Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4659-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4659-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamic Meteorology-induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis
Bok H. Baek
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Carlie Coats
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Siqi Ma
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Department of Atmospheric, Oceanic and Earth Sciences, George Mason
University, Fairfax, VA 22030, USA
Chi-Tsan Wang
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Yunyao Li
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Jia Xing
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Daniel Tong
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA 22030, USA
Department of Atmospheric, Oceanic and Earth Sciences, George Mason
University, Fairfax, VA 22030, USA
Soontae Kim
Environmental Engineering, College of Engineering, Ajou University,
Suwon, Republic of Korea
Jung-Hun Woo
CORRESPONDING AUTHOR
Civil and Environmental Engineering, College of Engineering, Konkuk
University, Seoul, Republic of Korea
Related authors
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022, https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Short summary
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile emissions inventory model designed to efficiently estimate high-quality emissions. The CARS is designed to utilize the local vehicle activity database, such as vehicle travel distance, road-link-level network information, and vehicle-specific average speed by road type, to generate a temporally and spatially enhanced inventory for policymakers, stakeholders, and the air quality modeling community.
Uma Shankar, Donald McKenzie, Jeffrey P. Prestemon, Bok Haeng Baek, Mohammed Omary, Dongmei Yang, Aijun Xiu, Kevin Talgo, and William Vizuete
Atmos. Chem. Phys., 19, 15157–15181, https://doi.org/10.5194/acp-19-15157-2019, https://doi.org/10.5194/acp-19-15157-2019, 2019
Short summary
Short summary
We evaluate two wildfire emissions estimates for the southeastern US, based on projected annual areas burned in 2011–2060, against a benchmark wildfire inventory in air quality (AQ) simulations for 2010 and AQ network observations. Our emissions estimates compare well with the benchmark but all three simulations have large biases compared to observations. We find our methods suitable to assess current and future wildfire AQ impacts but also identify areas for AQ model improvements.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Kyoung-Min Kim, Si-Wan Kim, Seunghwan Seo, Donald R. Blake, Seogju Cho, James H. Crawford, Louisa K. Emmons, Alan Fried, Jay R. Herman, Jinkyu Hong, Jinsang Jung, Gabriele G. Pfister, Andrew J. Weinheimer, Jung-Hun Woo, and Qiang Zhang
Geosci. Model Dev., 17, 1931–1955, https://doi.org/10.5194/gmd-17-1931-2024, https://doi.org/10.5194/gmd-17-1931-2024, 2024
Short summary
Short summary
Three emission inventories were evaluated for East Asia using data acquired during a field campaign in 2016. The inventories successfully reproduced the daily variations of ozone and nitrogen dioxide. However, the spatial distributions of model ozone did not fully agree with the observations. Additionally, all simulations underestimated carbon monoxide and volatile organic compound (VOC) levels. Increasing VOC emissions over South Korea resulted in improved ozone simulations.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Nadia K. Colombi, Daniel J. Jacob, Laura Hyesung Yang, Shixian Zhai, Viral Shah, Stuart K. Grange, Robert M. Yantosca, Soontae Kim, and Hong Liao
Atmos. Chem. Phys., 23, 4031–4044, https://doi.org/10.5194/acp-23-4031-2023, https://doi.org/10.5194/acp-23-4031-2023, 2023
Short summary
Short summary
Surface ozone, detrimental to human and ecosystem health, is very high and increasing in South Korea. Using a global model of the atmosphere, we found that emissions from South Korea and China contribute equally to the high ozone observed. We found that in the absence of all anthropogenic emissions over East Asia, ozone is still very high, implying that the air quality standard in South Korea is not practically achievable unless this background external to East Asia can be decreased.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
James D. East, Barron H. Henderson, Sergey L. Napelenok, Shannon N. Koplitz, Golam Sarwar, Robert Gilliam, Allen Lenzen, Daniel Q. Tong, R. Bradley Pierce, and Fernando Garcia-Menendez
Atmos. Chem. Phys., 22, 15981–16001, https://doi.org/10.5194/acp-22-15981-2022, https://doi.org/10.5194/acp-22-15981-2022, 2022
Short summary
Short summary
We present a framework that uses a computer model of air quality, along with air pollution data from satellite instruments, to estimate emissions of nitrogen oxides (NOx) across the Northern Hemisphere. The framework, which advances current methods to infer emissions from satellite observations, provides observationally constrained NOx estimates, including in regions of the world where emissions are highly uncertain, and can improve simulations of air pollutants relevant for health and policy.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys., 22, 9083–9098, https://doi.org/10.5194/acp-22-9083-2022, https://doi.org/10.5194/acp-22-9083-2022, 2022
Short summary
Short summary
The UNIPAR model was incorporated into CAMx to predict the ambient concentration of organic matter in urban atmospheres during the KORUS-AQ campaign. CAMx–UNIPAR significantly improved the simulation of SOA formation under the wet aerosol condition through the consideration of aqueous reactions of reactive organic species and gas–aqueous partitioning into the wet inorganic aerosol.
