 2002) uses gradient descent to decide which tree is the best 

one to add to the ensemble to improve predicative capability. This works by defining an 
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objective function (for example, root mean square error in the prediction) and calculating the 

tree that most reduces that objective function and adding that tree to the ensemble. By 

training such a GBT model on the synthetic dataset generated by the original RTM, we create 

a surrogate model (also known as an emulator) of the original system. These emulators 

encode all the process interactions that were described previously because they have been 

trained on a dataset that encompasses the complete range of the chosen variables. 

S1.3 Description of XGBoost implementation 

The hyperparameters reported in Table S1: were chosen by inspecting model training 

performance. We train the model on GPU and so use the GPU implementation of XGBoost, 

the gpu_hist tree method. We train using the linear regression objective function, as it gave 

the best results when compared to other objective functions offered in XGBoost. The 

reg:linear objective means that the squared error is the function being minimised. 

The number of training rounds is the maximum number of iterations of the XGBoost 

algorithm that can be applied during training. The number of training rounds is partly a 

function of η, the learning rate, which determines how quickly the emulator converges to a 

fit. If the learning rate is slow, then more training rounds are usually required, although this 

has not been the case here. The value of η was determined by experiment. The maximum 

number of training rounds here was selected to be large to ensure that the emulator was as 

accurate as possible, given its configuration. This does not mean that the models could not be 

trained further if more time and resources were allocated to training. 

Having an unlimited tree depth, with a limited number of leaves (rather than is usual in 

XGBoost, which normally has a capped tree depth and an unlimited number of leaves) helped 

the GBT model hyperparameters generalise across case studies. Similarly, choosing a loss 

guided tree growth policy (so that nodes are split wherever they will make the best 
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improvement to the loss, rather than always nearest the root of the tree, as is default) was the 

result of experimentation that showed it improved model performance and hyperparameter 

generalisability. The maximum number of bins was chosen as large to ensure high resolution 

when dealing with small changes in mineral precipitation that had to be captured by the 

emulator. 

The maximum tree depth refers to the maximum number of consecutive decisions in any 

given tree within the ensemble (see Figure S1 for an example tree of depth two). L1 and L2 

regularisations are factors that penalise complexity within the emulator. Complexity in this 

context refers to emulator behaviour that leads to overfitting, where the model learns the data 

in such a way that the model cannot generalise well to unseen data, while performing 

extremely well on the data that it has seen during training, which is undesirable when trying 

to draw conclusions from the emulator. By including factors that encourage the model to not 

become overly specific to the data shown during training, this overfitting can be avoided—in 

this case the default values for regularisation sufficed and so are not listed.  

Hyperparameter Hyperparameter meaning Value 

Tree method Algorithm to construct the decision tree gpu_hist 

Number of training 

rounds 
Maximum number of boosting rounds 50,000 

Objective Loss function to minimise reg:linear 

Growth policy Choice of how new nodes are added to the tree lossguide 

Max tree depth Maximum number of consecutive decisions allowed in a 

tree 
Unlimited 
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Learning rate () Multiplier to scale feature weights to prevent over fitting 0.01 

Max leaves Maximum number of nodes that can be added 6 

Max bin Number of bins for bucketing features 10000 

Table S1: GBT model parameters used in each case study. Unlisted hyperparmeters are 

unchanged from the XGBoost default. For technical details on each parameter see Chen 

and He (2015). 

S1.4 Training curves 
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Figure S2: Training curves for XGBoost regressor models for both Old Rifle, (a), and 

ODP Site 1086, (b). Difference in scale between plots is a result of the difference in scale 

of the labels being predicted between the different environmental contexts. 

 

 

S2 Old Rifle 
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S2.1 Old Rifle RTM Schematic 

Figure S3: Schematic of the RTM which the emulator is trained on. The RTM describes 

the column of sediment taken from Old Rifle. The model was developed by Druhan et 

al., (2014). The RTM is made up of 100 grid cells, each sized 1 cm. The artificial 

groundwater is injected at the top, and flows through the sediment, eventually out of the 

bottom of the column. 

