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Abstract. We present an emulation-based approach to un-
derstand the interactions among different chemical and bio-
logical processes modelled in environmental reactive trans-
port models (RTMs) and explore how the parameterisation
of these processes influences the results of multi-component
RTMs. We utilise a previously published RTM consisting
of 20 primary species, 20 secondary complexes, 17 mineral
reactions, and 2 biologically mediated reactions; this RTM
describes bio-stimulation using sediment from a contami-
nated aquifer. We choose a subset of the input parameters
to vary over a range of values. The result is the construc-
tion of a new dataset that describes the model behaviour over
a range of environmental conditions. Using this dataset to
train a statistical model creates an emulator of the underly-
ing RTM. This is a condensed representation of the origi-
nal RTM that facilitates rapid exploration of a broad range
of environmental conditions and sensitivities. As an illustra-
tion of this approach, we use the emulator to explore how
varying the boundary conditions in the RTM describing the
aquifer impacts the rates and volumes of mineral precipita-
tion. A key result of this work is the recognition of an unan-
ticipated dependency of pyrite precipitation on pCO2 in the
injection fluid due to the stoichiometry of the microbially
mediated sulfate reduction reaction. This complex relation-
ship was made apparent by the emulator, while the under-
lying RTM was not specifically constructed to create such
a feedback. We argue that this emulation approach to sensi-
tivity analysis for RTMs may be useful in discovering such
new coupled sensitives in geochemical systems and for de-
signing experiments to optimise environmental remediation.
Finally, we demonstrate that this approach can maximise spe-

cific mineral precipitation or dissolution reactions by using
the emulator to find local maxima, which can be widely ap-
plied in environmental systems.

1 Introduction

Reactive transport modelling has been extensively applied
across a wide variety of environmental systems, providing
a powerful means of quantifying and even predicting pro-
cesses across Earth’s (near-) surface environments (Richter
and DePaolo, 1987; Bain et al., 2000; Johnson et al., 2004;
van Breukelen et al., 2004; Gaus et al., 2005; Torres et al.,
2015; Li et al., 2017; Arora et al., 2020; Molins and Knabner,
2020; Rolle and Borgne, 2020; Druhan et al., 2020; Cama
et al., 2020). Reactive transport models (RTMs) are con-
structed by combining multiple physical, chemical, and bi-
ological processes to simulate the behaviour of environmen-
tal systems. As applications and software have concurrently
expanded (Steefel et al., 2015; Li et al., 2017; Maher and
Mayer, 2019; Druhan and Tournassatt, 2019), it is becoming
increasingly common to explicitly calculate the rates of pro-
duction and consumption for a variety of coexisting chemical
species, as well as their equilibria with mineral phases and
their transport as they evolve in time and space. This type
of multi-phase, multi-component RTM is a type of forward
modelling where the results of the simulation emerge from a
complex suite of interacting pathways; hence, the causes of
observed behaviour are not always obvious.

RTMs are often designed to describe the behaviour of spe-
cific field sites and systems. Due to their process-based na-
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ture, designing RTMs requires selection of a suite of chem-
ical reactions and transport mechanisms which are thought
to dominate the geochemistry of the system over the scales
of interest. However, the parameterisation of various se-
lected processes is often not unique and can impact sys-
tem behaviour (Williams et al., 2011; Martinez et al., 2014;
Seigneur et al., 2021; Steefel et al., 2005a). To assess the
impact of the choice of parameterisation and the values cho-
sen for different parameters on model predictions, sensitivity
analyses are generally performed (Malaguerra et al., 2013;
Gatel et al., 2019). However, as RTMs become increasingly
sophisticated, they incorporate disparate processes that can
interact with each other in complex ways (Dwivedi et al.,
2018; Hubbard et al., 2018, 2019; Maavara et al., 2021a, b;
Dwivedi et al., 2017).

The sensitivity analysis of an RTM in an application to a
specific environmental system can elucidate the relative im-
portance of specific interactions – for example, testing the
solubility of mineral phases relative to changes in the so-
lution chemistry. However, results might emerge that were
not anticipated. These results might represent real but un-
expected interactions, in which case the sensitivity analy-
sis has yielded new insights into the system being mod-
elled. Equally, the result might represent an incorrect inter-
action between two different processes that are known to act
independently of each other, in which case the RTM can
be improved. Unfortunately, due to the computational ex-
pense of many modern multi-component RTMs (e.g. Abd
and Abushaikha, 2021; Seigneur et al., 2021; Gharasoo et al.,
2022), it is normally impractical to perform sensitivity anal-
yses in more than a few dimensions, and it is up to the inves-
tigator to use their knowledge of the system to choose which
sensitivity analyses are necessary to explore (Steefel et al.,
2005b). Ideally, we would be able to systematically perform
sensitivity analyses over many model parameters consider-
ing how model outputs vary as a function of multiple input
parameters simultaneously (i.e. in a multivariate way) while
also lightening the computational burden that commonly oc-
curs when using inverse modelling approaches implemented
by codes like PEST and iTOUGH2 (Doherty, 2004; Finsterle
et al., 2017). Such a capacity could direct future laboratory-
based investigations to test whether these model results are
real-world phenomena, ultimately offering improved param-
eterisation of critical components within the reaction net-
work.

Here, we demonstrate a method for exploring a wide vari-
ety of potential model parameters by adopting an emulator-
based approach. Ours is not the first work to apply emulators
to RTM simulations. Notably, a rich vein of research based
around replacing the geochemical solver in RTMs with an
emulator has emerged over the past few years (see Laloy and
Jacques (2021) and Kyas et al. (2022), among others). How-
ever, the work presented here is less concerned with speeding
up individual RTM simulations as it is with developing new
methods to explore geochemical parameter spaces. We also

investigate the effect of changing geochemical parameters on
the overall outcome of RTM simulations, with an eye towards
predicting system outcomes in real-world scenarios. This is
similar in nature to recent work conducted by Ahmmed et al.
(2021), which explores the ability of different machine learn-
ing methods to predict the degree of mixing and the progres-
sion of a simplified, generic reaction (A+B→C) in a finite-
element simulation, and we extend the idea of predicting the
final state of a simulation to published RTMs describing real-
world systems.