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022, https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Short summary
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile emissions inventory model designed to efficiently estimate high-quality emissions. The CARS is designed to utilize the local vehicle activity database, such as vehicle travel distance, road-link-level network information, and vehicle-specific average speed by road type, to generate a temporally and spatially enhanced inventory for policymakers, stakeholders, and the air quality modeling community.
Xin Zhang, Yan Yin, Ronald van der A, Henk Eskes, Jos van Geffen, Yunyao Li, Xiang Kuang, Jeff L. Lapierre, Kui Chen, Zhongxiu Zhen, Jianlin Hu, Chuan He, Jinghua Chen, Rulin Shi, Jun Zhang, Xingrong Ye, and Hao Chen
Atmos. Chem. Phys., 22, 5925–5942, https://doi.org/10.5194/acp-22-5925-2022, https://doi.org/10.5194/acp-22-5925-2022, 2022
Short summary
Short summary
The importance of convection to the ozone and nitrogen oxides (NOx) produced from lightning has long been an open question. We utilize the high-resolution chemistry model with ozonesondes and space observations to discuss the effects of convection over southeastern China, where few studies have been conducted. Our results show the transport and chemistry contributions for various storms and demonstrate the ability of TROPOMI to estimate the lightning NOx production over small-scale convection.
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, and Daniel J. Jacob
Atmos. Meas. Tech., 15, 1075–1091, https://doi.org/10.5194/amt-15-1075-2022, https://doi.org/10.5194/amt-15-1075-2022, 2022
Short summary
Short summary
This paper uses a machine learning algorithm to infer high-resolution maps of particulate air quality in eastern China, Japan, and the Korean peninsula, using data from a geostationary satellite along with meteorology. We then perform an extensive evaluation of this inferred air quality and use it to diagnose trends in the region. We hope this paper and the associated data will be valuable to other scientists interested in epidemiology, air quality, remote sensing, and machine learning.
Siqi Ma, Daniel Tong, Lok Lamsal, Julian Wang, Xuelei Zhang, Youhua Tang, Rick Saylor, Tianfeng Chai, Pius Lee, Patrick Campbell, Barry Baker, Shobha Kondragunta, Laura Judd, Timothy A. Berkoff, Scott J. Janz, and Ivanka Stajner
Atmos. Chem. Phys., 21, 16531–16553, https://doi.org/10.5194/acp-21-16531-2021, https://doi.org/10.5194/acp-21-16531-2021, 2021
Short summary
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Adrian Chappell, Nicholas Webb, Mark Hennen, Charles Zender, Philippe Ciais, Kerstin Schepanski, Brandon Edwards, Nancy Ziegler, Sandra Jones, Yves Balkanski, Daniel Tong, John Leys, Stephan Heidenreich, Robert Hynes, David Fuchs, Zhenzhong Zeng, Marie Ekström, Matthew Baddock, Jeffrey Lee, and Tarek Kandakji
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-337, https://doi.org/10.5194/gmd-2021-337, 2021
Revised manuscript not accepted
Short summary
Short summary
Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of landscapes to climate stressors, together impacting food security and human health. Our results indicate that tuning dust emission models to dust in the atmosphere has hidden dust emission modelling weaknesses and its poor performance. Our new approach will reduce uncertainty and driven by prognostic albedo improve Earth System Models of aerosol effects on future environmental change.
