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Abstract. This paper presents the AirGAM 2022r1 model –
an air quality trend and prediction model developed at the
Norwegian Institute for Air Research (NILU) in cooperation
with the European Environment Agency (EEA) over 2017–
2021. AirGAM is based on nonlinear regression GAMs –
generalised additive models – capable of estimating trends in
daily measured pollutant concentrations at air quality moni-
toring stations, discounting for the effects of trends and time
variations in corresponding meteorological data. The model
has been developed primarily for the compounds NO2, O3,
PM10, and PM2.5. Meteorological input data consist of tem-
perature, wind speed and direction, planetary boundary layer
height, relative and absolute humidity, cloud cover, and pre-
cipitation over the period considered. The exact set of mete-
orological variables used in the model depends on the com-
pound selected for analysis. In addition to meteorological
variables introduced in the model as covariates, i.e. explana-
tory variables for the concentration levels, the model also in-
corporates time variables such as the day of the week, day
of the year, and overall time, which is related to the model’s
trend term. The trend analysis is performed at each station
separately. Thus, the model only considers the temporal fea-
tures of concentrations and meteorology at a station, rather
than any spatial correlations or dependencies between sta-
tions. AirGAM is implemented using the R language for
statistical computing and, in particular, the GAM package
mgcv. In the model, meteorological and time covariates are
represented and estimated as smooth nonlinear functions of
the corresponding variables. Thus, the trend term is defined
and estimated as a smooth nonlinear function of time over the
period selected for analysis. Once fitted to training data, the
model may be used as a prediction tool capable of predicting
air pollutant concentrations for new sets of meteorological
and time data which are not in the training set – e.g. for cross-
validation or forecasting purposes. The model does not ex-

plicitly use emissions or background concentrations – these
are sought to be implicitly represented through the estimated
nonlinear relations between meteorology, time, and concen-
trations. In addition to meteorology-adjusted trends, the pro-
gram also produces unadjusted trends – i.e. trends based on
the same regression set-up but only including the time covari-
ates. Both types of trends can be output in the same run, mak-
ing it possible to compare them. Ideally, the meteorology-
adjusted trend will show the trend in concentration mainly
due to changes in emissions or physicochemical processes
not induced by changes in meteorology. AirGAM has been
developed and tested primarily in trend studies based on mea-
surement data hosted by the EEA, including the AirBase data
(before 2013) and the Air Quality e-Reporting (AQER) data
from 2013 and onwards. Still, the model is general and could
be applied in other regions with other input data. The EEA
data provide daily or hourly surface measurements at individ-
ual monitoring stations in Europe. For input meteorological
data, we extract time series from the gridded meteorologi-
cal re-analysis (ERA5) provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF) for each mon-
itoring station. The paper presents results with the model for
all AirBase/AQER stations in Europe from the latest EEA
trend study for 2005–2019.

1 Introduction

The atmospheric level of pollutants at a given site and time
is determined by the emissions, meteorology, and various
physicochemical conditions (vegetational uptake, solar radi-
ation, etc.). The evaluation of emission abatement protocols
relies on long-term trends in measured air pollutant concen-
trations. These analyses are complicated by the influence of
year-to-year variations in meteorology. Although the mea-
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surements are based on daily or hourly data throughout the
year, seasonal anomalies in the weather conditions could sig-
nificantly alter the annual statistics used in the trend calcu-
lations, such as, e.g., the 2003 and 2018 heatwaves affecting
the surface ozone levels in Europe (Logan et al., 2012; Sicard
et al., 2013; Simpson et al., 2014; Diaz et al., 2020; Johans-
son et al., 2020). The common tool to meet this challenge is
state-of-the-art CTMs (chemical transport models) simulat-
ing the physicochemical processes in the atmosphere. How-
ever, applying CTMs for long periods in a multi-scenario ap-
proach could be costly and time-consuming.

Furthermore, the analyses of trends become non-trivial
when there are significant discrepancies between the CTM
calculations and the measured level of pollutants. This paper
presents the AirGAM model – an air quality trend and pre-
diction model which is based on statistical regression gen-
eralised additive modelling or GAM (Hastie and Tibshirani,
1990; Wood, 2017). The model has been developed at the
Norwegian Institute for Air Research (NILU) in cooperation
with the European Environment Agency (EEA). One back-
ground reason for our development of this model was a state-
ment in the 2013 Air Quality Report (EEA, 2013): “There is
a discrepancy between the past reductions in emissions of O3
precursor gases in Europe and the change in observed aver-
age O3 concentrations in Europe”. This raised the question
of whether the discrepancy was due to errors in the emission
data, lack of performance by the CTMs, or simply a result of
the uncertainty in the data.

A large number of scientific papers have shown that
statistical-based models focussed on the normalisation or re-
moval of the impact of meteorological anomalies are valu-
able tools that could complement the CTMs when designed
carefully (e.g. Thompson et al., 2001; Ordóñez et al., 2005;
Camalier et al., 2007; Zheng et al., 2007; Chan and Vet, 2010;
Davis et al., 2011; Grange et al., 2018; Fix et al., 2018; Otero
et al., 2018; Grange and Carslaw, 2019; Pernak et al., 2019).
A variety of names and types of these statistical models have
been used for the assessment of long-term atmospheric data,
like random forest (RF) models (e.g. Grange et al., 2018;
Grange and Carslaw, 2019; Pernak et al., 2019), boosted re-
gression trees (Carslaw, 2021), gradient boosting techniques
(Barré et al., 2021; Keller et al., 2021; Petetin et al., 2020),
and generalised additive models (Ordóñez et al., 2020), as
used in this work. Note that standard trend estimation tech-
niques, such as, e.g., curve fitting, smoothing methods (mov-
ing average), or robust methods, such as the Theil–Sen esti-
mation, can be used to estimate trends in time series of con-
centrations but cannot account for trends in or the impact
of the corresponding meteorology. For this, regression-based
methods are needed. An excellent recent overview of scien-
tific issues and statistical methods for trend analysis in atmo-
spheric time series is given by Chang et al. (2021).

The initial development of the AirGAM model (Solberg
et al., 2018a) was based on a statistical method that was
used routinely by the U.S. EPA (Environmental Protection

Agency) to assess surface ozone trends, adjusting for the in-
terannual influence of changing meteorology (Camalier et
al., 2007). Subsequently, the model has been gradually re-
fined and extended for NO2, PM10, and PM2.5 (Solberg et
al., 2018b, 2019, 2021a).

1.1 The AirGAM model

AirGAM is a model for estimating trends in daily mea-
sured pollutant concentrations at one or more monitoring sta-
tions over a given period by adjusting for trends and time
variations in corresponding meteorological data. It is based
on nonlinear regression GAM modelling and has been de-
veloped primarily for the compounds NO2, O3, PM10, and
PM2.5. Meteorological data consist of temperature, wind
speed and direction, planetary boundary layer height, rela-
tive and absolute humidity, cloud cover, and precipitation.
The exact set of meteorological variables used in the model
depends on the compound selected for analysis. In addition
to meteorological variables introduced as covariates, i.e. ex-
planatory variables for the concentrations, the model also
uses time variables as covariates such as the day of the week,
day of the year (seasonality), and total time (days) over the
period – the latter of which is associated with the model’s
trend term. The trend analysis is performed at each station
separately. Thus, the model only considers the temporal fea-
tures of concentrations and meteorology at a station and not
spatial correlations or dependencies between stations.

The model is implemented using the R language for sta-
tistical computing (R Core Team, 2022) and, in particular,
the GAM (generalised additive modelling) statistical mod-
elling package mgcv (Wood, 2017). The program also uses
the air pollution data analysis package openair (Carslaw and
Ropkins, 2012; Carslaw, 2019), for analysis and plotting pur-
poses, and the sandwich package (Zeileis, 2004), for some
statistical calculations. Using the GAM regression approach,
the relationships between concentrations and meteorological
and time covariates are represented and estimated as smooth
nonlinear functions of the variables. Thus, the trend term is
defined and estimated as a smooth nonlinear function of time
(days) over the period selected for analysis.

In GAM modelling, the eventual nonlinear relations be-
tween the response (concentration) and covariates need not
be known in advance. Still, they will, in a sense, be uncov-
ered as part of the estimation procedure. Furthermore, reg-
ularisation by penalising variability (“wiggliness”) of each
nonlinear relation helps identify a more generalisable model
and avoid overfitting. This represents one of the essential ad-
vantages of using a GAM model. Other standard regression
model approaches, such as multiple linear regression (MLRs)
with linear or polynomial terms or generalised linear models
(GLMs) incorporating only linear relationships between the
meteorology and time covariates and the concentrations, can-
not model these dependencies with sufficient flexibility and
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Figure 1. AirGAM data flow scheme.

accuracy since they usually are of a more complex and un-
specified nonlinear form.