Such emulation approaches in predicting the outcomes of
physical systems have a long history, including applications
in physics-based animation (Grzeszczuk et al., 1998), com-
plex multi-physics simulators (Lu et al., 2021; Bianchi et al.,
2016), climate models (Beucler et al., 2019; Krasnopolsky
et al., 2005; Castruccio et al., 2014; Kashinath et al., 2021),
and emulating fluid flow through dolomite using a neural
network (Li et al., 2022). In an emulator approach, the un-
derlying physical system is approximated by a statistical
model (the emulator) which can be evaluated more quickly
than a conventional forward model. How this emulator is
constructed varies by implementation and may encode as-
sumptions about the underlying system to be modelled (e.g.
conservation of energy; Beucler et al., 2019). In this study,
we are primarily interested in exploring and emulating the
geochemical behaviour of RTMs; therefore, we focus less
on transport effects and restrict ourselves to emulating one-
dimensional RTMs.

In our implementation, the emulator is built by training a
gradient-boosted trees (GBT) regressor (Chen et al., 2016)
on a synthetic dataset generated from the original RTM. By
training such a GBT model on the synthetic dataset generated
by the original RTM, we create an emulator of the original
system. This emulation approach is general and can be ap-
plied to a wide range of RTMs using off-the-shelf statistical
libraries and requiring no special construction of the statis-
tical model beyond the choice of some training parameters.
This approach can identify the critical processes and param-
eters within RTMs and address the requirement for compre-
hensive, multivariate sensitivity analyses.

We first present a tool that automates the creation of syn-
thetic datasets: a Python wrapper for the RTM software
CrunchTope (Druhan et al., 2013; Steefel et al., 2015), which
we have named Omphalos. Omphalos edits and runs Crunch-
Tope input files in an automated fashion, systematically
changing model parameters according to user specification.
It then records the output data, along with the correspond-
ing model input parameters, for later analysis. We then apply
a machine learning method (gradient-boosted trees) to these
recorded inputs and outputs to create a predicative model
that can reproduce RTM outputs based on the input variables,
which we term a reactivate transport emulator (RTE).

We suggest that our contribution to the development of re-
active transport emulators could be used to direct new exper-
imental investigation to identify and corroborate predicted
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dependencies, providing multivariate analysis of RTMs and
helping to identify effects that can, in the future, be consid-
ered explicitly when developing new RTMs. In pursuit of this
goal, we demonstrate our emulator approach in an applica-
tion to an RTM built for biostimulation of a contaminated
aquifer. We also show an additional application of this ap-
proach to efficiently predict the condition which maximises
an RTM-predicted time-integrated rate over the set of cho-
sen parameters. We also present, in the Supplement, another
example in an application to a deep-sea sediment column.

2 Description of the case study

Old Rifle site, Colorado

The Old Rifle site is located near Rifle, Colorado, USA. The
location historically hosted a vanadium- and uranium-ore-
processing facility, and the groundwater at the site remains
high in aqueous uranium. Oxidised uranium (U(VI)) is fluid
mobile and highly toxic, while reduced uranium (U(IV)) is
much less soluble and forms stable precipitates such as urani-
nite (UO2) (Anderson et al., 2003; Wu et al., 2006; Dullies
et al., 2010; Williams et al., 2011; Long et al., 2015). Thus,
uranium reduction has been suggested as a means for reme-
diating uranium contamination in groundwater. It has been
shown that iron sulfide minerals (FeS2(s)) aid the reduction
of soluble U(VI) to insoluble U(IV) precipitates even after
active remediation has ceased (Komlos et al., 2008; Moon
et al., 2010; Bargar et al., 2013; Long et al., 2015; Bone et al.,
2017).

The RTM published for Old Rifle, upon which the RTE is
based, was originally created as a comprehensive model of
microbial sulfate reduction and sulfide precipitation in Old
Rifle sediment during the stimulation of microbial activity
by amendment with C2H3O−2 (Druhan et al., 2014) (for a
schematic illustration of this RTM, see Fig. S3 in the Supple-
ment). In this context, we choose to vary the influent bound-
ary condition chemistry, representing changes to the chemi-
cal composition of the artificial groundwater injectate. The
original experiment was designed to model microbial sul-
fate and iron reduction in the sediment; therefore, we use the
net amorphous iron (II) sulfide (FeS(am)) and pyrite (FeS2(s))
precipitation (both hereafter referred to simply as pyrite) as
an observable that will record the sensitivities of the model
predictions to changes in the injection fluid. We also demon-
strate the utility of the emulator in predicting the chemical
composition of the injection fluid that will maximise the vol-
ume of pyrite precipitated in the sediments when amended
with a labile organic carbon source via injection wells.

3 Methodology

3.1 General strategy

To explore the dependence of the RTM on the chosen envi-
ronmental variables, we begin with a Monte Carlo approach;
we draw random values for each parameter and record the
model output under that randomised condition. We then fit a
model to this Monte Carlo-generated dataset using a GBT re-
gressor. This fitting results in a model (our emulator – RTE)
that reproduces the complex interdependencies of chemical
species that are encoded in the original, underlying RTM.
This emulator can be interrogated to examine the dependence
of the RTM outputs on the originally chosen environmental
variables in an efficient, multivariate way. This way of per-
forming sensitivity analyses has the potential to give insight
into trends and relationships that would not be apparent oth-
erwise and ultimately allows us to investigate the sensitivity
of the model outputs with respect to the RTM’s original pa-
rameterisation. First, we will describe how we use the Monte
Carlo approach to generate data and then how we fit a model
to this data. The overall workflow is shown in Fig. 1.