 

S2.2 Optimised values for pyrite precipitation at Old Rifle 

Quantity Optimised Value 

NH4
+
 30 mM 
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SO4
2-

 30 mM 

Ca2+ 27.5 mM 

Acetate 30 mM 

CO2(g) 0 bar  

GBT predicted net pyrite precipitation 0.143 

RTM modelled pyrite precipitation 0.150 

Difference in predicted vol. frac. change 7.0×10-3 

Difference in predicted vol. frac. change 4.7% 

Table S2: Predicted injectate fluid composition that would maximize pyrite 

precipitation at Old Rifle with the associated volume fraction increase predicted by the 

emulator. We note that the range of predictable values is constrained by the trained 

range of the GBT model, so in the cases where the value predicted is equal to that 

maximum (30 mM for Old Rifle) the true optimal value could be higher. The 

penultimate row gives the true net increase in volume fraction calculated by the RTM 

with these boundary conditions, which we take to be the ground truth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S2.3 Old Rifle co-dependency plots 
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Figure S4: The additional co-dependency plots of the parameters varied for the Old 

Rifle injection fluid not shown in the main text. 
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S2.4 Effect of rate law on CO2 dependency in Old Rifle 

 

Figure S5: Plots comparing various properties and quantities related to microbial 

sulfate reduction at the Old Rifle Site over the course of two model runs to demonstrate 

the effect of CO2 partial pressure in the injectate. All quantities are taken from the first 

grid cell of the simulation and plotted over the simulation duration. Blue curve 

represents the simulation when the injectate is equilibrated with 0 bars of CO2(g). 

Orange curve represents the simulation when the injectate is equilibrated with 10 bars 

of CO2(g). (A): the value of the thermodynamic factor in the Monod Biomass rate 

formulation for MSR (Jin and Bethke, 2003, 2005, 2007). (B): the value of the kinetic 

term in the Monod Biomass rate formulation for MSR (Jin and Bethke, 2003, 2005, 

2007). (C): Sulfate concentrations over time in each case. (D): Acetate concentrations 

over time in each case. We note the inhibitory effect of increased CO2(g) on FT and the 

accompanying slowing of consumption of both sulfate and acetate due to lower rates of 

MSR. 

S3 Supplementary Case Study – ODP Site 1086 

S3.1 Description of Case Study 

Site 1086 is located off the coast of South Africa in the southernmost part of the Cape Basin, 

at 794 meters water depth (Wefer et al., 1998). The sediment comprises carbonate and clay 

minerals (~80% and ~20% respectively), with other minor constituents (see Pufahl et al., 

(1998) for a more detailed lithological description). A 200-meter core and associated pore-

fluids were obtained during a drilling campaign in 1997 as part of Leg 175 of the Ocean 

Drilling Program (ODP). Relative to other sites in the Cape Basin, Site 1086 has less organic 
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carbon in the sediment, and therefore less overall subseafloor microbial activity. Microbial 

sulfate reduction does occur in this sediment, but sulfate concentrations decrease gradually 

and are not fully consumed until 180 meters below the seafloor, while nearby sites drilled in 

the same campaign show sulfate depletion within 20–50 meters of the seafloor (Wefer et al., 

1998). Increased alkalinity produced via microbial sulfate reduction often leads to carbonate 

mineral precipitation within sediments (Meister, 2013), and modelling of the calcium isotopic 

composition of pore fluid calcium as well as calcium and strontium concentrations at Site 

1086 has constrained the depth distribution of this carbonate mineral precipitation (Bradbury 

and Turchyn, 2018). 