Once fitted to training data, the model may be used as a
prediction tool capable of predicting air pollutant concentra-
tions for new sets of meteorological and time data which are
not in the training set – e.g. for cross-validation or forecast-
ing purposes. The model’s predictive capability is evaluated
with associated plots using several deterministic and proba-
bilistic model evaluation metrics. A leave-1-year-out cross-
validation procedure is incorporated in AirGAM and is usu-
ally performed automatically as part of the model run.

The model has been mainly developed for trend studies
based on the air quality (AQ) measurement data hosted by
the European Environmental Agency (EEA), including the
AirBase data (before 2013) and the Air Quality e-Reporting
(AQER) data from 2013 and onwards. The EEA data provide
daily or hourly surface concentrations at individual monitor-
ing stations. For the input meteorological data, we extract
time series from the gridded meteorological re-analysis data
(ERA5) provided by ECMWF for each monitoring station
(Hersbach et al., 2018, 2020). Figure 1 shows a schematic of
the data flow of AirGAM.

In addition to concentrations and meteorology, the pro-
gram reads several control options for the model run. An-
other feature of AirGAM is that it may sometimes check
for errors in the air quality data. We have often found the
poor performance of the model, e.g. low correlations between
observed and model-predicted concentrations from cross-
validation, to be associated with dubious measurement data.

AirGAM does not explicitly use emissions or background
concentrations – these are sought to be implicitly represented
through the estimated nonlinear relations between the con-
centrations and the meteorology and time variables. In addi-
tion to meteorology-adjusted trends, the program may also
produce unadjusted trends – i.e. trends based on the same re-

gression set-up but only including the time covariates. Both
types of trends can be output in the same run, making it pos-
sible to compare them.

The model estimates trends over a user-defined period
from a minimum of 2 years and upwards. For each year,
the user may select the whole year or a sub-part of the
year, e.g. only winter months (say October–March), summer
months (say April–September), or any user-defined interval
of months for the trend analysis. Usually, only a single set
of smooth relations between the concentrations and the co-
variates is estimated from the data in the model. However,
it is possible to operate with different groups of estimated
smooth relations for different parts of the year (or sub-year)
if needed, e.g. one set for the winter, say October–March,
and another for the summer, say April–September. This latter
capability of the model is typically necessary for modelling
O3 and PM2.5 using data for the whole year since the rela-
tionships usually are different in the wintertime than in the
summer.

1.2 Predictions in the COVID-19 year 2020

The conceptual idea behind a statistical model such as
AirGAM is that the model is trained to find patterns be-
tween various input data (local temperature, wind speed,
mixing height, etc.) and the daily level of pollutants (NO2,
O3, etc.) for a given training period. Based on these patterns,
the model can predict pollutant levels outside the training pe-
riod. The main advantage compared to CTMs is that no as-
sumptions on emissions are needed. Thus, the exceptional
conditions experienced during the COVID-19 lockdown in
2020 offered a perfect task for such statistical models. We
applied the AirGAM model for EEA’s AQER data of NO2
(EEA et al., 2020; Solberg et al., 2021b) during the first lock-
down in Europe (March–July 2020) and trained the model on
the data for the previous 5 years (2015–2019). The difference
between the AirGAM predictions (business-as-usual results)
and the observed NO2 levels could then be related to the im-
pact of the lockdown on mobility (road transport, aviation,
etc.). Compared to gridded models such as CTMs, statisti-
cal models could be applied directly to urban stations. We
found that the AirGAM model performed well for most sites
while performing more poorly for a minor number of sta-
tions, which is partly explained by inconsistent measurement
data. After aggregating all traffic sites (urban and suburban)
for individual countries, the results showed good compliance
between predicted and observed daily NO2 levels.

The predictive capabilities of the AirGAM model come
in addition to the application for long-term trend assess-
ments. The experience from applying AirGAM specifically
for a COVID-19 analysis (Solberg et al., 2021b) was that the
model performed very well for NO2 at the urban and subur-
ban background and traffic sites. In contrast, as expected, the
performance was lower at rural locations, since the NO2 lev-
els outside the urban areas are less determined by local mete-
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orological conditions. The performance was lower for O3 and
PM, which is also expected, since secondary formation and
long-range transport are more important processes for these
compounds. Such processes are only indirectly captured by
AirGAM. These results do not imply that the AirGAM model
and other statistical tools are unfit for O3 and PM assess-
ments but rather that the model performance is somewhat
lower than for a primary pollutant such as NO2.

1.3 Outline of the paper

First, in Sect. 2, we overview the statistical GAM methodol-
ogy implemented in the AirGAM model and how to interpret
its trends. Section 3 gives results from a recent EEA trend
study for 2005–2019, using all the available AirBase/AQER
stations in Europe. Section 4 compares GAM with the RF
method in the R package rmweather. In Sect. 5, we briefly
discuss how AirGAM can also be used as a tool for data qual-
ity investigations. Finally, Sect. 6 contains a summary and
conclusions. Appendix A lists some frequently asked ques-
tions (FAQs) regarding the model. The Supplement accom-
panying this paper includes a user’s guide to the model de-
scribing details of its numerical implementation, all inputs
to the model and how to run it on Windows and Linux, and
all results files. It also contains instructions on installing the
model and some run examples.

2 Model formulation

2.1 GAM models

In statistics, a GAM model (Hastie and Tibshirani, 1990;
Wood, 2017) is a nonlinear regression model linking ex-
pected values µi of a given response variable Yi to one or
more explanatory variables xij through the following rela-
tions:

g (µi)= β0+

p∑
j=1

βj
(
xij
)
;µi = E(Yi) , (1)

where β0 is a constant (the intercept), and where βj (·), for
j = 1, . . .,p, represents the smooth functions of the covari-
ates xij , with p as the number of covariates. In our imple-
mentation of this model for air quality analysis, the response
variable Yi in Eq. (1) represents a daily average (NO2 or
PM) or maximum 8 h running mean (O3) concentration at
day number i at a given site, while xij represent the values
of the explanatory variables, for j = 1, . . .,p, at the same lo-
cation and day. These consist of various meteorological vari-
ables such as temperature, wind, etc., and time variables such
as the day of the week, day of the year, etc. The meteorologi-
cal covariates depend on the air pollutant being modelled, as
shown in Table 1.

In Eq. (1), g (·) is a function (the link function) that links
the statistically expected value of the response variable Yi ,

i.e. µi , to the covariates xij . Also, Yi is assumed to have
a definite probability distribution, the response distribution,
with mean µi and variance Vi . Furthermore, in Eq. (1), each
βj is a smooth function of xij and not simply a constant to be
multiplied with xij as in multiple linear regression (MLR) or
generalised linear regression models (GLMs). Thus, GAM
models represent an extension of these models for regres-
sion. GAMs are also more flexible than MLR models (but
not GLMs), since the mean value µi is related to the covari-
ates through a link function g (µi), which need not be the
identity function g (µ)= µ.

Since the relation between air pollution and meteorology is
generally nonlinear, MLR models or GLMs cannot naturally
model this relationship. Only a nonlinear model, such as a
GAM, capable of fitting nonlinear relations between an air
pollutant and a set of meteorological covariates will have a
chance of succeeding in this regard. It is then vital to choose
the right set of meteorological covariates for each type of
air pollutant to be modelled. Besides, various time covariates
will also be needed.

Note that emissions, background concentrations, physico-
chemical processes, and depositions have deliberately been
left out from the design of such a regression model, even
though we know that air pollutants are closely linked to and
primarily determined by these factors and processes in addi-
tion to meteorology. The idea is to see how far we can use
meteorology and time data to model air pollutants. Limita-
tions depend on the compound and type of data. Over the
last 4 years, the current model has been developed for NO2,
O3, PM10, and PM2.5. This development has resulted in a set
of meteorological and time covariates found to model and
predict concentrations of these compounds well (Table 1).

For NO2, PM10, and PM2.5, we apply a log link g (µ)=
logµ and gamma distributions as response distributions. This
is because these compounds generally have a somewhat more
extensive range of concentration variations than O3, with
the variance of Yi , i.e. Vi , typically proportional to µ2

i . For
such variables, it is usual practice in GAM modelling to se-
lect a logarithmic link function and a distribution potentially
skewed to the right, such as a gamma, as a response distribu-
tion for Yi (Wood, 2017). This was also applied in the previ-
ous trend studies (Solberg et al., 2018a, b, 2019).

For O3, we apply an identity link g (µ)= µ and normal
distribution as a response distribution. This choice is because
O3 has a relatively small range of concentration variations
where the variance of Yi , i.e. Vi , does not change very much
with the mean µi . Thus the response distribution is well rep-
resented with a symmetric distribution such as a normal.

The input variables have been selected by combining a
priori knowledge of the main physicochemical processes
and experience during the model development. Extensive
research in previous work with the model (Solberg et al.,
2018a, b, 2019) resulted in meteorological and time variables
being used, as presented in Table 1. Absolute humidity is in-
troduced as a variable for O3 since the gas-phase reaction
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O′D + H2O→ 2OH is the main production path for OH in
the atmosphere and since OH, in turn, is decisive for the O3
formation. For PM and NO2, we used relative humidity to
reflect the importance of wet deposition and cloudiness.