3.2 Generating data

We use the open-source software CrunchTope as the reac-
tive transport framework for the models in this study. To gen-
erate the synthetic datasets necessary for our approach, and
given the time-consuming nature of generating a single point
(requiring a complete run of the RTM, along with modified
boundary conditions), we developed a software package in
Python to automate this process. This software package can
manage the automatic generation and submission of unique
input files to CrunchTope, as well as record the output of each
run, storing it in a manageable data structure for future use.
Use of the software package is straightforward, requiring the
configuration of a single file listing which species and/or pa-
rameters are to be varied and how they should be varied.

We have named this software package Omphalos (avail-
able for download – Sect. 5.1). Omphalos can be run on
clusters using Simple Linux Utility for Resource Manage-
ment (Yoo et al., 2003) to execute input files in parallel or
to run locally with CrunchTope simulations on individual
CPUs, which considerably reduces the time required to gen-
erate large datasets. Omphalos works by taking random val-
ues which are drawn from uniform distributions (other statis-
tical distributions are possible) of the chosen variables, sam-
pling the space evenly. This provides a complete dataset for
training the emulator.

While the underlying principle of training emulators on
synthetic data can be applied to any reactive transport code,
currently the software used to implement the approach is
only compatible with CrunchTope because the input file
reading and writing must be in a specific format. The ap-
proach is readily generalised, however, and the method-
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Figure 1. Flowchart describing the overall reactive transport emulation workflow developed in this study. It is divided into two key sections:
(i) preparation of the input reactive transport model for submission to Omphalos and (ii) the analysis and emulation of the resultant data.

ology could be applied to any RTM software (e.g. Geo-
chemist’s Workbench, TOUGHREACT), provided that the
string input–output code is adapted for compatibility.

3.3 Application to contaminated-aquifer case study

We begin by applying the emulation methodology to our
case study. To create the dataset for training the emulator,
we collected the results of 10 927 unique CrunchTope simu-
lations based on the original RTM describing Old Rifle us-
ing Omphalos, drawing random concentrations for five cho-
sen species (NH+4 , SO2−

4 , Ca2+, C2H3O−2 , and pCO2) in the
boundary condition. Of these 10 927 runs, 9416 provide use-
able data because some runs fail to converge within the speci-
fied time frame, or the geochemical condition generated can-
not be charge balanced. Excluding these runs helps ensure
that our dataset is kept realistic because our RTM is built
on a mechanistic understanding and implementation of the
physical processes at work in the system that have been vali-
dated in some way. Therefore, runs that take excessively long
to run fail to converge in the simulation scheme of Crunch-
Tope and hence are likely to be unphysical in some way.
Similarly, runs that fail to speciate or charge balance indi-
cate some kind of extreme physical condition that is unlikely
to be realistic, and so these are excluded. The concentrations
for NH+4 , SO2−

4 , Ca2+, and C2H3O−2 are varied between 0–
30 mM. The pCO2 is varied between 0–10 bar. We acknowl-
edge that these ranges of concentrations are somewhat higher

than those that occur in natural systems, but we extend the
range to observe RTM behaviours at limiting concentrations.
Related to this, it is possible for the dominant reaction mech-
anism in a system to change under differing conditions (e.g.
the change in the calcite dissolution mechanism as a function
of pH; Dolgaleva et al., 2005), and any such behaviour should
be explicitly encoded into the RTM, otherwise the emula-
tor may give invalid predictions under conditions that are far
from the original model run. We have assumed in this study
that the mechanisms governing the precipitation of pyrite do
not change under very low or very high concentrations of
these species.

The injection fluid was constrained at pH 7.2. This con-
straint, in conjunction with the concentration of various
species iterated in Omphalos, speciates according to Crunch-
Tope’s internal speciation calculation. Therefore, for exam-
ple, although the total amount of SO2−

4 in the injection will
be iterated in and dictated by Omphalos, the amount that spe-
ciates into other aqueous complexes (i.e. secondary species)
like HSO−4 or H2SO4(aq) is controlled by CrunchTope. For
the sake of simplicity, we will report the input concentration
and not the concentration after speciation.

The RTM describing Old Rifle has 100 grid cells with a
size of 1 cm. Each run of the RTM took approximately 90 s,
so the total time to generate the dataset was roughly 4 h when
run on a remote machine with 200 CPUs. The number of runs
was chosen as a balance between what was computationally
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tractable and the ability of the emulator to achieve a good fit.
We have intentionally chosen to vary some chemical species
in the influent boundary condition that do not play an obvious
role in the mineral precipitation process we are particularly
interested in, namely, the precipitation of pyrite in Old Rifle
sediments (e.g. NH+4 or Ca2+). We did this to see if we can
use the emulator to detect behaviour in the RTM beyond what
we might initially hypothesise.

3.4 Fitting the emulator

We implement the GBT regressor using XGBoost (Chen et
al., 2016) in Python. The code for fitting the models is avail-
able in the Supplement. For a précise on GBT models, see
the Sect. S1.2 in the Supplement.

3.4.1 Data strategy

Data generated by Omphalos were imported into a Jupyter
Notebook environment from the .pkl output file. There are
9416 different input file runs in this data file, having excluded
1511 runs on the grounds of them being unrealistic, as dis-
cussed previously. The relevant data were indexed out of the
data structure; in our case, this meant the concentrations of
NH+4 , SO2−

4 , Ca2+, and C2H3O−2 in the boundary condition,
as well as the value of pCO2. This results in a 5× 9416 ar-
ray of floating-point numbers for the features. Each feature
was then normalised to be in the range 0 to 1 for training.
For example, values of the SO2−

4 concentration in the sim-
ulations were drawn randomly between 0 and 30 mM so all
SO2−

4 concentrations were divided through by 30 to have val-
ues in the range 0–1. We did this to improve the training per-
formance of the GBT model over different datasets (i.e. so
that the same GBT model can be applied to both the Old Ri-
fle case study and our supplementary case study of Ocean
Drilling Program (ODP) Site 1086 (see Sect. S3 in the Sup-
plement)).