Hyun Cheol Kim, Soontae Kim, Mark Cohen, Changhan Bae, Dasom Lee, Rick Saylor, Minah Bae, Eunhye Kim, Byeong-Uk Kim, Jin-Ho Yoon, and Ariel Stein
Atmos. Chem. Phys., 21, 10065–10080, https://doi.org/10.5194/acp-21-10065-2021, https://doi.org/10.5194/acp-21-10065-2021, 2021
Short summary
Short summary
Global outbreaks of COVID-19 offer rare opportunities of natural experiments in emission control and corresponding responses of tropospheric chemistry. This study's novel approach investigates (1) isolating the pandemic's impact from natural and anthropogenic variations, (2) emission adjustment to reproduce real-time emissions, and (3) brute-force modeling to investigate Chinese economic activities. Results provide characteristics of the region's chemistry and emissions.
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
Short summary
The continuously updated National Air Quality Forecast Capability (NAQFC) provides air quality forecasts. To support the development of the next-generation NAQFC, we evaluate a prototype of GFSv15-CMAQv5.0.2. The performance and the potential improvements for the system are discussed. This study can provide a scientific basis for further development of NAQFC and help it to provide more accurate air quality forecasts to the public over the contiguous United States.
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Short summary
Chemical lateral boundary condition (CLBC) impact is essential for regional air quality prediction during intrusion events. We present a model mapping Goddard Earth Observing System (GEOS) to Community Multi-scale Air Quality (CMAQ) CB05–AERO6 (Carbon Bond 5; version 6 of the aerosol module) species. Influence depends on distance from the inflow boundary and species and their regional characteristics. We use aerosol optical thickness to derive CLBCs, achieving reasonable prediction.
Li Pan, HyunCheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev., 13, 2169–2184, https://doi.org/10.5194/gmd-13-2169-2020, https://doi.org/10.5194/gmd-13-2169-2020, 2020
Short summary
Short summary
Compared to anthropogenic emissions, emissions from wildfires are largely uncontrolled and unpredictable. Quantitatively describing wildfire emissions and their contributions to air pollution remains a substantial challenge for air quality forecasting efforts. In this study, we test the wildfire calculation algorithm used by the National Air Quality Forecasting Capability (NAQFC) by comparison with ground, satellite and flight measurements during the Southeast Nexus (SENEX) field experiment.
Hao He, Xin-Zhong Liang, Chao Sun, Zhining Tao, and Daniel Q. Tong
Atmos. Chem. Phys., 20, 3191–3208, https://doi.org/10.5194/acp-20-3191-2020, https://doi.org/10.5194/acp-20-3191-2020, 2020
Short summary
Short summary
We studied the trend of US ozone pollution from 1990 to 2015 using EPA observations and computer simulations. Observations indicated a decrease in peak ozone at noon due to regulations and a slight increase in ozone in early morning and late afternoon possibly. Our modeling system confirmed these findings and provided detailed information about ozone photochemistry. These results revealed the success of previous control measures and provide scientific evidence for the future regulations.
Uma Shankar, Donald McKenzie, Jeffrey P. Prestemon, Bok Haeng Baek, Mohammed Omary, Dongmei Yang, Aijun Xiu, Kevin Talgo, and William Vizuete
Atmos. Chem. Phys., 19, 15157–15181, https://doi.org/10.5194/acp-19-15157-2019, https://doi.org/10.5194/acp-19-15157-2019, 2019
Short summary
Short summary
We evaluate two wildfire emissions estimates for the southeastern US, based on projected annual areas burned in 2011–2060, against a benchmark wildfire inventory in air quality (AQ) simulations for 2010 and AQ network observations. Our emissions estimates compare well with the benchmark but all three simulations have large biases compared to observations. We find our methods suitable to assess current and future wildfire AQ impacts but also identify areas for AQ model improvements.
Chi-Tsan Wang, Christine Wiedinmyer, Kirsti Ashworth, Peter C. Harley, John Ortega, Quazi Z. Rasool, and William Vizuete
Atmos. Chem. Phys., 19, 13973–13987, https://doi.org/10.5194/acp-19-13973-2019, https://doi.org/10.5194/acp-19-13973-2019, 2019
Short summary
Short summary
The legal commercialization of cannabis has created a new and almost unregulated industry. Here we present the first inventory of volatile organic compound emissions from cannabis cultivation facilities (CCFs) for Colorado. When applied within a regulatory air quality model to predict regional ozone impacts, our inventory results in net ozone formation near CCFs with the largest increases in Denver County. However, our inventory is highly uncertain and we identify future critical data needs.
