Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4867-2023
https://doi.org/10.5194/gmd-16-4867-2023
Development and technical paper
 | 
29 Aug 2023
Development and technical paper |  | 29 Aug 2023

A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter

Li Fang, Jianbing Jin, Arjo Segers, Hong Liao, Ke Li, Bufan Xu, Wei Han, Mijie Pang, and Hai Xiang Lin

Viewed

Total article views: 1,731 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,278 387 66 1,731 127 51 59
  • HTML: 1,278
  • PDF: 387
  • XML: 66
  • Total: 1,731
  • Supplement: 127
  • BibTeX: 51
  • EndNote: 59
Views and downloads (calculated since 13 Feb 2023)
Cumulative views and downloads (calculated since 13 Feb 2023)

Viewed (geographical distribution)

Total article views: 1,731 (including HTML, PDF, and XML) Thereof 1,665 with geography defined and 66 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 02 Nov 2024
Short summary
Machine learning models have gained great popularity in air quality prediction. However, they are only available at air quality monitoring stations. In contrast, chemical transport models (CTM) provide predictions that are continuous in the 3D field. Owing to complex error sources, they are typically biased. In this study, we proposed a gridded prediction with high accuracy by fusing predictions from our regional feature selection machine learning prediction (RFSML v1.0) and a CTM prediction.