In the model, the trend term is represented as a smooth
function of time (x10 = t) rather than a straight line, as in
some previous studies (Solberg et al., 2018a, b). The main
reason for this choice is for the model to be better prepared
for trend studies over extended periods. In such cases, it is
less relevant to represent the whole trend over the entire pe-
riod as a straight line.

Since meteorological variables are included in this GAM
model to explain the expected (µi) and observed (Yi) con-
centrations of air pollutants at each time point ti , the es-
timated trend β10 (t) in Eq. (1) will represent a so-called
meteorology-adjusted trend, i.e. a trend discounting for the
effects of trends or time variations in these meteorological
variables over the period selected for the analysis. This rep-
resents the main output from AirGAM.

Note that none of the covariates is transformed in the
model; this only applies to the concentrations of NO2 and
PM. Wind direction is the only variable which is cyclic. The
day of week and day of year are not defined as cyclic vari-
ables since Sunday and Monday and 31 December and 1 Jan-
uary may differ considerably.

Also, wind direction and relative humidity are not pro-
vided directly in the ECMWF ERA5 data used in this study.
Instead, they have been calculated from the u and v com-
ponents of wind and the absolute humidity, surface temper-
ature, and pressure found in these data. Details of this pre-
processing of the ERA5 data are found in Appendix C in the
Supplement.

In addition to meteorology-adjusted trends produced by
the model described above, AirGAM may also estimate so-
called unadjusted trends. These are trends produced by the
same GAM regression model set-up as above but only in-
cluding the time covariates x8–x10, i.e. removing all the me-
teorological covariates x1–x7. Both trends can be produced
individually and output from the same run, making it possi-
ble to compare them. These two models will be called the
meteorology-adjusted and unadjusted models in the follow-
ing.

Note that, in AirGAM, we only use GAM models with co-
variates in a purely additive form, as shown by Eq. (1). Thus,
no interactions between the variables are used, such as multi-
plications between variables, defining 2-dimensional smooth
functions, etc. This makes the models easy to interpret, since
the estimated nonlinear functions encode each independent
variable’s contribution to the predicted concentration. Sec-
tion 4 compares our GAM models to RF models that incor-
porate interactions between the variables. We show that our
GAM approach produces models with a predictive perfor-
mance on par with this method. Thus, we argue that a purely
additive model seems sufficient to build models with good

predictive performance, at least for the data analysed in this
paper.

2.2 Calculation of physically interpretable trend curves

AirGAM outputs trend curves as plots and data values to var-
ious result files described in Sect. S5.1.1–S5.1.2 and S5.1.9–
S5.1.10 in the Supplement. To interpret a change in the trend
level between two arbitrary time points in these plots and
data files as a change in the expected concentration levels
between the same two time points under certain well-defined
conditions, it is essential to adjust the raw trend given by the
estimated trend function β10 (t) from Eq. (1) into a physically
interpretable trend curve ytrend (t).

This section describes how this is done for the various
compounds and the meteorology-adjusted and unadjusted
models.

First, we focus on the meteorology-adjusted model. For
compounds such as O3, where we apply an identity link
g (µ)= µ in Eq. (1), the expected concentration at the time t
is given by the following:

µ(t)= β0+

p−1∑
j=1

βj
(
xj (t)

)
+βp (t)= A(t)+B (t) , (2)

with A(t)= β0+
∑p−1
j=1βj

(
xj (t)

)
, and B (t)= βp (t)=

βtrend (t). Here A(t) is the contribution to the expected con-
centration at the time t from meteorology and the time vari-
ables for day of week and day of the year, while B (t) is the
contribution to the expected concentration at the time t from
the trend term. In this case, the physically interpretable trend
curve is sought to be defined as the following function:

ytrend (t)= A+B (t) , (3)

with A determined so that a difference in trend values be-
tween two arbitrary time points, say t1 and t2, can be inter-
preted as the difference in the expected concentrations be-
tween these two time points. Thus, we need to have the fol-
lowing:

ytrend (t2)− ytrend (t1)= A+B (t2)− (A+B (t1))

= B (t2)−B (t1)

= µ(t2)−µ(t1)

= A(t2)+B (t2)−A(t1)−B (t1) , (4)

which holds for all values of A as long as A(t1)= A(t2),
i.e. as long as the impact of meteorology and the two time
variables is the same for the two time points. Under this as-
sumption, Eq. (3) can be used as a physically interpretable
trend curve for any value of A. However, it is natural to set
A so that the trend curve values have the same time aver-
age over the period as the actual observations, i.e. ȳtrend = Ȳ .
Then, since the smooth βtrend function from GAM always
averages to zero over the time points of the trend estima-
tion, which is a property of GAM modelling, it follows from
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Table 1. List of meteorological and time variables used in the AirGAM model (Eq. 1) for various compounds. The short names refer to those
used in the text and graphics files in Sect. S5 in the Supplement.

Meteorological variable Short name Unit Used by compound

x1 Daily mean temperature at 2 m
Daily temperature at 2 m at 18:00 UT

temp
temp

◦C
◦C

All except O3
O3

x2 Daily mean wind speed at 10 m ws m s−1 All
x3 Daily mean wind direction at 10 m wd ◦ All
x4 Daily mean planetary boundary layer height pblh m All
x5 Daily mean relative humidity

Daily absolute humidity at 18:00 UT
rh
h2o

%
g kg−1

All except O3
O3

x6 Medium-height cloud cover mcc % All
x7 Daily total precipitation prec mm d−1 PM10 and PM2.5
x8 Weekday number dayofweek day All
x9 Day number in the year or sub-part of the year dayofyear day All
x10 Continuous time in fraction of years

(0.0 at the start of the period; this is the trend term)
years year All

Eq. (3) that this corresponds to setting A= Ȳ . Changes in
the trend curve values can then be interpreted as changes in
the expected concentrations if we assume the same impact of
meteorology and day of week and day of the year for the two
time points, i.e. A(t1)= A(t2). Note that the actual values
A(t1) and A(t2) will usually differ.

However, notice that, with A= Ȳ , the trend curve values
also correspond to expected concentrations under the aver-
age impact of meteorology and day of week and day of the
year, i.e., A= Ā. This is due to the fact that the estimated
A(t) values always averages to βo over the period of trend
estimation which is estimated as Ȳ in GAM modelling. Fur-
thermore, the trend curve values in this case also correspond
to expected concentrations under conditions in which the me-
teorology and day of week and day of the year smooth func-
tions are exactly zero.

The same development as above also holds in the case of
the unadjusted GAM model. There are only two time vari-
ables, i.e. day of week and day of the year, in the A(t)
function in this case. Thus, Eq. (3) with A= Ȳ can be used
as a physically interpretable trend curve, where changes in
the trend curve values can be interpreted as changes in the
expected concentrations if we assume that A(t1)= A(t2),
i.e. as long as the impact of, in this case, only the day of
week and day of the year is the same for the two time points.
Again, the trend curve values correspond to expected concen-
trations under the average impact of these two variables and
under conditions in which their smooth functions are exactly
zero.

Next, we apply the log–link function g (µ)= logµ to the
more complicated GAM models for NO2 and PM. Again, we
focus first on the meteorology-adjusted model. The expected

concentration level at time t is now given by the following:

µ(t)= exp

{
β0+

p−1∑
j=1

βj
(
xj (t)

)
+βp (t)

}
= A(t)B (t) , (5)

with A(t)= exp
{
β0+

∑p−1
j=1βj

(
xj (t)

)}
, and B (t)=

exp
{
βp (t)

}
= exp {βtrend (t)}. Here again, A(t) is the

contribution to the expected concentration at the time t from
meteorology and the time variables day of week and day
of the year, while B (t) is the contribution to the expected
concentration at the time t from the trend term, for which
both are given as factors in this case. Now a physically
interpretable trend curve is sought defined as a function that,
in this case, reads as follows:

ytrend (t)= A ·B (t) , (6)

with A determined so that again a difference in trend val-
ues between two arbitrary time points, say t1 and t2, can be
interpreted as the difference in the expected concentrations
between these two time points. Thus, we need to have the
following:

ytrend (t2)− ytrend (t1)= A ·B (t2)−A ·B (t1)

= A · (B (t2)−B (t1))

= µ(t2)−µ(t1)

= A(t2) ·B (t2)−A(t1) ·B (t1) , (7)

which holds as long as A= A(t1)= A(t2), i.e. as long as the
impact of meteorology and the two time variables is the same
for these two time points, and A is equal to this value.

