Articles | Volume 16, issue 2
https://doi.org/10.5194/gmd-16-573-2023
https://doi.org/10.5194/gmd-16-573-2023
Model description paper
 | 
26 Jan 2023
Model description paper |  | 26 Jan 2023

The AirGAM 2022r1 air quality trend and prediction model

Sam-Erik Walker, Sverre Solberg, Philipp Schneider, and Cristina Guerreiro

Related authors

Uncertainties in assessing the environmental impact of amine emissions from a CO2 capture plant
M. Karl, N. Castell, D. Simpson, S. Solberg, J. Starrfelt, T. Svendby, S.-E. Walker, and R. F. Wright
Atmos. Chem. Phys., 14, 8533–8557, https://doi.org/10.5194/acp-14-8533-2014,https://doi.org/10.5194/acp-14-8533-2014, 2014

Related subject area

Atmospheric sciences
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023,https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter
Li Fang, Jianbing Jin, Arjo Segers, Hong Liao, Ke Li, Bufan Xu, Wei Han, Mijie Pang, and Hai Xiang Lin
Geosci. Model Dev., 16, 4867–4882, https://doi.org/10.5194/gmd-16-4867-2023,https://doi.org/10.5194/gmd-16-4867-2023, 2023
Short summary
Plume detection and emission estimate for biomass burning plumes from TROPOMI carbon monoxide observations using APE v1.1
Manu Goudar, Juliëtte C. S. Anema, Rajesh Kumar, Tobias Borsdorff, and Jochen Landgraf
Geosci. Model Dev., 16, 4835–4852, https://doi.org/10.5194/gmd-16-4835-2023,https://doi.org/10.5194/gmd-16-4835-2023, 2023
Short summary
CHEEREIO 1.0: a versatile and user-friendly ensemble-based chemical data assimilation and emissions inversion platform for the GEOS-Chem chemical transport model
Drew C. Pendergrass, Daniel J. Jacob, Hannah Nesser, Daniel J. Varon, Melissa Sulprizio, Kazuyuki Miyazaki, and Kevin W. Bowman
Geosci. Model Dev., 16, 4793–4810, https://doi.org/10.5194/gmd-16-4793-2023,https://doi.org/10.5194/gmd-16-4793-2023, 2023
Short summary
A method to derive Fourier–wavelet spectra for the characterization of global-scale waves in the mesosphere and lower thermosphere and its MATLAB and Python software (fourierwavelet v1.1)
Yosuke Yamazaki
Geosci. Model Dev., 16, 4749–4766, https://doi.org/10.5194/gmd-16-4749-2023,https://doi.org/10.5194/gmd-16-4749-2023, 2023
Short summary

Cited articles

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone in urban areas and their use in assessing ozone trends, Atmos. Environ., 41, 7127–7137, https://doi.org/10.1016/j.atmosenv.2007.04.061, 2007. 
Carslaw, D. C.: The openair manual – open-source tools for analysing air pollution data, Manual for version 2.6–6, University of York, https://github.com/davidcarslaw/openair (last access: 21 January 2022), 2019. 
Carslaw, D. C.: deweather: Remove the influence of weather on air quality data, R package version 0.7, https://github.com/davidcarslaw/deweather (last access: 21 January 2022), 2021. 
Download
Short summary
We have developed a statistical model for estimating trends in the daily air quality observations of NO2, O3, PM10 and PM2.5, adjusting for trends and short-term variations in meteorology. The model is general and may also be used for prediction purposes, including forecasting. It has been applied in a recent comprehensive study in Europe. Significant declines are shown for the pollutants from 2005 to 2019, mainly due to reductions in emissions not attributable to changes in meteorology.