Siqi Ma, Xuelei Zhang, Chao Gao, Daniel Q. Tong, Aijun Xiu, Guangjian Wu, Xinyuan Cao, Ling Huang, Hongmei Zhao, Shichun Zhang, Sergio Ibarra-Espinosa, Xin Wang, Xiaolan Li, and Mo Dan
Geosci. Model Dev., 12, 4603–4625, https://doi.org/10.5194/gmd-12-4603-2019, https://doi.org/10.5194/gmd-12-4603-2019, 2019
Short summary
Short summary
Dust storms are thought to be a worldwide societal issue, and numerical modeling is an effective way to help us to predict dust events. Here we present the first comprehensive evaluation of dust emission modules in four commonly used air quality models for northeastern China. The results showed that most of these models were able to capture this dust event and indicated the dust source maps should be carefully selected or replaced with a new one that is constructed with local data.
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019, https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Short summary
This study evaluated and intercompared 14 CTMs with ozone observations in East Asia, within the framework of the Model Inter-Comparison Study for ASIA Phase III (MICS-Asia III). Potential causes of the discrepancies between model results and observation were investigated by assessing the planetary boundary layer heights, emission fluxes, dry deposition, chemistry and vertical transport among models. Finally, a multi-model estimate of pollution distributions was provided.
Youhua Tang, Mariusz Pagowski, Tianfeng Chai, Li Pan, Pius Lee, Barry Baker, Rajesh Kumar, Luca Delle Monache, Daniel Tong, and Hyun-Cheol Kim
Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017, https://doi.org/10.5194/gmd-10-4743-2017, 2017
Short summary
Short summary
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we applied a 3D-Var assimilation tool to adjust the aerosol initial condition by assimilating satellite-retrieved aerosol optical depth and surface PM2.5 observations for a regional air quality model, which is compared to another assimilation method, optimal interpolation. We discuss the pros and cons of these two assimilation methods based on the comparison of their 1-month four-cycles-per-day runs.
Li Pan, Hyun Cheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-207, https://doi.org/10.5194/gmd-2017-207, 2017
Revised manuscript not accepted
Short summary
Short summary
In this study, a system accounting for fire emissions in a chemical transport model is described. The focus of this work is to qualitatively evaluate the system's capability to capture fire signals identified by multiple observation data sets. We discuss how to use observational data correctly to filter out fire signals and synergistic use of multiple data sets together. We also address the limitations of each of the observation data sets and of the evaluation methods.
Hyun Cheol Kim, Eunhye Kim, Changhan Bae, Jeong Hoon Cho, Byeong-Uk Kim, and Soontae Kim
Atmos. Chem. Phys., 17, 10315–10332, https://doi.org/10.5194/acp-17-10315-2017, https://doi.org/10.5194/acp-17-10315-2017, 2017
Short summary
Short summary
This study is intended to provide reference information regarding quantitative estimation of regional contributions and model uncertainty in meteorology simulations and emissions inventories. Simulated PM concentration is sensitive to meteorology, but estimated contributions are mostly robust. Regional contributions are also found to be sensitive to the choice of emissions inventories. The modeled results should be considered with caution when interpreted for emission regulation policy making.
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, https://doi.org/10.5194/gmd-10-2447-2017, 2017
Short summary
Short summary
A regional coupled climate–chemistry modeling system using the dynamical downscaling technique was established and evaluated. The modeling system performed well for both the climatological and the short-term air quality applications over east Asia. Regional models outperformed global models in regional climate and air quality predictions. The coupled modeling system improved the model performance, although some biases remained in the aerosol–cloud–radiation variables.