Again, it is natural to set A so that the trend curve val-
ues have the same time average over the period as the ac-
tual observations, i.e. ȳtrend = Ȳ . Thus, A= Ȳ/B̄, where B̄
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is the average of the B (t) values over the period of trend
estimation (note that this latter average is a positive num-
ber due to the exponentiation in Eq. 5). Changes in the trend
curve values can then be interpreted as changes in the ex-
pected concentrations if we assume this average impact of
meteorology and day of week and day of the year for the two
time points, i.e. A(t1)= A(t2)= A. Note again that the ac-
tual values A(t1) and A(t2) will usually differ and also differ
from A.

To better understand the impact factor A in the previ-
ous paragraph, we give a formula for the expected value
of this quantity. Since the conditioned observed concentra-
tions Yi |µi have expected values µi = µ(ti), from Eq. (1),
we have the following:

EA=
EȲ

B̄
=
µ̄

B̄
=

1
N

N∑
i=1
A(ti)B (ti)

1
N

N∑
i=1
B (ti)

=

N∑
i=1

wiA(ti) , (8)

with wi = B (ti)/
∑N
i=1B (ti). Thus, EA represents a

weighted average of the A(ti) factors with weights wi
for i = 1, . . .,N , where N is the number of days for
the trend estimation. If var(Yi |µi) is uniformly bounded
above, i.e. var(Yi |µi)≤ V for some V > 0 for all i, and
cor(Yi+k|µi+k,Yi |µi) exponentially approaching zero as
k→∞, which holds almost invariably for air quality ob-
servations, then we have from Serfling’s strong law of large
numbers applied to Yi−µi (McFadden, 2000, chap. 4, p. 92)
that A−EA→ 0 almost surely as N→∞. Thus, for large
N,A≈ EA, and the average factor A in the trend curve
will be close to a weighted average of the factors from
the meteorological and time variables over the period for
trend estimation given by Eq. (8), with weights based on
the meteorology-adjusted B (t) values. Thus, the trend curve
values correspond to expected concentrations under this
weighted-average impact of the meteorological variables and
variables for the day of week and day of the year.

However, the trend curve values will, in this case, not cor-
respond to the expected concentrations under meteorology
and day of week and day of the year conditions where their
related smooth functions on the log scale are exactly zero.
This can instead be obtained by setting A= exp(β̂0)= A0,
where β̂0 is the estimated value of β0 from the GAM mod-
elling. Even though we prefer the former trend curve as out-
put from AirGAM, since it fits better with the level of obser-
vations, the latter curve can easily be obtained by scaling the
former curve with the constant c = A0B̄/Ȳ .

The same development as above also holds in the case of
the unadjusted GAM model. There are only two time vari-
ables, i.e. day of week and day of the year, in the A(t) fac-
tor function in this case. Again, for large N , A will be close
to a weighted average of these factor values, as in Eq. (8),
but with weights based on the unadjusted B (t) values. Thus,
the trend curve values will correspond to the expected con-

centrations under the weighted-average impact of these two
variables, or we may wish to rescale, as above, to obtain a
trend curve which can be interpreted as expected concentra-
tions under conditions in which their smooth functions on the
log scale are exactly zero.

2.3 AirGAM user’s guide

A user’s guide to the model can be found in the Supple-
ment to this paper. This contains a description of all input
files, how to run the model on Windows and Linux, and a
description and presentation of all result files. It also con-
tains a few run examples. Furthermore, it gives details of the
model’s numerical implementation, including the choice of
solution methods, automatic model selection, the choice of
number and type of basis functions, and how uncertainties
are interpreted and calculated in the trend and in the model
predictions. Appendices in the Supplement contain informa-
tion on downloading and installing the model for Windows
and Linux and an overview of the model’s warning and error
messages.

Currently, the AirGAM model is developed as a single R
script rather than an R library of user-callable routines. Even
though having the model as a single script is less flexible
than having it as a set of callable routines, we also believe
our single script provides some advantages for an end-user,
such as automating the sequence of steps needed to perform
trend analysis for a whole or seasonal part of years for a large
number of stations with automatic data checking and files au-
tomatically produced with easy identification of outcomes.
The script also enables the automatic creation of model eval-
uation results with cross-validation analysis and model pre-
dictions for a selectable number of years. In addition, batch
scripts are provided, allowing the user to perform the model
runs in parallel on Windows and Linux in the case of a large
number of stations. A user only needs to provide input data,
define optional parameters, and run the batch scripts. This re-
quires minimal knowledge of R and GAM modelling, since
the model and the run scripts automate all the necessary
steps.

The model script may also be used as an advanced starting
point to develop further or from which to extract code. How-
ever, having an R library with user-callable routines based
on the current script code will further the model’s scope and
flexible use. Thus, we might pursue developing the model
also as an R library in the future.

3 Results for a European trend study 2005–2019

Here we give some results with the AirGAM model
based on data from the latest EEA trend study 2005–
2019 (Solberg et al., 2021a). The EEA air quality data
used are based on non-aggregated time series data down-
loaded from https://aqportal.discomap.eea.europa.eu/index.
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php/users-corner/ (last access: 12 December 2022) in April
2021. Data for 2005–2012 were extracted from AirBase
and for 2013–2019 as validated data (E1a) from the AQER
database. The meteorological data used are based on the
ECMWF ERA-5 data, which were downloaded using the
Copernicus Atmosphere Monitoring Service in 2021.

Our experience from previous, similar studies (Solberg et
al., 2018a, b, 2019) is that the model overall seems to per-
form best for NO2, followed by O3 and PM10, and worst for
PM2.5. Section 3.1–3.4 below present results for the com-
pounds NO2, O3, PM10, and PM2.5, respectively.

Seasonal conditioning was not used for model runs,
i.e. use_season_cond=0. Thus, only a single set of smooth
relations between the concentrations and the meteorological
and time covariates was estimated and used by the model.
The trend type was set to nonlinear (trend_type=nonlinear),
and the number of basis functions to be used by the trend
term was set to missing (k_years=NA), which implies that
five basis functions (15 years/3) were used to represent the
trend term in the model. Introducing a basis function for the
trend every 3 years was considered an appropriate setting in
this long-term trend study since we did not want to focus on,
or model, too much of the short-term variations in the trend at
individual stations but rather focus on the more main features
and more long-term variations in the trend.

The bam routine in the mgcv package was always tried be-
fore the gam routine (incl_bam=1; incidentally, no gam calls
were executed), and automatic model selection was turned
on (incl_select=1). The AR(1) model (autoregressive model
with a single, 1 d time lag) was not invoked for these runs
(incl_ar1=0) to reduce the computational time, which means
autocorrelation in the time series was not considered. Thus,
the focus is not on accurately estimating individual uncer-
tainties in the trend curves. In the cross-validation, the “limit
covariates” approach was used to obtain robust predictions
(rob_pred=limcov), i.e. covariate values outside the train-
ing interval were set to the nearest value in this interval be-
fore being used in the predictions. For all compounds ex-
cept for O3, all months in each year were used to estimate
the trend (subyear=jan-dec). For O3, only the summer pe-
riod (April–September) was used for a summer trend study
(subyear=apr-sep).

3.1 NO2

For NO2, there are 1485 stations in the AirBase/AQER
database for 2005–2019 that fulfil the data coverage crite-
ria for this compound (75 % coverage for individual years
and 75 % coverage of years in the period), excluding the in-
dustrial stations. This forms the basis for the trend study for
this compound. Due to the large number of stations for NO2,
we refrain from showing any individual station results here.
Input data and results for all stations for this compound can
be found in the model’s data repository (Walker and Solberg,
2022b–c).

However, the results for station EE0018Ah (Õismäe) are
shown in Sect. S5 in the Supplement, which describes the
output results from the AirGAM model. This is a background
station in an urban part of Tallinn, Estonia, with coordinates
52.41417◦ N and 24.64946◦ E, at 6 m a.s.l. (above sea level).
This station was chosen to illustrate the results, since it is
the exact median station of all stations based on the cross-
validation correlation results for NO2. Thus, it is neither the
best nor the worst station but may be viewed as typical of the
results for this compound. In the Supplement, Fig. S2 shows
the primary trend results in a meteorology-adjusted trend for
2005–2019. Figure S3 shows plots of all smooth functions
of meteorology and time-explanatory variables based on all
training data for the same period. A plot of model predic-
tions from the cross-validation for 2019 based on data for
the left-out years of 2005–2018 is presented in Fig. S4. Fig-
ures S5–S8 show plots of observed and predicted annual and
monthly average concentrations with trend curves and yearly
and monthly median concentrations. Furthermore, for this
station, you may also find plots of all evaluation results in
the Supplement in the individual sub-sections of Sect. S5.2–
S5.3. All results are commented upon there in the respective
sub-sections of Sect. S5.1–S5.3.