We have selected Site 1086 as an example for testing the RTE approach because the 

sediments and pore-fluids have been studied extensively (Diester‐Haass et al., 2004; Weigelt 

and Uenzelmann-Neben, 2004; Udeze and Oboh-Ikuenobe, 2005; Higgins and Schrag, 2010), 

and a pre-existing published 1D RTM (Bradbury and Turchyn, 2018) has been used to model 

the depth distribution of carbonate mineral precipitation and dissolution in the sediment 

column. For this study, we have reimplemented this 1D RTM in CrunchTope, to feed into the 

RTE. By applying our emulation approach to this RTM, we explore coupled chemical and 

physical processes predicted by the RTM and discuss how these processes are encoded within 

the original parameterisation of the model by Bradbury and Turchyn (2018). 

A rough schematic of the RTM is shown in Figure S6. We apply the RTE to explore how 

changes in overlying seawater chemical composition (the upper boundary condition) impact 

microbial activity and thus carbonate mineral precipitation in the sediment column and 

consider how sensitive the model is to different input parameters. We also use the model to 

explore the optimal overlying seawater composition that maximises sedimentary carbonate 

mineral formation. This is a hypothetical situation as seawater chemistry does not change 
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rapidly. However, there has been much discussion over how changing ocean chemistry 

impacts carbonate mineral precipitation in sediments (Kamber and Webb, 2001; Sumner and 

Grotzinger, 2004; Ridgwell, 2005; Higgins et al., 2009). 

Figure S6: A schematic of the RTM describing the sediment column at ODP Site 1086 

after Bradbury and Turchyn (2018). 

 

 

S3.2 Case Study results and interpretation 

We begin by applying the emulation methodology to ODP Site 1086. The data for Site 1086 

is produced by using Omphalos to create 10803 unique runs with random boundary 
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conditions using concentration within the ranges given in Table S3: .The resulting dataset is 

shown in Figure S7. The plots have been colour mapped by formaldehyde concentration (as a 

proxy for organic carbon available in the sediment column (Meister, 2013)). The colour 

mapping helps visualise how variability in the volume of calcite precipitated might be 

considered in conjunction with other model parameters. 

Variable Species Range 

y Net calcite precipitation - 

x1 SO4
2-

 0-50 mM 

x2 Ca2+ 0-50 mM 

x3 Formaldehyde 0-50 mM 

x4 CO2(aq) 0-50 mM 

Table S3: The attributes and labels (𝒙𝒊, 𝒚 respectively) used in the GBT model. Shown 

also are the ranges over which concentrations are drawn from a uniform distribution to 

create the boundary conditions that are used in the ODP Site 1086 RTM. The GBT 

model is trained to predict y values (top row) based on a set of input x values (next five 

rows). 
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Figure S7: Scatter plots of the chemical concentration of modelled seawater above ODP 

Site 1086 against the RTM modelled volume of calcite precipitation, colour mapped by 

formaldehyde. The dataset comprises 10,803 points generated by drawing all four 

variables independently from uniform distributions, with the corresponding net calcite 

precipitation calculated by running the RTM described previously (Bradbury and 

Turchyn, 2018) with the randomised boundary conditions. The green diamond indicates 

the actual seawater composition above Site 1086. Negative values indicate net 

dissolution of calcite rather than precipitation. 

The results visually suggest that SO4
2−

, Ca2+ and, CO2(aq) concentrations are all loosely 

correlated with the volume of calcite precipitated in the sediment. In particular, there are 

upper and lower bounds for the volume of calcite precipitated, most clearly seen in the plot of 
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Ca2+ against net calcite precipitation but also to a lesser extent in the plots of SO4
2−

 and 

CO2(aq). We note that formaldehyde influences the precipitation of calcite with higher 

formaldehyde concentrations leading to more calcite precipitated; this is particularly visible 

in Figure S7B and Figure S7C, and to a lesser extent in Figure S7A. These results suggest 

higher amounts of the electron donor (formaldehyde) lead to higher amounts of calcite 

precipitation for a given concentration of calcium or carbon dioxide available in seawater. 