Similarly, the relevant data were also extracted from the
data file: for each cell in the gridded RTM, we calculated the
net pyrite precipitation over the course of the simulation and
then summed this value over the column to get the net pyrite
precipitated across the domain. This results in a 1× 9416 ar-
ray of floating-point labels to be predicted from the feature
array. We scale this feature array by a factor of 1× 104 to
avoid issues with small floating-point numbers in XGBoost.

We prepared these data for training the GBT regressor
with a hold-out strategy using the scikitlearn.train_test_split
method, keeping 10 % of the dataset back for validating the
model. Data were split randomly within the dataset. This
means that 8474 randomly selected data points were used to
train the model, and 942 randomly selected data points were
used to test it by using the model to predict a value based on
the held-back data and comparing the prediction to the true
value.

3.4.2 Training strategy

We use the data points generated by Omphalos to train an
XGBoost regressor using the squared error as the loss func-
tion to predict the amount of pyrite precipitated in the column
as a function of varied species concentrations in the boundary
condition. The squared log loss and pseudo-Huber error were
also tried, but the squared loss performed best overall. Train-
ing curves showing the testing and training loss as training
progressions are given in Fig. S2 in the Supplement.

Hyperparameter choices for the model are explained and
given in Sect. S1.3, Table S1 in the Supplement. The choice
of hyperparameters is the same for each emulator model,
and we are able to achieve high-quality fits using the default
XGBoost regularisations, only changing a few settings relat-
ing to tree growth policy. While it is a known problem in
machine learning that the choice of optimal hyperparameter
is dependent on the data being modelled (Claesen and De
Moor, 2015), it appears that, in the context of these RTEs,
the hyperparameters chosen give a good fit for both Old Ri-
fle and our supplementary case study of ODP Site 1086 –
datasets describing very different natural environments, with
different length and timescales. This makes the workflow ap-
plicable across a wide variety of reactive transport modelling
domains.

It is possible that with more complex hyperparameter tun-
ing, better emulator fits may be achieved, but for the purposes
outline in this paper, we suggest that this automated optimi-
sation of a subset of the available hyperparameters is suffi-
cient and represents a balance between emulator fit, general-
isability across differing RTMs, and time spent by the user.

3.4.3 Model metrics

We report our model goodness of fit to the underlying dataset
as the R2 value for the model, using the built in XGBRe-
gressor.score() method from XGBoost’s scikit-learn API for
both the original training dataset and the 10 % of the dataset
held back for validation, as show in Table 1. We also report
the root-mean-square error (RMSE) over both the training
and validation datasets, calculated using the Booster.eval()
method. Training curves are shown in Fig. S2. We report the
same metrics for our second model in Table S4 in the Sup-
plement.

4 Results and discussion

4.1 Application to the Old Rifle Site

The synthetic data generated using Omphalos to interrogate
the underlying RTM are shown in Fig. 2, colour mapped
by the pCO2 with which the injectate solution is in equi-
librium. The colour mapping helps visualise how variability
in the precipitated volume of pyrite over the 43 d RTM sim-
ulation might be considered in conjunction with other model
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Figure 2. Scatterplots of chemical concentrations in the fluid injectate (influent boundary condition) for an RTM adapted to Old Rifle
sediments colour mapped by the pCO2 with which the inlet boundary condition is in equilibrium. The dataset comprises 9416 points
generated by drawing concentrations for all five species independently from uniform random distributions, with the corresponding net
increase in pyrite volume fraction precipitated (y axis) calculated by running the Old Rifle RTM designed by Druhan et al. (2014) with the
randomised influent boundary condition. The green diamond indicates the net pyrite volume fraction generated from the original boundary
condition used in Druhan et al. (2014).

parameters. Ultimately, pyrite forms because aqueous hydro-
gen sulfide, produced through microbial sulfate reduction, re-
acts with reduced ferrous iron (Fe(II)) to form pyrite. Thus,
we aim to explore the interdependencies between the mecha-
nisms driving microbial sulfate reduction and the subsequent
precipitation of pyrite as they emerge due to variations in in-
jectate chemical composition.

We then train the emulator on this synthetic dataset. Fitting
a GBT regressor to the data in Fig. 2 means Fig. 3 can be gen-
erated by the emulator. This figure shows how the emulator
predicts the change in pyrite volume fraction as the concen-
tration of each of the species in the injection fluid is varied
(other species in the RTM not defined as variables in this
study are held constant at values reported by Druhan et al.,
2014). We stress that the RTM results shown in Fig. 3 are not
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Table 1. Training and validation metrics for the XGBoost regressor
model fit to the Old Rifle dataset. R2 represent a normalised mea-
sure of the fit quality, with the best possible score being 1. RMSE is
the root-mean-squared error in the predictions, where we recall that,
in data pre-processing, the values to be predicted were multiplied by
a factor of 104, and so the RMSE should be divided by that factor
when assessing the average error for data presented in Figs. 2–4.

Dataset R2 RMSE

Training 0.99996 1.95012
Validation 0.99964 5.65848

part of the training dataset and that the emulator has not been
exposed to these exact values. This demonstrates the capabil-
ity of the emulator to reproduce the underlying RTM itself.
For example, Fig. 2a suggests visually that the concentration
of NH+4 in the system is uncorrelated with net pyrite precip-
itation at the Old Rifle site. Figure 3a confirms this lack of
dependence on NH+4 , capturing the correct trend (with some
noise), although it is slightly offset. This slight offset also ap-
plies to Fig. 3c in the fit of the Ca2+ dependence. We suggest
that these slight offsets to the fits in the cases of the weakly or
uncorrelated variables are due to the emulator preferentially
capturing stronger dependencies and slightly drawing down
the predicated variable on average.