3.1.1 Results for all stations

Figure 2 shows a panel of three maps of stations over Eu-
rope. The maps are made for the following three categories
of stations: (1) background stations in rural areas (left),
(2) background stations in urban/suburban areas (middle),
and (3) traffic stations in any area (right). In each map, we
present the percentage change in expected concentrations of
NO2 from 2005 to 2019, relative to the initial levels in 2005,
based on the estimated meteorology-adjusted trend for NO2
for each station. The stations plotted in each map are the sta-
tions for which the 2005–2019 cross-validation gave a cor-
relation between observed and model-predicted values above
0.65. This resulted in 205, 742, and 409 stations, respectively,
for the three types of stations, with 1356 in total.

For each station, the change in the expected concen-
tration level is calculated based on the physically inter-
pretable trend curves ytrend (t) as output from the model at
the two time points, t1 and t1, corresponding to the start and
end of the trend estimation period 2005–2019, respectively
(i.e. 1 January 2005 and 31 December 2019). Thus, the ab-
solute change in the expected concentration is calculated as
ytrend (t2)− ytrend (t1), while the relative percent change is
calculated as 100× (ytrend (t2)− ytrend (t1))/ytrend (t1). Sec-
tion 2.2 describes how the trend curves are interpreted and
calculated based on the output from the GAM model.

The maps indicate a weak west-to-east gradient, with more
substantial declines in the west and smaller in the east. This is
particularly marked for the urban/suburban background sta-
tions (middle panel), with the densest geographical cover-
age. The result is mixed with countries showing both sub-
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Figure 2. Maps of stations in Europe with the percentage change in expected concentrations from 2005 to 2019, relative to the initial level in
2005, based on the meteorology-adjusted trend for NO2. (a) Background stations in rural areas. (b) Background stations in urban/suburban
areas. (c) Traffic stations.

stantial reductions and sites with no trend or even increasing
levels for traffic sites. This reflects that the roadside stations
are more heterogeneous and subject to changes in the local
urban environment (roads, buildings, etc.). Additionally, the
NO2 /NOx ratio in tailpipe emissions will strongly influence
these sites, depending on the fleet of vehicles (fraction of
diesel cars) and the ambient ozone level. These issues will
be reduced and smoothed out for background stations due to
atmospheric mixing and the NO2 /NOx concentration ratio
approaching the photo-stationary steady state determined by
solar radiation, temperature, and ozone level.

Figure 3 shows box plots of the same changes in expected
concentrations for the same three categories of stations. The
three left plots show the relative change in percent as in
Fig. 2, while the three right plots show the absolute changes
in concentration levels.

The results in Fig. 3 show that the NO2 concentration has
decreased approximately at the same rate at all station cat-
egories during 2005–2019. Median reductions of 29 % are
found for the rural and urban/suburban stations and 31 % for
the traffic stations, with corresponding decreases in concen-
trations of 4–13 µg m−3.

Figure 4 shows box plots of some selected statistical eval-
uation parameters based on the cross-validation for 2005–
2019. Again, the box plots are made for the same three cate-
gories of stations as in Figs. 2–3.

The statistical evaluation parameters are calculated in
AirGAM using the routine modStats from the openair pack-
age in R. The manual pages for the modStats routine contain
a detailed description of what these parameters represent and
how they are calculated (see also Sect. S5.2.4 in the Supple-
ment).

As seen from Fig. 4, the predictive performance of the
AirGAM model for NO2 concerning the correlation (r) and
coefficient of efficiency (COE) is somewhat better for the

urban/suburban background stations than for the traffic and
rural ones. However, the median values of r and COE are
pretty decent for all three types. Regarding FAC2 (fraction
of days with predictions within a factor of 2 of observations)
and RMSE (root mean squared error), traffic and rural sites
are best, respectively, and hence, we have a somewhat mixed
picture from these sites. Nevertheless, FAC2, r , and COE
are slightly poorer, i.e. lower, for rural stations, which is ex-
pected, since the NO2 levels at these sites depend less on
the local meteorological conditions than suburban and urban
sites. Also, note that the mean bias (MB) is close to zero for
all three types of stations, which is good.

3.2 O3

For O3, there are 1175 non-industrial stations in the Air-
Base/AQER database for 2005–2019, fulfilling the data cov-
erage criteria for this compound (75 % coverage for individ-
ual years and 75 % coverage of years in the period). For this
compound, the air quality data consist of maximum daily
running 8 h average (MDA8) concentrations for each day.
Again, no individual station results are shown here, but all
data and results for this compound for all stations can be
found in the model’s data repository (Walker and Solberg,
2022b, d). Figures 5–7 show the same type of results as for
NO2.

The stations plotted in each map in Fig. 5 and as data val-
ues in Fig. 6 are the stations for which the 2005–2019 cross-
validation for O3 gave a correlation above 0.65. This resulted
in 303, 594, and 44 stations, respectively, for the three types
of stations, with 941 in total. However, for the evaluation in
Fig. 7, all 1175 stations are used, with 368, 729, and 78 in
each category.

The geographical distribution of the ozone summertime
changes in mean MDA8 shows no clear pattern (Fig. 5). The
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Figure 3. Box plots of changes in expected concentrations over the same three types of stations as in the map plots in Fig. 2. Panel (a) shows
relative percent changes, while panel (b) shows absolute changes from 2005 to 2019 (units in % and µg m−3).

Figure 4. Box plots of some selected evaluation parameters from the cross-validation for 2005–2019, again for the same three categories of
stations as in Figs. 2–3.

rural stations offer reductions (yellow–green colours) over
most areas, with more substantial decreases at some stations,
which are mainly in Portugal and Italy. The changes at ur-
ban/suburban sites are closer to zero at many locations, but
several stations also show marked reductions.

As shown in Fig. 6, the calculated changes in the mean
summer half-year of MDA8 during 2005–2019 are substan-

tially smaller than the changes found for NO2 over the same
period. For the rural and urban/suburban stations, a median
reduction of 6 % and 5 % is found, respectively, while a slight
increase of 2 % is seen for the traffic sites. The correspond-
ing changes in concentrations are from −6 to 2 µg m−3 from
2005 to 2019.
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Figure 5. Maps of stations in Europe with the percentage change in expected concentrations from 2005 to 2019, relative to the initial level
in 2005, based on the meteorology-adjusted trend for O3. (a) Background stations in rural areas. (b) Background stations in urban/suburban
areas. (c) Traffic stations.

Figure 6. Box plots of changes in expected concentrations over the same three types of stations as in the map plots in Fig. 5. Panel (a) shows
relative percent changes, while panel (b) shows absolute changes from 2005 to 2019 (units in % and µg m−3).

Otherwise, the results for ozone (Fig. 7) show the opposite
compared to NO2 regarding model performance. The best
performance (high FAC2, r , and COE) is seen at rural sta-
tions and the poorest at traffic sites. However, the model per-
formance for the urban/suburban category is very close to the
rural one.

3.3 PM10

For PM10, there are 1243 non-industrial stations in the Air-
Base/AQER database for 2005–2019, fulfilling the data cov-

erage criteria for this compound (75 % coverage for individ-
ual years and 65 % coverage of years in the period). No in-
dividual stations are shown, but all data and results can be
found in the model’s data repository (Walker and Solberg,
2022b, e).

Figures 8–10 show the same type of results as for the
previous compounds. The stations plotted in each map in
Fig. 8 and as data values in Fig. 9 are the stations for which
the 2005–2019 cross-validation for PM10 gave a correlation
above 0.55. This resulted in 176, 627, and 351 stations, re-
spectively, for the three types of stations, with 1154 in total.
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Figure 7. Box plots of evaluation parameters from the cross-validation for 2005–2019 (again for the same three types of stations).

For the evaluation in Fig. 10, all 1243 stations are used, with
204, 658, and 381 in each category.

For PM10, AirGAM estimates marked reductions dur-
ing 2005–2019 with indications of a west-to-east gradient
(Fig. 8), as was found for NO2. Median decreases of 31 % are
found for the rural and urban/suburban stations and 37 % for
the traffic stations (Fig. 9), with corresponding reductions in
concentrations of 7–13 µg m−3. Many Polish and Baltic sites
have no change or even increased levels. Due to the shift from
daily based sampling to hourly in France, no trends could be
calculated for sites there.

The AirGAM performance is best at the traffic and urban/-
suburban sites, with slightly poorer results for the rural ones
(Fig. 10). This is as expected for PM10 (as for NO2), mainly
due to these stations being exposed to more direct local emis-
sions. In contrast, the PM10 at rural sites is more influenced
by long-range air mass transport and external processes not
captured so well by the AirGAM model, such as windblown
dust, forest fires, agricultural fires, etc.

3.4 PM2.5

For PM2.5, there are 354 non-industrial stations in the Air-
Base/AQER database for 2005–2019, fulfilling the data cov-
erage criteria for this compound (75 % coverage for individ-
ual years and 65 % coverage of years in the period). No in-
dividual stations are shown, but all data and results can be
found in the model’s data repository (Walker and Solberg,
2022b, f).