We acknowledge the caveat that the overall amount of calcite precipitated or dissolved will 

depend on the duration of the model run—this is held constant for all runs in this study. As 

the model is run for 1,500,000 years, we assume it reaches steady state.  

We use the dataset presented in Figure S7 to train the GBT model (holding back 10% of the 

dataset for testing), and we use this emulator to plot the results shown in Figure S8. Here we 

show projections of the RTE along one axis accompanied by RTM modelled results. The 

volume of calcite precipitated is predicted by the GBT model over the range of parameter 

space (Table S3: ), with the other parameters held at the real-world values for Site 1086 (see 

Bradbury and Turchyn (2018)). It is important to note again that these RTM modelled results 

(crosses in Figure S8) are not points present in the dataset shown in Figure S7. They are 

generated from the same initial, RTM describing Site 1086, but the GBT model has not been 

exposed to them during training. The ability of the RTE to correctly predict these unseen data 

demonstrates that, as intended, the GBT model is correctly learning the underlying RTM by 

training on the randomly generated points (Figure S7). We present the training and validation 

metrics for our model in Table S4. 
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Dataset R2 RMSE 

Training 0.9999 0.0280 

Validation 0.9991 0.0701 

Table S4: Training and validation metrics for the fit of the XGBoost model to the Site 

1086 dataset. 10% of the overall dataset was held out to form the validation dataset. 

 

Figure S8: Plots of the GBT model fit compared to the RTM run discretely for the 

various changes in concentrations of the input (Bradbury and Turchyn, 2018). Each 

plot shows the percentage increase in volume fraction of calcite in the sediment as each 

concentration is varied while all other concentrations are held at modern seawater 

values. The blue line shows the RTE predicted values over this range and the black 

crosses show the RTM calculated value for the equivalent initial condition. We stress 

that the comparative points calculated by the RTM were not seen by the emulator 

during training. 

Illustrating the model fit while varying two parameters simultaneously gives the plots shown 

in Figure S9. The surfaces show how the volume of calcite precipitation co-varies as a 
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function of pairs of variables on which the emulator was trained. Taking the plot of 

formaldehyde versus Ca2+ (Figure S9A) for example, we note that as the concentration of 

formaldehyde increases, the gradient of the dependence of calcite precipitation on Ca2+ 

increases. This is an example of the complex non-linearities that result from the interplay 

between the many coupled processes accounted for within RTMs. Returning to the RTM, we 

can deduce that this is because increasing formaldehyde concentration increases the rate of 

microbial sulfate reduction in the sediment. This, in turn, increases the amount of dissolved 

inorganic carbon (DIC) available for calcite precipitation. The rate law governing calcite 

precipitation in this model is a transition state theory (TST) formulation as shown in Equation 

(S1.6.1) (Lasaga and Kirkpatrick, 1981) and the associated chemical reaction for calcite 

precipitation is shown in Equation (S1.6.2). Both the available DIC and Ca2+ enter the 

equation in the same way: through the ion activity product. Therefore, as formaldehyde 

concentrations increase, resulting in greater rates of microbial sulfate reduction and hence 

more DIC in the porewater, the rate of calcite precipitation (Equation (S1.6.1)) for any given 

value of Ca2+ increases. 

𝑅 = 𝐴𝑚𝑘𝑚 exp (
−𝐸𝑎

𝑅𝑇
) (1 −

1

𝐾𝑒𝑞

[Ca2+][HCO3
−]

[H+]
)   (S1.6.1) 

Ca2+ + 2HCO3
−→CaCO3(s) +H2O+CO2   (S1.6.2) 

There is comparable behaviour in Figure S9B when we consider Ca2+ and CO2(aq) although 

we have proportionally more calcite precipitated overall. This is because, when creating DIC 

through microbial sulfate reduction, we are also lowering the pH (Soetaert et al., 2007). 