In contrast to the minimal impact that changing NH+4 con-
centration has on pyrite precipitation, C2H3O−2 and SO2−

4
concentrations correlate strongly with net pyrite precipita-
tion. This is as expected in a system where C2H3O−2 , which
is the electron donor for microbial sulfate reduction, enables
sulfate to be reduced to sulfide and thus drives pyrite pre-
cipitation in the presence of Fe(II). Approximately 20 d af-
ter C2H3O−2 amendment, microbial sulfate reduction takes
over from dissimilatory iron reduction as the dominant pro-
cess consuming C2H3O−2 . As microbial sulfate reduction re-
quires 8 times the number of electrons per mole of SO2−

4
reduced than dissimilatory iron reduction requires (per mole
of iron reduced), the electron donor (C2H3O−2 ) begins to be
rapidly consumed, whereas during dissimilatory iron reduc-
tion, it was effectively in excess. As a result of this new
scarcity of C2H3O−2 , the rate of dissimilatory iron reduc-
tion drops, and so does the concentration of Fe(II). However,
dissimilatory iron reduction is still active in the column, re-
leasing a small – but non-zero – flux of aqueous Fe(II) that
allows for continued pyrite precipitation. The emulator inter-
prets this as Fe(II) being always available in this system and
thus predicts that pyrite precipitation can scale linearly with
SO2−

4 and C2H3O−2 , as shown in Fig, 4a. The sediment itself
would need to contain abundant ferrihydrite, goethite, or an-
other bioavailable ferri(hydr)oxide for this reduction to con-
tinue indefinitely; this may not be the case. This highlights
the need for the range of parameters sampled when training
the emulator to be sufficiently wide to capture all the RTM

behaviour, otherwise it may extrapolate and learn incorrect
assumptions about the system – in this case, that bioavailable
iron never limits dissimilatory iron reduction. One solution
would be to expand the range over which concentrations are
drawn to reach the limit where the iron-bearing mineral vol-
ume fraction becomes a limiting factor so that the model can
learn what happens when this occurs.

We also note that our emulator suggests that increasing
pCO2 leads to decreased pyrite precipitation (Fig. 3e), a re-
lationship that may not have been apparent in a single run of
the RTM. Three-dimensional visualisation of the data con-
firms that the pyrite volume fraction change varies as a func-
tion of pCO2 net pyrite precipitated decreasing as pCO2 in-
creases (Fig. 4b and c). This three-dimensional visualisation
allows us to see that the gradient of the pyrite volume fraction
change with respect to SO2−

4 and C2H3O−2 is itself a function
of pCO2 and flattens as pCO2 increases. To understand why
the gradient changes, we must first understand why pCO2
affects the amount of pyrite precipitated in the first place.

Sediment samples from Old Rifle are initially poised for
dissimilatory iron reduction, and there is a sizeable commu-
nity of iron-reducing bacteria naturally present in the sys-
tem. The background sulfate-reducing microbial community
is initially relatively small, and thus, for microbial sulfate re-
duction to proceed at significant rates, the mass of sulfate-
reducing bacteria must first increase. In the original experi-
ment by Druhan et al. (2014), the sulfate-reducing biomass
begins to reach a size where it can start consuming large
quantities of C2H3O−2 around day 20 of the experiment. This
biomass growth is modelled in CrunchTope using a Monod
biomass rate law (Jin and Bethke, 2005), which has both an
anabolic and a catabolic component. In the formulation of
this Monod biomass rate law, as implemented in Crunch-
Tope, the thermodynamic term (Gibbs free energy of the re-
action) is calculated exclusively using the catabolic pathway.
The catabolic pathway for this reaction (in terms of the ex-
change of one electron) is given below in Eq. (1), and the
form of the Gibbs free energy is this context is given in
Eq. (2) (we take the phosphorylation potential to be 0 and
the average stoichiometric number to be 1; see derivation in
Jin and Bethke (2005) for further details).

1
8

SO2−
4 +

1
8

C2H3O−2 +
3
8

H+→
1
8

H2S(aq)+
1
4

CO2(aq)

+
1
4

H2O (1)

1G=RT ln

(
[CO2(aq)]

1
4 [H2S(aq)]

1
8

[SO2−
4 ]

1
8 [C2H3O−2 ]

1
8 [H+]

3
8

)
(2)

Taking this form for the Gibbs free energy of the reaction
and substituting it into the thermodynamic term of the reac-
tion rate calculation as implemented in CrunchTope (Steefel
et al., 2015) gives Eq. (3) below, describing the rate of mi-
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Figure 3. Plots of the GBT model fit (blue line) plotted over the results from the underlying RTM (black+ symbols) when interrogated
with the same input parameters (which are taken as ground truth). Each plot shows the net volume fraction due to pyrite precipitation as a
percentage of the initial volume fraction of the sediment as each parameter is varied while all other parameters are held at the values used
in the original experiment by Druhan et al. (2014). The emulator (blue line) captures the overall trends in the data. The lack of smoothness
in the emulator predications arises from the inability to encode this as a condition in XGBoost and the discreet nature of the decision tree
algorithm. The RTM results compared to here are not part of the training dataset, and so the emulator has not been exposed to those exact
values.

Figure 4. A selection of the GBT model predictions of the percentage volume fraction increase due to pyrite precipitation as a result of
varying two parameters simultaneously for selected pairs of variables. Other model parameters are held at the values used in Druhan et al.
(2014). The remaining variable-pair plots are provided in Fig. S4.
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crobial sulfate reduction in the Rifle RTM:

RMB = kmaxB
[C2H3O−2 ]

[C2H3O−2 ] +Khalf[Ace]

×
[SO2−

4 ]

[SO2−
4 ] +Khalf[SO2−

4 ]

FT, (3)

where

FT =

(
1−

[CO2(aq)]
1
4 [H2S(aq)]

1
8

[SO2−
4 ]

1
8 [C2H3O−2 ]

1
8 [H+]

3
8

)
. (4)

RMB is the overall rate of microbial sulfate reduction, kmax
is the rate constant for microbial sulfate reduction, B is the
biomass concentration, and Khalf[X] is a half-saturation con-
stant. The two Monod kinetic factors for the electron donor
(C2H3O−2 ) and the electron acceptor (SO2−

4 ) are referred to
as FD and FA, respectively (Jin and Bethke, 2003, 2005,
2007). Equation (4) illustrates the underlying relationship be-
tween pCO2 in the injectate solution and the resulting accu-
mulation of pyrite. As the pCO2 of the injectate increases,
the FT term becomes smaller, inhibiting the overall rate of
microbial sulfate reduction (Fig. S5). Consequently, biomass
growth is also inhibited, and the rate of microbial sulfate re-
duction is never high enough to produce the concentration of
H2S(aq) required for significant pyrite precipitation. This ex-
plains why the model suggests that the gradient of the pyrite
volume precipitated with respect to both C2H3O−2 and SO2−

4
varies as a function of pCO2 in the injectate. When pCO2
is low and both SO2−

4 and C2H3O−2 are large with respect
to their half-saturation constants (Eq. 4), the overall Monod
biomass rate law will approach Bkmax.