Figures 11–13 show the same type of results as for the
previous compounds. The stations plotted in each map in
Fig. 11 and as data values in Fig. 12 are the stations for which

the 2005–2019 cross-validation for PM2.5 gave a correlation
above 0.55. This resulted in 59, 186, and 80 stations, respec-
tively, for the three types of stations, with 325 in total. For
the evaluation in Fig. 13, all 354 stations are used, with 67,
201, and 86 in each category.

The number of stations for PM2.5 is substantially lower
than for the other compounds, and thus the interpretation of
the results becomes more uncertain. However, the sites with
sufficient monitoring length showed a marked reduction in
the expected concentration level (with a few exceptions) dur-
ing 2005–2019 (Fig. 11). The geographical coverage is too
sparse to conclude the spatial pattern in the trends. As a me-
dian over the sites, we find relative reductions of 28 %, 31 %,
and 37 % at rural, urban/suburban, and traffic sites, respec-
tively (Fig. 12), with corresponding reductions in the con-
centration of 4–7 µg m−3.

The AirGAM performance is best at the traffic stations
concerning FAC2 but nearly the same for MB and RMSE
(Fig. 13). For correlation r and COE, the urban/suburban and
traffic stations are slightly better than the rural ones.

4 Comparison with the random forest method in
rmweather

Another approach for discounting the effect of meteorol-
ogy when estimating trends in air quality data is the ran-
dom forest (RF) method (Ho, 1995; Breiman, 2001) as im-
plemented, e.g., in the R package rmweather (Grange et al.,
2018; Grange and Carslaw, 2019). We will briefly describe
the main similarities and differences between GAM and RF
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Figure 8. Maps of stations in Europe with the percentage change in expected concentrations from 2005 to 2019, relative to the initial level in
2005, based on the meteorology-adjusted trend for PM10. (a) Background stations in rural areas. (b) Background stations in urban/suburban
areas. (c) Traffic stations.

Figure 9. Box plots of changes in expected concentrations over the same three types of stations as in the map plots in Fig. 8. Panel (a) shows
relative percent changes, while panel (b) shows absolute changes from 2005 to 2019 (units in % and µg m−3).

and then compare them using the data from the present trend
study.

Both methods attempt to solve a nonlinear regression with
concentrations as a response and a given set of meteorolog-
ical and time variables as covariates. However, the nature of
their solution methods is quite different. In GAM, we esti-
mate a set of nonlinear relations between the response and the
covariates by regularisation, i.e. by maximising a penalised
likelihood. This produces smooth and non-wiggly estimated
relations between the response and each covariate, resulting

in a model that avoids overfitting and generalises well to new
data not in the training set.

The RF approach uses decision trees as its main build-
ing block for relating the response to the covariates. Several
datasets are then created randomly by bootstrapping, i.e. ran-
dom sampling of new data with replacements from the avail-
able data, including randomly selecting various subsets of the
available covariates. Then decision trees are fitted individu-
ally to these data. Finally, an ensemble of such fitted trees
defines the nonlinear relations and predictions. The latter are
produced as mean values over the predictions from individual
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Figure 10. Box plots of evaluation parameters from the cross-validation for 2005–2019 (again for the same three types of stations).

Figure 11. Maps of stations in Europe with the percentage change in expected concentrations from 2005 to 2019, relative to the initial level in
2005, based on the meteorology-adjusted trend for PM2.5. (a) Background stations in rural areas. (b) Background stations in urban/suburban
areas. (c) Traffic stations.

trees in the forest. This results in a model that avoids overfit-
ting and generalises well to new data. Although they cannot
be classified as robust methods per se, GAM and RF are not
very sensitive to outliers. They can also handle missing data
well.

Both methods result in interpretable models. We can
quickly inspect the estimated nonlinear relations between the
response and each covariate to see if an association makes
physical sense. In GAM, for this purpose, we use the set
of estimated smooth functions, including the smooth func-
tion for the trend, while in RF, we use a similar set of so-
called estimated partial dependencies. In the latter method,

a trend is estimated by calculating meteorologically nor-
malised concentrations over time, i.e. mean concentrations
predicted from the RF model using average meteorology. In
GAM, uncertainties in the smooth functions are output di-
rectly as a byproduct of the estimation. For RF, however,
bootstrapping, using randomly sampled data and repeated
estimations, must generally be used to estimate uncertain-
ties in the partial dependencies and the meteorologically nor-
malised concentrations.

A nice feature of the RF approach is that concurvity or
collinearity between the covariates is handled efficiently and
is thus not an essential issue for these models, while this can
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Figure 12. Box plots of changes in expected concentrations over the same three types of stations as in the map plots in Fig. 11. Panel (a)
shows relative percent changes, while panel (b) shows absolute changes from 2005 to 2019 (units in % and µg m−3).

Figure 13. Box plots of evaluation parameters from the cross-validation for 2005–2019 (again for the same three types of stations).

be detrimental for GAM models and needs to be checked.
However, our experience in the present study shows this to
be a pretty minor issue, with only a few cases of potential
problems, despite many stations. RF also has model selection
built-in, since the method will ignore a variable not contribut-
ing to predicting a response. GAM also has model selection
built-in when we turn on the select=TRUE option in the calls
to the bam and gam routines.

Also, more assumptions are built into a GAM model rel-
ative to an RF model. For example, in GAM, we need to
assume a specific probability distribution for the response
given the covariates, and we need to consider the transfor-
mations of the former. In contrast, no distributions or trans-
formations must be specified in an RF. Furthermore, GAM
assumes a smooth and continuous underlying relation be-
tween the response and each covariate. In our case, smooth
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and continuous relations are often found between air pollu-
tion and related meteorological and time variables. However,
such smooth and continuous relations are not considered in
an RF approach, and they can be non-smooth and discontinu-
ous. Even if perhaps not directly discontinuous, more abrupt
changes in the trend, for example, may happen if policy
changes or mitigation measures lead to changes in emissions
and subsequent concentration levels at a station over a rel-
atively short period. Such sharp transitions will typically be
more smoothed out in a GAM model unless we use a higher
number of basis functions around the time of the events.

A trend analysis based on hourly values of NO2 for the
traffic station GB0682Ah – Marylebone Road, London – for
1997–2016 was conducted in Grange and Carslaw (2019) us-
ing the RF method in rmweather. Their paper focuses on the
impact on the trend due to various interventions imposed on
road traffic in London during this period. These interventions
aim to reduce primary NO2 emissions from vehicles, leading
to lower NO2 concentrations. To compare AirGAM with RF,
we have applied a similar trend analysis here for this sta-
tion for 2005–2019, using daily mean values of NO2 as input
rather than hourly data. In our study, we use the same meteo-
rological and time variables in RF as in AirGAM, i.e. we use
meteorology from ECMWF ERA5 for this station rather than
data from Heathrow Airport, which was used in their paper.
The meteorological covariates are the same in both studies,
except for planetary boundary layer height and cloud cover,
which is used here for both models, and atmospheric pres-
sure, which is not used. Otherwise, we run with the same hy-
perparameters in RF as in their paper, using 300 trees in the
forest, a minimal node size of five, and the default number of
variables split at each node, which is three in our case. The
seed number in the calls to the routines in rmweather was set
to 1234. A default of 300 predictions was used to produce
the meteorologically normalised concentrations.

As for AirGAM, we run with the same set-up as for the
other runs in this paper, but we introduce a somewhat more
agile GAM model by increasing the number of basis func-
tions for the trend from the default of 5 to 10. This is the
smallest number of basis functions considered to be suffi-
cient, according to the gam.check routine (k−1− edf> 0.5),
thus introducing just the right amount of model complexity
for the trend in GAM for this more detailed trend analysis.
We also consider auto-correlation in the time series by in-
cluding an AR(1) model for the model residuals using the
option incl_ar1=1 in AirGAM.

Figure 14 shows the meteorologically normalised trend
from the RF model (blue curve) as monthly averages and
the meteorology-adjusted smooth trend from AirGAM (dark
green curve) for NO2 at Marylebone Road, London, for
2005–2019. In the figure, the dark green dashed curves form
a 95 % confidence region for the trend from AirGAM.

The vertical dashed lines in the figure show air quality in-
terventions in London during this period. The first two high-
lighted in Grange and Carslaw (2019) are identified as break-

points from a time series breakpoint detection analysis con-
ducted there. These are associated with the introduction of
the Low Emission Zone (LEZ) in London on 4 April 2008
and the change from Euro III to Euro V vehicles on Route
18 at the end of 2010. The following two interventions (sec-
ond phase of LEZ on 3 January 2012 and the introduction of
the toxicity surcharge (T-charge) on 23 October 2017 were
also considered in their paper but not identified as actual
breakpoints for the trends in their analysis. The last inter-
vention shown in the figure introduces the Ultra Low Emis-
sion Zone (ULEZ) in London on 4 April 2019. For a more
thorough description of these interventions, see Grange and
Carslaw (2019). A detailed description of the history and de-
velopment of various congestion charges introduced in Lon-
don to curb the levels of air pollution from the mid-1990s to
the present is given in Wikipedia (2022).