Wonbae Jeon, Yunsoo Choi, Peter Percell, Amir Hossein Souri, Chang-Keun Song, Soon-Tae Kim, and Jhoon Kim
Geosci. Model Dev., 9, 3671–3684, https://doi.org/10.5194/gmd-9-3671-2016, https://doi.org/10.5194/gmd-9-3671-2016, 2016
Short summary
Short summary
This study suggests a new hybrid Lagrangian–Eulerian modeling tool (the Screening Trajectory Ozone Prediction System, STOPS) for an accurate/fast prediction of Asian dust events. The STOPS is a moving nest (Lagrangian approach) between the source and the receptor inside Eulerian model. We run STOPS, instead of running a time-consuming Eulerian model, using constrained PM concentration from remote sensing aerosol optical depth, reflecting real-time dust particles. STOPS is for unexpected events.
Hyun Cheol Kim, Soontae Kim, Seok-Woo Son, Pius Lee, Chun-Sil Jin, Eunhye Kim, Byeong-Uk Kim, Fong Ngan, Changhan Bae, Chang-Keun Song, and Ariel Stein
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-673, https://doi.org/10.5194/acp-2016-673, 2016
Revised manuscript not accepted
Short summary
Short summary
In recent years, frequent occurrence of severe haze events in East Asia is one of the most serious public concerns in this region. We demonstrate that daily pollutant transport patterns in East Asia are visible from satellite images when inspected with corresponding synoptic weather analyses. Our manuscript focuses on the possible role of meteorology, especially by the routine passages of synoptic systems, on the production and removal of regional pollution in East Asia.
Xinyi Dong, Joshua S. Fu, Kan Huang, Daniel Tong, and Guoshun Zhuang
Atmos. Chem. Phys., 16, 8157–8180, https://doi.org/10.5194/acp-16-8157-2016, https://doi.org/10.5194/acp-16-8157-2016, 2016
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust aerosols. Evaluation with observations suggested improved model performance by correcting the double counting of soil moisture impact, applying source-dependent speciation profile, and implementing heterogeneous chemitry.
M. Huang, D. Tong, P. Lee, L. Pan, Y. Tang, I. Stajner, R. B. Pierce, J. McQueen, and J. Wang
Atmos. Chem. Phys., 15, 12595–12610, https://doi.org/10.5194/acp-15-12595-2015, https://doi.org/10.5194/acp-15-12595-2015, 2015
Short summary
Short summary
We developed Arizona dust records in 2005-2013 using multiple surface and remote sensing observation data sets. The inter-annual variability of dust events was anticorrelated with three drought indicators (PDSI, satellite NDVI and soil moisture), and stronger dust activity was found in the afternoon than in the morning due to stronger winds and drier soil. Impact of a recent dust event accompanied by a stratospheric ozone intrusion was evaluated with various observational and modeling data sets.
T. Chai, H.-C. Kim, P. Lee, D. Tong, L. Pan, Y. Tang, J. Huang, J. McQueen, M. Tsidulko, and I. Stajner
Geosci. Model Dev., 6, 1831–1850, https://doi.org/10.5194/gmd-6-1831-2013, https://doi.org/10.5194/gmd-6-1831-2013, 2013
Related subject area
Atmospheric sciences
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
UA-ICON with NWP physics package (version: ua-icon-2.1): mean state and variability of the middle atmosphere
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
Sensitivity Studies of Four‐Dimensional Local Ensemble Transform Kalman Filter Coupled With WRF-Chem Version 3.9.1 for Improving Particulate Matter Simulation Accuracy
Development of A Fast Radiative Transfer Model for Ground-based Microwave Radiometers (ARMS-gb v1.0): Validation and Comparison to RTTOV-gb
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Low-level jets in the North and Baltic Seas: Mesoscale Model Sensitivity and Climatology
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a Neural Network
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Estimation of aerosol and cloud radiative heating rate in tropical stratosphere using radiative kernel method
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025, https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements at 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
EGUsphere, https://doi.org/10.5194/egusphere-2024-3321, https://doi.org/10.5194/egusphere-2024-3321, 2024
Short summary
Short summary
The effectiveness of assimilation system and its sensitivity to ensemble member size and length of assimilation window have been investigated. This study advances our understanding about the selection of basic parameters in the four-dimension local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate matter polluted environment.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2884, https://doi.org/10.5194/egusphere-2024-2884, 2024