This dependence emerged somewhat unexpectedly from
the emulator as one would not inherently expect a relation-
ship between injectate pCO2 and SO2−

4 reduction rates, yet
it agrees with results previously reported by Jin and Kirk
(2016, 2018), as well as by Paper et al. (2021). These studies
related the influence of pCO2 and pH to the rate of microbial
reactions in vitro, in situ, and in silico. We suggest that our
type of analysis could be used to direct future lab and field
work to test hypotheses suggested by the results generated by
running the emulator.

This analysis also explains some of the features observed
in Fig. 4a: the gradients of C2H3O−2 and SO2−

4 are coupled
in such a way as to indicate that if one is in excess, then
the other becomes limiting in the production of H2S(aq) and
hence the precipitation of pyrite. However, the limiting be-
haviour when both are in excess seems to indicate that, given
enough SO2−

4 and C2H3O−2 , pyrite precipitation can continue
indefinitely assuming suitably low pCO2. Given this predic-
tion, it is sensible to check whether, at such high levels of
SO2−

4 and C2H3O−2 , as the model suggests for maximum
pyrite precipitation, there is indeed enough Fe(II) available
in the system to precipitate pyrite; this is a second potential
dependence, as mentioned above.

Lastly, the model can be interrogated in all five dimen-
sions, and the amendment fluid composition that corresponds
to the largest net pyrite precipitation over the modelled inter-
val can be determined. We do this simple optimisation by
evaluating the emulator at regular intervals across all five
dimensions at intervals of ∼ 2 mM (intervals of ∼ 0.67 mM
for pCO2) in the range that the emulator was trained on (0–
30 mM, except for pCO2, which has a range of 0–10 mM).
This corresponds to checking 759 375 different boundary
conditions to find which boundary condition results in the
most net pyrite precipitation and takes ∼ 7 min. This amend-
ment composition is shown in Table S1. The total change in
volume fraction due to pyrite precipitation predicted by the
emulator is 0.143, and the actual RTM-modelled precipita-
tion when this boundary condition is used is 0.150. There
is a 4.7 % absolute error for the net pyrite volume fraction
change predicted by the emulator when compared to the ac-
tual net pyrite precipitation calculated by the RTM. This er-
ror is inherent in statistical learning techniques but can be
further mitigated with larger training datasets in conjunction
with different emulator-training hyperparameterisations, an
area for future improvement to the methodology. These op-
timised conditions represent an almost 4-fold increase in the
amount of pyrite precipitated in the original RTM for Old
Rifle (Druhan et al., 2014).

4.2 Advantages and drawbacks of the emulation
approach

In this study, 9416 individual RTM simulations were used
to train a GBT regression model to predict a specific model
output, in this case net pyrite precipitation. This emulator is
a reduced representation of the complex system of equations
in the underlying RTM, having a faster computational time
but introducing some prediction errors. We now discuss the
key advantages and drawbacks of this emulation approach.

4.3 Advantages of the emulation approach

A total of 9416 RTM runs were used to train the emulator (the
data shown in Fig. 2). This number of runs could instead be
used to perform a sensitivity analysis of all five variables at a
spacing of ∼ 4.8 mM between points by directly interrogat-
ing the simulator. What then is the advantage of the emula-
tion approach if the same information can be visualised from
discreet runs of the original RTM without having to exert the
extra effort to train the model, which introduces prediction
errors? The key advantages are outlined below.

4.3.1 Advantages over directly interrogating the
simulator

The first and most obvious advantage is the lack of a need
for an explicit interpolation scheme. Correlations generated
by directly plotting simulator results lead to data points lying
on a grid of finite resolution. If intermediate values on this
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grid were to be determined, an explicit interpolation scheme
would have to be applied, which would introduce its own er-
rors that would then need to be quantified. Furthermore, an
improvement in the interpolation scheme would come at the
expense of adding one extra point to the grid in each dimen-
sion; in the context of Old Rifle, this is an extra 9031 data
points (75

−65
= 9031 going from six points in all directions

to seven on a 5D grid, roughly doubling the dataset size. In
contrast, since any number of points can be submitted to the
emulator for inference, concerns relating dataset size to sam-
pling resolution are assuaged. Beyond that, the errors in the
model fit are already quantified during training.

More broadly, to explore the data space, emulators are ex-
tremely fast compared to simulators. The time for a single
query of the emulator is on the order of milliseconds rather
than the seconds, minutes, or hours for a single forward RTM
simulation. This allows the emulator to be used as a tool
for efficiently exploring the simulator by rapidly develop-
ing an intuition for the space itself and how the simulator
behaves in different circumstances. Furthermore, emulator
models are easy to distribute and share with collaborators.
Model weights can be published directly or distributed as
standalone files. This means that a well-trained emulator can
be made once, and then the encoded data can be shared.

Lastly, performing a direct interrogation of the simulator
requires choices of parameters and ranges and results in a
grid of points over the region of interest at limited resolu-
tion. A similar procedure must be undertaken when creating
a dataset to train the emulator in so far as ranges and param-
eters of interest must be chosen. However, the dataset can al-
ways be further added to in a straightforward manner, further
drawing from the random distribution to increase the size of
the dataset and thus improve model performance. With both
approaches, using Omphalos means that the data genera-
tion process can be parallelised, and using high-performance
computing facilities can reduce the computational expense
of interrogating the simulator. This means that all the com-
putational expense is upfront in both cases since the emulator
need only be fitted once.