As shown in Fig. 14, the shape of the trend curve from the
GAM model resembles the trend point values from the RF
model with some noticeable differences. The GAM curve
is smooth and not too wiggly by construction, falling gen-
tly in several phases with more flat in-between parts before
decreasing sharply at the end from around the introduction
of the T-charge in 2017 and towards 2020. The concentra-
tion level is reduced from 113 µg m−3 in 2005 to 54 µg m−3

in 2020, with a total reduction of 59 µg m−3. The trend val-
ues from RF are more variable, presumably due to the more
adept nature of this method. Here the level is reduced from
113 µg m−3 in 2005 to 64 µg m−3 in 2020, with a total of
49 µg m−3 that is 10 µg m−3 less than for GAM, mainly due
to the differences in the trends at the very end of the period.
Also noticeable is the sharp decrease in the RF trend around
the time of the Route 18 bus fuel changes from late 2010 to
the middle of 2011, which the GAM model does not repro-
duce. Instead, GAM estimates a smooth and gentle reduction
in the concentrations over a much more extended period from
just after the introduction of the LEZ in 2008 to the middle
of 2013.

Note that, despite differences in the shapes of these trend
curves, the RF trend is well contained within the 95 % con-
fidence region for the GAM trend, except for 5 months in
2010–2011 and 6 months at the end of the period, which is a
total of 11 months. If the RF point values were the true trend,
then we would expect around nine monthly values (5 % of
180 months) outside this interval. However, they are also es-
timated and not identical to the true trend. It is challenging
to state the most realistic trend – is it the smooth and non-
wiggly trend from GAM or the more variable and detailed
trend from RF? The sharp declines in the RF trend around
the introduction of the Route 18 bus fuel changes may well
indicate that the RF trend in this period is the most realistic.
On the other hand, the gentle reduction in the GAM trend
from the LEZ introduction in 2008 towards 2011, a period
where the RF trend is more constant, is also interesting and
may point to cuts in NO2 emissions from traffic affecting the
station in this period. Thus, it may be beneficial to use both
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Figure 14. Meteorologically normalised trend (monthly averages) from the RF model (blue curve) together with a meteorology-adjusted
smooth trend (dark green curve) from AirGAM with a 95 % confidence region (dashed curves) for NO2 at Marylebone Road, London, for
2005–2019 (units in % and µg m−3).

methods in more detailed trend analyses to obtain a more di-
verse picture of and insight into the possible nature of the
actual trend.

Comparing the trends produced from AirGAM and the RF
method in rmweather for other stations and compounds (not
shown here) gives, in most cases, the same picture as above.
The GAM approach in AirGAM produces trend curves that
are smooth and non-wiggly, while the RF approach tends to
create more variable trends with more details. All in all, how-
ever, we found the trends to be similar in most cases. It would
be interesting to study how well the two methods estimate
trends using controlled experiments with simulated but real-
istic data to know the underlying trend. We hope to pursue
such a study in a forthcoming paper.

Table 2 shows, for the various compounds, the predic-
tion accuracy of the GAM models in AirGAM versus the
RF method in rmweather from the cross-validation for 2005–
2019. Here, the evaluation parameters, i.e. prediction perfor-
mance metrics, are the same as those used in Sect. 3. Each
metric in the table is calculated as a mean over the n individ-
ual stations for each compound. The corresponding number
in parentheses is an estimated standard deviation of this mean
value obtained from bootstrapping using 5000 replications of
the individual values in each case.

As shown in Table 2, the two methods are similar in the
predictive performance concerning the various evaluation pa-
rameters shown. For some compounds and performance met-
rics, GAM is best; for others, RF is best, but the difference
between the two is slight, except perhaps for the mean bias
(MB), where GAM is clearly better than RF for all com-
pounds except for O3, where RF is slightly better. Bootstrap-
ping the differences in the metrics between the models re-
sults in the bold values in the table, where one model is sta-

tistically significantly better than the other at the 1 % level.
In terms of the concentration level independent metrics cor-
relation (r) and coefficient of efficiency (COE), both mod-
els seem to perform best for NO2, followed by O3 and then
PM, although GAM is fairly good regarding COE for PM2.5.
Overall, both methods perform pretty well for all metrics
shown, but GAM seems to have an edge in PM, while the
opposite is true for NO2 and O3.

Interaction between covariates means that a covariate’s in-
fluence on the response depends on the level of one or more
of the other covariates. RF models, such as those produced
by rmweather, can potentially include complex interactions
between the covariates. Strictly additive GAM models used
by AirGAM do not have any interactions between covariates.
Since they are very similar in predictive performance for all
compounds in this comprehensive trend study, there seem to
be few or no interactions between the covariates that need
to be modelled to obtain a good predictive performance, at
least for these data. Thus, a purely additive model with no
interactions appears to be sufficient.

5 AirGAM as a tool for data quality investigations

A spin-off of the AirGAM model is the ability to detect mea-
surement data of dubious quality. This is easily explained,
as AirGAM is based on finding long-term systematic rela-
tionships between reported levels of air pollutants and me-
teorological and temporal data. When this approach fails, it
is either due to the station being dominated by long-range
transport of air pollutants (whereas AirGAM relies on local
meteorological data) or a result of artefacts in the monitoring
data, such as significant shifts in the concentration level or
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Table 2. Prediction accuracy from the cross-validation for 2005–2019 of AirGAM vs. RF from rmweather. The prediction performance
metrics are the same as those used in Sect. 3. Values in bold mark the best-performing model for each compound and metric. Note: SD is the
standard deviation.

Compound Model n FAC2 MB (SD) RMSE (SD) r COE
(SD) µg m−3 µg m−3 (SD) (SD)

NO2 GAM 1485 0.957 (0.001) 0.121 (0.007) 7.223 (0.080) 0.787 (0.003) 0.439 (0.003)
RF 1485 0.954 (0.001) 0.279 (0.007) 7.031 (0.075) 0.797 (0.002) 0.444 (0.003)

O3 GAM 1175 0.995 (3× 10−4) 0.094 (0.014) 16.301 (0.091) 0.719 (0.003) 0.335 (0.003)
RF 1175 0.995 (3× 10−4) 0.023 (0.012) 16.113 (0.086) 0.726 (0.003) 0.347 (0.003)

PM10 GAM 1243 0.918 (0.001) 0.059 (0.009) 11.195 (0.136) 0.687 (0.002) 0.330 (0.002)
RF 1243 0.909 (0.001) 0.576 (0.016) 11.274 (0.138) 0.683 (0.002) 0.314 (0.002)

PM2.5 GAM 354 0.884 (0.003) 0.035 (0.011) 7.751 (0.187) 0.691 (0.005) 0.341 (0.005)
RF 354 0.874 (0.003) 0.404 (0.017) 7.759 (0.193) 0.690 (0.005) 0.328 (0.005)

the seasonal cycle or other kinds of spurious effects. As de-
scribed in previous reports (Solberg et al., 2018a, b), screen-
ing the AirGAM results on the lowest correlation coefficients
(and high values for NMGE, the normalised mean gross er-
ror) has proven to be a valuable tool for detecting errors in
the measurement data. Solberg et al. (2018a, b) give vari-
ous examples of time series of dubious quality identified by
screening the AirGAM results. The examples include time
series with a substantial offset in specific years and ozone
data given in a faulty unit (parts per billion vs. µg m−3) dur-
ing parts of the period. Although such errors could have been
identified with basic statistical tools, other types of artefacts
would have been harder to detect. This includes time series
of PM10 at certain stations and years that turned out to be
displaced by 1 d. AirGAM predicted the daily concentrations
fairly accurately for these time series, whereas a systematic
shift of 1 d was seen compared to the observational time se-
ries. Further investigations confirmed that the timestamp of
the measurements was indeed wrong. This type of error in
the monitoring data would have been tough to detect by more
basic statistical methods.

6 Summary and conclusions

This paper presents the AirGAM model – an air quality trend
and prediction model developed at NILU in cooperation with
EEA over the years 2017–2021. The model is based on solv-
ing a nonlinear regression using generalised additive mod-
elling (GAM) of daily observed concentrations at individual
air quality monitoring stations with corresponding meteoro-
logical and time-related explanatory variables. It has been de-
veloped primarily for NO2, O3, PM10, and PM2.5. Since the
concentrations are conditioned on local meteorology in the
regression, the trend estimated by the model may be viewed
as a meteorology-adjusted trend – i.e. a trend in concentra-
tions discounting for the effects of time variations and trends
in the meteorological data.

The model can also produce unadjusted trends, i.e. trends
using the same regression set-up but only including the time
variables. These can then be compared with the meteorology-
adjusted trends to see the effect of the meteorological ad-
justment. Unadjusted trends show changes in actual concen-
trations with time. In contrast, meteorology-adjusted trends
show changes in concentrations mainly due to changes in
emissions or physicochemical processes not induced by me-
teorology.