Calcite precipitation is inhibited at low pH (see Equation (S1.6.1)) due to speciation of DIC 

to CO2(aq) at low pH. When we increase CO2(aq) in the boundary condition however, it 
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speciates to HCO3
− since the boundary condition pH is fixed. Therefore, increasing DIC in the 

boundary condition drives more calcite precipitation due to increasing HCO3
− concentrations. 

Figure S9C suggests that the gradient of the amount of calcite precipitated as a function of 

Ca2+ increases with SO4
2−

. However, there is a region where, beyond a certain SO4
2−

, the 

amount of calcite precipitated no longer increases. We note this emerges because the equation 

governing microbial sulfate reduction in this RTM consumes twice as much formaldehyde as 

sulfate (Equation (S1.6.3)). Therefore, sulfate rapidly becomes in excess at high 

concentrations. 

1

8
SO4

2−+
1

4
CH2O+

1

4
H+→

1

8
H2S(aq)+

1

4
CO2(aq)+

1

4
H2O  (S1.6.3) 

Finally, Figure S9D and Figure S9E show that when CO2(aq) is considered relative to 

formaldehyde or relative to SO4
2−

 they have a largely independent effect on the amount of 

calcite precipitated. In each case, the effect of an increase in any one species appears 

approximately additive until the reaction is limited by other species. This reflects the fact that 

CO2(aq) versus SO4
2−

 and formaldehyde together represent two different ways of adding DIC 

to the system (direct addition vs. microbial sulfate reduction). When the system achieves 

calcite supersaturation, these two sources of DIC then compete for the same pool of Ca2+ ions 

to form the solid phase. 
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Figure S9: Plots of the emulator net predicted increase in volume fraction of calcite due 

to precipitation over the modelled period (1.5 Myr). Predictions are plotted in two 

dimensions for each possible pair of variables. 

Now that we have analysed the behaviour of the emulator in the context of the original RTM 

formulation, we vary all four parameters simultaneously and use the emulator to determine 

the maximum volume of calcite precipitated over the range covered by the model’s 4D 

parameter space. By changing the chemistry of the overlying seawater it is theoretically 

possible to increase calcite precipitation (Table S5: S). While this result is not unexpected 

(increasing Ca2+, and DIC should lead to more calcite precipitate) the emulator does correctly 

determine that increasing sulfate beyond 25 mM would be ineffective in increasing the total 

amount of calcite precipitated. This can be seen by examining the stoichiometry of the 

reaction for microbial sulfate reduction, shown in Equation (S1.6.3). This is consistent with 

our previous analysis that SO4
2−

 is rapidly in excess in sedimentary pore fluids, and that 

otherwise adding large amount of DIC, either through modifying boundary conditions or via 

oxidation from microbial metabolism, in conjunction with large concentrations of Ca2+ will 

lead to the most sedimentary carbonate precipitation. The ability of the emulator to identify 
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the point of diminishing returns when modifying the boundary condition offers an important 

demonstration of this approach’s potential for future applications in predicting optimal 

geochemical amendments. 

Quantity Optimised Value 

SO4
2−

 25 mM  

Ca2+ 50 mM 

Formaldehyde 50 mM 

CO2(aq) 45.8 mM 

GBT predicted net calcite precipitation 0.00120 

RTM modelled calcite precipitation 0.00122 

Difference in predicted vol. frac. 

change 

1.4910-5 

Percentage error in vol. frac. change 1.2% 

Table S5: Seawater fluid composition that would theoretically maximise calcite 

precipitation at Site 1086 with the associated volume fraction increase predicted by the 

emulator. We note that the range of predictable values is constrained by the trained 

range of the GBT model, so in the cases where the value predicted is equal to that 

maximum (50 mM for Site 1086) the true optimal value could be higher. The 

penultimate row gives the true net increase in volume fraction calculated by the RTM 

with these boundary conditions, which we take to be the ground truth. 

With respect to the first case study for ODP Site 1086, the emulator suggests a 4-fold 

increase in the amount of calcite precipitated when compared to the original RTM. 
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