The advantages we outline make the case for the emulator
as a tool to be used in conjunction with the RTM rather than
as a replacement for it. The alacrity with which the emulator
can be interrogated means that it is an invaluable tool for in-
vestigating RTM behaviour in multiple dimensions. Further
to this, the ability to evaluate the state of a system after a fixed
period of time makes the emulator approach ideally suited
for modelling more complex time series models with time-
varying boundary conditions; instead of having to run the
RTM forward each time the system changes boundary condi-
tions, the emulator can be interrogated for the expected result
given the system’s current state from the previous regime.

4.3.2 Using emulators to identify new feedbacks

As modern RTMs grow in sophistication and complexity,
they increasingly draw on large suites of chemical and min-
eralogical information from vast databases, which constitute
large sets of non-linear equations all coupled through trans-
port and fluid chemistry. While it is true that, for a sufficiently
simple model, coupled geochemical behaviour could be de-
duced by reasoning about the governing equation of the sys-
tems, for a large, modern RTM it is inevitable that, during
development, some feedbacks will be overlooked.

Emulation makes sensitivity analysis for RTMs simple and
allows us to identify correlations and interactions among pa-
rameters that would otherwise be difficult to anticipate by
allowing an investigator to quickly test a wide variety of hy-
potheses. We demonstrate this in the case of Old Rifle by
identifying the CO2 dependency of microbially mediated re-
actions (Bethke et al., 2011; Jin and Kirk, 2016, 2018; Pa-
per et al., 2021). This ability to elucidate unexpected but key
model dependencies and sensitivities could prove to be in-
valuable in helping direct RTM development.

4.3.3 Application to Bayesian optimisation

A critical advantage of the technique proposed here is that
emulation is an essential part of Bayesian optimisation.
Bayesian optimisation is an approach for finding global max-
ima and minima in systems whose objective functions are
expensive to evaluate and do not return the gradients of
that function (of which RTMs are an example) (Frazier,
2018). Bayesian optimisation works by applying an acquisi-
tion function that calculates the point that will give the most
information about the function that requires optimisation. An
emulator is then fit using these data points selected by the
acquisition function, and the emulator is updated with a new
point with each iteration. In this way, the optimiser balances
the exploitation of known optima and the exploration of un-
evaluated regions of the function. Such an approach can find
the global maximum with relatively few evaluations of the
RTM.

This study lays the groundwork for future applications of
Bayesian optimisation to highly dimensioned RTMs, poten-
tially allowing for effective optimisation over many differ-
ent (20 or more) parameters at once. By demonstrating that
broad (but local) fits to the RTM with an emulator are possi-
ble, we have demonstrated that a GBT regressor can be used
as an emulator informing a Bayesian optimisation algorithm
in this context. This allows for a constellation of local fits in
a highly dimensioned space as the algorithm searches for the
global optimum in problems that would otherwise be com-
putationally intractable. Bayesian optimisation could even be
applied, with a suitable loss function, to optimise for multiple
objectives at once (subject to trade-offs among objectives).
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4.4 Disadvantages of the emulation approach

This emulation approach relies on the relative computational
inexpensiveness of the RTM. In situations where the under-
lying model is expensive or time consuming to evaluate and
where computational resources are limited, this modelling
approach becomes unfeasible. However, this issue of com-
putational expense can be allayed by the parallelised gener-
ation of data alluded to earlier, and only the most expensive
RTMs would be intractable for a full emulator fit if this tech-
nique was deployed correctly, and even in this extreme case,
Bayesian optimisation would still be possible.

Additionally, caution is needed when choosing the ranges
over which the parameters will be drawn from the uniform
random distributions. Key considerations include the num-
ber of points being generated relative to the size of the space
being covered – a denser cluster of training data will result
in a tighter fit at the expense of range. Conversely, with too
small of a range, the emulator will not capture key behaviour
or will be unable to learn about simulator edge cases, as dis-
cussed above with respect to the bioavailable iron in the Old
Rifle RTM.

4.5 Choice of learning algorithm

Gradient-boosted trees outperformed other machine learning
methods that we tested while building the emulators, such
as Gaussian process regression. The downsides of GBT in-
clude the lack of ability to encode smoothness to preclude
sharp discontinuities in the concentration–precipitation space
or other such prior assumptions. Furthermore, a low root-
mean-squared error over the entire model fit region does not
necessarily imply a good fit globally; it may be that there
are some regions of good fit and other regions of poor fit
which make up an acceptable root-mean-square error over
the whole space.

4.6 The effect of scale on emulator predictions

Our case study relies on the capacity of CrunchTope to pre-
dict changes in mineral volume fraction. Therefore, the errors
in the predictions, and hence the utility of the approach, ul-
timately depend on the scale of the system being modelled
and thus the sensitivity to what could be very small changes
in mineral volume fraction.

When analysing the emulator to investigate how differ-
ent processes in the underlying RTM affect each other, we
are primarily considering an issue of whether the emula-
tor can correctly learn the underlying model behaviour. We
are also considering whether the emulator can capture the
behaviour in the output variables with respect to a chang-
ing subset of RTM parameters (some of which we may not
have expected at the outset). In this use case, the emulator
is largely concerned with trends and gradients; Figs. 3, 4,
S4, S8, and S9 show that this is accurately reported in all

case studies. Comparing the case study considered in this pa-
per to the additional case study presented in the Supplement,
we see that they are discretised at different scales (2 m and
1 cm for the deep-sea sediment column and Old Rifle, respec-
tively). However, the emulator for each RTM has root-mean-
squared error overs the dataset (and hence absolute errors in
prediction) that are of the same order of magnitude. This im-
plies that the error in the absolute volume precipitated that
each model predicts is different. However, the analysis of the
trends and interactions emerging from both RTMs is equally
valid in both cases.