The meteorological and time covariates used in AirGAM
have been carefully selected on physical grounds for each
pollutant as part of the model development. Generally, they
were statistically significant both in our earlier studies and
in our present study involving EEA AirBase/AQER stations
in Europe for 2005–2019. Thus, we believe that they are
reasonable explanatory variables for the concentration varia-
tions. However, performing model selection is vital as good
practice in statistical regression with many covariates. Due
to the large number of stations to be handled, more tradi-
tional model selection techniques of including or excluding
individual covariates in a step-wise fashion were found to
be intractable to implement in the model. Instead, a form of
automatic model selection is introduced via extra penalisa-
tion in the GAM solver routines, forcing any non-essential or
superfluous covariate to be pushed towards a zero-flat func-
tion and thus removed from the regression. Based on this
in our present study, most covariates were significant at the
5 % level, with only a few non-significant at some stations
(mostly cloud cover for NO2 and precipitation for PM).

A concurvity analysis performed in the present study
shows all covariates to be relatively independent of each
other for all compounds, with concurvity values of type es-
timate for the most part below 0.4. Higher values occurred
only in 0.55 %, 0.09 %, 0.31 %, and 0.53 % of the cases (sta-
tions and covariates) for NO2, O3, PM10, and PM2.5, respec-
tively. For NO2 and PM, all values were below 0.5, while,
for O3, only three were in the interval [0.5, 0.6]. This gener-

Geosci. Model Dev., 16, 573–595, 2023 https://doi.org/10.5194/gmd-16-573-2023



S.-E. Walker et al.: The AirGAM 2022r1 air quality trend and prediction model 591

ally indicates good statistical identifiability of the model vari-
ables, implying a reasonable estimation of the smooth non-
linear relations, including the trend. In AirGAM, as a default,
a basis function is introduced in the trend term every 3 years
with data, which typically estimates the trend’s main features
and long-term properties quite well in most cases. However,
the user may choose a higher number of basis functions for
the trend if it is essential to capture more details and short-
term variations.

Our present trend analysis in Europe for 2005–2019 shows
that the NO2 concentration has decreased approximately at
the same rate at all station categories during this period. Me-
dian reductions of 29 % are found for rural and urban/subur-
ban stations and 31 % for traffic stations, with corresponding
decreases in concentration levels of 4–13 µg m−3. For O3 at
the rural and urban/suburban stations, median reductions of
6 % and 5 % are found, respectively, while a slight increase
of 2 % is seen for the traffic sites. Corresponding changes in
concentrations are from −6 to 2 µg m−3. For PM10, median
reductions of 31 % are found for the rural and urban/suburban
stations and 37 % for the traffic stations, with corresponding
decreases in concentrations of 7–13 µg m−3. And, finally, for
PM2.5, we find median reductions of 28 %, 31 %, and 37 % at
rural, urban/suburban, and traffic sites, respectively, with cor-
responding decreases in concentrations of 4–7 µg m−3. Thus,
these are our estimated changes in concentration levels due
to changes in emissions or physicochemical processes and
not due to meteorology during this period.

Cross-validation at the stations in Europe for 2005–2019
shows that the model works well and can predict concentra-
tions with reasonably good accuracy in this period for most
stations, with correlations ranging from 0.69 for PM to 0.79
for NO2 and RMSE ranging from 7.2 µg m−3 for NO2 to
16.3 µg m−3 for O3. Comparison with other approaches for
estimating meteorology-adjusted trends based on nonlinear
regression, such as the random forest (RF) method from the
rmweather package, show our GAM to be on par with RF
regarding prediction accuracy, e.g. in terms of RMSE and
correlation, while having somewhat better results regarding
mean bias. Thus, despite their very different nature of con-
struction, both methods produce models that avoid overfit-
ting and generalise quite well towards new data not in the
training set.

Interaction means that a covariate’s influence on the re-
sponse depends on the level of one or more of the other co-
variates. RF models, such as those produced by rmweather,
can potentially include complex interactions between the
covariates. Strictly additive GAM models implemented in
AirGAM do not have any interactions between covariates.
Since these two models have a very similar predictive perfor-
mance for all compounds in this comprehensive trend study,
there seem to be few or no interactions between the covari-
ates that need to be modelled to obtain a good predictive per-
formance, at least for these data. Thus, purely additive GAM
models with no interactions appear to be sufficient.

In AirGAM, we assume a smooth and continuous under-
lying relation between the response concentration and each
of the meteorological and time variables of the model – in-
cluding that for the trend term. In air pollution modelling,
such smooth relations are natural to assume since they are,
for the most part, also smooth in reality. However, more
abrupt changes or steep trends in concentrations at a sta-
tion may happen if, for example, policy changes or mitiga-
tion measures are introduced, leading to emission changes
influencing the station over a relatively short period. In such
cases, RF methods and similar tree-based techniques could
be more appropriate, since they generally allow the relation-
ship between the concentrations and the total time variable to
be non-smooth and even discontinuous. Such sharp changes
in concentration levels will typically be more smoothed out
in a GAM model unless we introduce more basis functions
or adaptive basis functions around the time of such events.
However, it is less of a problem if our focus is on the trend’s
main features and long-term properties.

Appendix A: AirGAM model frequently asked
questions (FAQs)

Q: Can I run for compounds other than NO2, O3, PM10,
and PM2.5?

A: It should be possible to run for NOx = NO2+ NO
and Ox =O3+NO2 in the same way as for NO2 and O3,
respectively, since these behave somewhat similarly to
these compounds. Recently, we applied the model for
seven species of VOCs (volatile organic compounds)
at one rural background station in Europe with en-
couraging results that showed good agreement between
observed and predicted concentrations (Solberg et al.,
2022; Sect. 4). Including other compounds should be
possible but may need additional work to investigate
which meteorological variables to use.

Q: Why are hours not being used in the system?

A: We think it is most sensible to stick to daily values
since one of the program’s aims is to estimate trends
over a more extended period, i.e. several years. Diurnal
air quality variations and meteorology are not essential
to consider or model in this respect.

Q: How can I run only for a subset of stations, e.g. just
for the Danish sites?

A: You may edit the static station files (Sect. S3.4 in the
Supplement) to include only the stations you wish to run
for, e.g. stations with DK in the station name. Note that
you need to edit these files for each year. This may be
a little tedious when there are many years and files, so
we plan to develop a more automatic procedure based
on filtering in later versions of the model.
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Q: Do the columns need to be in a specific order in the
station input files?

A: No, the files are read into R as data frames with
headers, so the column order is irrelevant. However, the
header names must be as specified in Sect. S3.4 in the
Supplement.

Q: Can there be missing air quality or meteorology data
in the station input files?

A: Yes, you can have any number of missing data as
long as you have enough complete cases, i.e. days with
a complete set of data, to comply with the data coverage
criteria. You do not need meteorology to run the model
for unadjusted trends.

Q: Do I need to have data for all years in the period
selected for trend estimation?

A: No, the model tolerates missing years in the input.
However, you must have enough years to comply with
the data coverage percentages in the AirGAM options
file. For example, if you use 75 % as the data coverage
for years (perc2), then you need to have at least 8 years
with data if running for 10 years.

Q: Can I use a different missing data value on input,
e.g. −9900 or another unique number?

A: No, not currently, but this may be introduced later.
For now, you can only use the two- and three-letter com-
binations of NA (missing value in R) and NaN (not a
number in R).

Q: What happens if my data contain zero or negative
concentrations?

A: For O3, nothing happens; the data are used as is. For
the other compounds, due to the logarithmic transfor-
mation, zero or negative concentrations are replaced by
0.1. A warning is written to the AirGAM_log.txt file
with the station name, year, month, day, and the initial
negative concentration for each such case.

Code and data availability. The current version
of the AirGAM model is available on Zenodo
(https://doi.org/10.5281/zenodo.6334104; Walker, 2022a)
under the GPL-2 licence. The exact version of the model
(2022r1) used to produce the results used in this paper is
archived on Zenodo (https://doi.org/10.5281/zenodo.6334103;
Walker, 2022b), as are the input data and scripts to run
the model and produce the plots for the results presented
in this paper (https://doi.org/10.5281/zenodo.6334131,
https://doi.org/10.5281/zenodo.6334171; Walker and Solberg,
2022a–b). The results for all individual stations and compounds can
also be found on Zenodo (https://doi.org/10.5281/zenodo.6334195,

https://doi.org/10.5281/zenodo.6334317,
https://doi.org/10.5281/zenodo.6334327,
https://doi.org/10.5281/zenodo.6334334; Walker and Sol-
berg, 2022c–f). The EEA measurement data are based
on non-aggregated time series data downloaded from
https://aqportal.discomap.eea.europa.eu/index.php/users-corner/
(last access: April 2021). Data for 2005–2012 were extracted
from AirBase and 2013–2019, as validated (E1a) from the AQER
database.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-573-2023-supplement.
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