When concerned with the optimisation capabilities of the
emulator, the absolute value of the optimised quantity and,
hence, the model scale must be considered. In large-scale
systems, such as weathering of the critical zone, the error in
the volume fraction change (5.5× 10−5 for pyrite) is below
the resolution of measurement techniques for mineral abun-
dance (e.g. X-ray diffraction, XRD, and scanning electron
microscopy, SEM; Gu et al., 2020). However, in smaller-
scale systems where the microscale environment becomes in-
creasingly important, these errors in volume fraction become
much harder to ignore. For example, in the RTM experiments
exploring the effects of scale on simulating mineral dissolu-
tion in porous media described by Jung and Navarre-Sitchler
(2018), significant errors in changes in predicted volume
fraction would propagate into calculated dissolution and/or
precipitation rates, losing sensitivity in the results.

4.7 Extension to multiple outputs

Multiple output regression (the prediction of a vector of out-
puts rather than a single label) is experimentally available in
XGBoost and supported by other machine learning imple-
mentations that we explored, including GPflow for Gaussian
process regression. Given that our approach is currently lim-
ited to the prediction of one label per emulator trained, the
availability of regressors that can predict more than one label
off the shelf will greatly improve the utility of reactive trans-
port emulation. The prediction of multiple outputs simulta-
neously will expand the scope of analysis to investigate the
interaction of modelled processes in multiple outputs at once.
In the context of optimisation problems, one possible appli-
cation of an emulator like this could be to maximise mineral
precipitation in one region of a system while trying to max-
imise dissolution in another region.

4.8 Improvements to the model

This proof-of-concept model demonstrates the fitting of an
emulator over a relatively small range of environmental pa-
rameters. Future work will involve expanding the scope of
the emulators both in terms of the number of parameters be-
ing varied and the range over which they are varied so that
the entirety of the behaviour of the underlying model can be
captured with more accuracy. There is also scope for adding
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time dependency to the GBT modelling approach to predict
a time series of intermediate RTM states during the evolution
of geochemical systems.

4.9 Potential applications

Our emulator approach is flexible; any quantity recorded by
an RTM can be used as a target variable, and so the behaviour
of any RTM output can be explored in detail to evaluate the
model formulation. The behaviour of the system in response
to the variation of any parameter under any other set of con-
ditions can be projected out of the model and plotted in a
straightforward manner. This approach can be extended to
two or even three dimensions and time series thereof, and ul-
timately, the emulator can be interrogated for local maxima
and minima to solve optimisation problems. This approach
has potential applications in industry and in environmental
remediation where the chemical composition of amendments
can be predicted using an underlying reactive transport sim-
ulation, provided that that system is well understood.

Omphalos also has utility outside of generating datasets
for emulation; its automated submission of CrunchTope in-
put files means it can be used to systematically explore sets
of input variables in an easy way simply by editing the Om-
phalos configuration file.

5 Conclusions

We have presented an emulator-based approach for interro-
gating and understanding multi-component RTMs. By build-
ing an emulator of an RTM that captures the multidimen-
sional nature of the underlying model, we have demonstrated
that such an approach can be used as a tool for performing
global sensitivity analyses on RTMs. This allows us to in-
vestigate behaviour arising from the interaction among the
many disparate processes that comprise RTMs. For example,
we investigated how the Monod biomass parameterisation of
microbial sulfate reduction interacted with the mechanism of
pyrite precipitation. In this example, pyrite precipitation was
inhibited when there was an excess of CO2 in the column be-
cause the catabolic pathway was partially dependent on CO2
concentration. This prevented the growth of sulfate-reducing
biomass, ultimately curtailing the production of hydrogen
sulfide required for pyrite precipitation. This behaviour re-
produced results previously reported by Jin and Kirk (2016,
2018) and suggests that emulation approaches have utility
in discovering unexpected but nonetheless real model be-
haviours, potentially directing future lab and field work.

The methodology we have laid out is flexible; any quantity
recorded by an RTM can be used as a target variable, and so
the behaviour of any RTM output can be explored in detail to
evaluate the model formulation. The behaviour of the system
in response to the variation of any parameter under any other
set of conditions can be projected out of the model and plot

in a straightforward manner. Emulator approaches can be ex-
tended to two or even three dimensions, and ultimately, the
emulator can be interrogated for local maxima and minima to
solve optimisation problems. We suggest that emulator-based
approaches to exploring RTMs have potential applications in
industry and in environmental remediation, where the chem-
ical composition of amendments can be predicted using an
underlying reactive transport simulation, provided that that
system is well understood. The application of this optimi-
sation process to Old Rifle (and to ODP Site 1086; see the
Supplement) represents a proof of concept.

Code availability. Omphalos is available on GitHub and Zenodo.
Please note you must provide your own CrunchTope executable;
https://github.com/a-fotherby/Omphalos (last access: 15 Novem-
ber 2023; DOI: https://doi.org/10.5281/zenodo.7113299, Fotherby
and Bradbury, 2022). In terms of the GBT models, Jupyter note-
books for fitting the GBT models and plotting the figures are
available on GitHub, and a permanent record is available on Zen-
odo; https://github.com/a-fotherby/dissertation_xgboost (last ac-
cess: 16 November 2023, https://doi.org/10.5281/zenodo.7113324,
Fotherby, 2022a).

Data availability. The data used are available on GitHub and
Zenodo: https://github.com/a-fotherby/GMD_2022 (last access:
16 November 2023, https://doi.org/10.5281/zenodo.7113380,
Fotherby, 2022b).

Supplement. The supplementary material includes the code base
for Omphalos, the model-fitting code, schematic figures of decision
trees and the Old Rifle RTM, a table of predicted optimal values for
precipitating pyrite at Old Rifle, convergence behaviour of the GBT
regressors, additional co-dependency plots for Old Rifle, a figure
showing the effect of rate law choice on CO2 dependency in the Old
Rifle RTM, a supplementary case study detailing am application to a
deep-sea sediment column, and a description of the XGBoost imple-
mentation. The supplement related to this article is available online
at: https://doi.org/10.5194/gmd-16-7059-2023-supplement.
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