Short summary
Short summary
Assimilating Ground-based microwave radiometers' observations into numerical weather prediction models holds significant promise for enhancing forecast accuracy. Radiative transfer models (RTM) are crucial for direct data assimilation. We propose a new RTM capable of simulating brightness temperatures observed by GMRs and their Jacobians. Several improvements are introduced to achieve higher accuracy.The RTM align with RTTOV-gb well and can achieve smaller STD in water vapor absorption channels.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Bjarke Tobias Eisensøe Olsen, Andrea Noemi Hahmann, Nicolás González Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-3123, https://doi.org/10.5194/egusphere-2024-3123, 2024
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere, important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely-used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
EGUsphere, https://doi.org/10.5194/egusphere-2024-2676, https://doi.org/10.5194/egusphere-2024-2676, 2024
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at ground level, which are a strong indicator of air quality, using Artificial Neural Networks. A study of different variables and their efficiency as inputs for these models is also proposed, and reveals that the best results are obtained when using all of them. Comparison of networks architectures and information fusion methods allows the extraction of knowledge on the most efficient methods in the context of this study.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2815, https://doi.org/10.5194/egusphere-2024-2815, 2024
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate that effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense and consists well with radiative model calculations and can be applied to atmospheric models with speed requirements.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
EGUsphere, https://doi.org/10.5194/egusphere-2024-2879, https://doi.org/10.5194/egusphere-2024-2879, 2024
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations, and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show successful results , positioning the code for future use on exascale supercomputers.
Cited articles
Andrade, M. d. F., Kumar, P., de Freitas, E. D., Ynoue, R. Y., Martins, J.,
Martins, L. D., Nogueira, T., Perez-Martinez, P., de Miranda, R. M.,
Albuquerque, T., Gonçalves, F. L. T., Oyama, B., and Zhang, Y.: Air
quality in the megacity of São Paulo: Evolution over the last 30 years
and future perspectives, Atmos. Environ., 159, 66–82, https://doi.org/10.1016/j.atmosenv.2017.03.051, 2017.
Baek, B. H.: The Integration approach of MOVES and SMOKE models, the 19th
Emissions Inventory Conference, San Antonio, TX, https://gaftp.epa.gov/air/nei/ei_conference/EI20/session2/baek.pdf (last access: 28 July 2023), 2010.
Baek, B.: CMAQ-MetEmis: Development of Dynamic Meteorology-Induced Emissions Coupler (MetEmis) for Onroad Mobile Sources in the Community Multiscale Air Quality (CMAQ) (version 1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7150000, 2022.
Baek, B. H. and Seppanen, C.: CEMPD/SMOKE: SMOKE v4.8.1 Public Release
(January 29, 2021), Zenodo [data set], https://doi.org/10.5281/zenodo.4480334, 2021.
Baek, B. H., Seppanen, C., Houyoux, M., Eyth, A., and Mason, R.:
Installation Guide for the SMOKE-MOVES Integration Tool, https://www.cmascenter.org/smoke/documentation/0*moves_tool/SMOKE_MOVES_Tool_Installation_Guide.pdf (last access: 28 July 2023), 2010.
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational
Algorithms, and Other Components of the Models-3 Community Multiscale Air
Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77,
https://doi.org/10.1115/1.2128636, 2006.
Chen, D., Liang, D., Li, L., Guo, X., Lang, J., and Zhou, Y.: The temporal
and spatial changes of ship-contributed PM2.5 due to the inter-annual
meteorological variation in Yangtze river delta, China, Atmosphere, 12,
722, https://doi.org/10.3390/atmos12060722, 2021.
Chen, W. H., Guenther, A. B., Wang, X. M., Chen, Y. H., Gu, D. S., Chang,
M., Zhou, S. Z., Wu, L. L., and Zhang, Y. Q.: Regional to Global Biogenic
Isoprene Emission Responses to Changes in Vegetation From 2000 to 2015,
J. Geophys. Res.-Atmos., 123, 3757–3771,
https://doi.org/10.1002/2017jd027934, 2018.
Choi, D., Beardsley, M., Brzezinski, D., Koupal, J., and Warila, J.: MOVES sensitivity analysis: the impacts of temperature and humidity on emissions, in: US EPA–Proceedings from the 19th Annual International Emission Inventory Conference, Ann Arbor, MI, 27–30 September 2010, https://www3.epa.gov/ttnchie1/conference/ei19/ (last access: 28 July 2023),
2010.
Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C.,
Irwin, J., Rao, S. T., Scheffe, R., Schere, K., Steyn, D., and Venkatram,
A.: A Framework for Evaluating Regional-Scale Numerical Photochemical
Modeling Systems, Environ. Fluid Mech., 10, 471–489,
https://doi.org/10.1007/s10652-009-9163-2, 2010.
Esri, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, and the GIS User Community: World Topographic Map, https://services.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer, (last access: 29 July 2023), 2013.
Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather,
M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J.,
Dalsøren, S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W.,
Josse, B., Lamarque, J. F., MacKenzie, I. A., Nagashima, T., O'Connor, F.
M., Righi, M., Rumbold, S. T., Shindell, D. T., Skeie, R. B., Sudo, K.,
Szopa, S., Takemura, T., and Zeng, G.: Global air quality and climate, Chem.
Soc. Rev., 41, 6663–6683, https://doi.org/10.1039/c2cs35095e, 2012.
Foltescu, V. L., Pryor, S. C., and Bennet, C.: Sea salt generation,
dispersion and removal on the regional scale, Atmos. Environ., 39,
2123–2133, https://doi.org/10.1016/j.atmosenv.2004.12.030,
2005.
Grell, G. and Baklanov, A.: Integrated modeling for forecasting weather and
air quality: A call for fully coupled approaches, Atmos. Environ.,
45, 6845–6851, https://doi.org/10.1016/j.atmosenv.2011.01.017,
2011.
Grell, G., Freitas, S. R., Stuefer, M., and Fast, J.: Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts, Atmos. Chem. Phys., 11, 5289–5303, https://doi.org/10.5194/acp-11-5289-2011, 2011.
Hogrefe, C., Rao, S. T., Kasibhatla, P., Kallos, G., Tremback, C. J., Hao,
W., Olerud, D., Xiu, A., McHenry, J., and Alapaty, K.: Evaluating the
performance of regional-scale photochemical modeling systems: Part
I – meteorological predictions, Atmos. Environ., 35, 4159–4174,
https://doi.org/10.1016/S1352-2310(01)00182-0, 2001.
Iodice, P. and Senatore, A.: Cold Start Emissions of a Motorcycle Using
Ethanol-gasoline Blended Fuels, Energy Procedia, 45, 809–818, https://doi.org/10.1016/j.egypro.2014.01.086, 2014.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009.
Knippertz, P. and Todd, M. C.: Mineral dust aerosols over the Sahara:
Meteorological controls on emission and transport and implications for
modeling, Rev. Geophys., 50, 2011RG000362, https://doi.org/10.1029/2011rg000362, 2012.
Kumar, P., Patton, A. P., Durant, J. L., and Frey, H. C.: A review of
factors impacting exposure to PM2.5, ultrafine particles and black carbon in
Asian transport microenvironments, Atmos. Environ., 187, 301–316,
https://doi.org/10.1016/j.atmosenv.2018.05.046, 2018.
Lathière, J., Hauglustaine, D. A., De Noblet-Ducoudré, N., Krinner,
G., and Folberth, G. A.: Past and future changes in biogenic volatile
organic compound emissions simulated with a global dynamic vegetation model,
Geophys. Res. Lett., 32, L20818, https://doi.org/10.1029/2005GL024164, 2005.
Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., Kim, H.,
Tang, Y., Kondragunta, S., Ruminski, M., Lu, S., Rogers, E., Saylor, R.,
Shafran, P., Huang, H.-C., Gorline, J., Upadhayay, S., and Artz, R.: NAQFC
Developmental Forecast Guidance for Fine Particulate Matter (PM2.5), Weather Forecast., 32, 343–360, https://doi.org/10.1175/waf-d-15-0163.1, 2017.
Li, Q., Qiao, F., and Yu, L.: Vehicle Emission Implications of Drivers Smart
Advisory System for Traffic Operations in Work Zones, J. Air
Waste Manage., 11, 446–455, https://doi.org/10.1080/10962247.2016.1140095, 2016.
Lindhjem, C., Chan, L., Pollack, A., Corporation, E. I., Way, R., and Kite,
C.: Applying Humidity and Temperature Corrections to On and Off-Road Mobile
Source Emissions, in: 13th International Emission Inventory Conference,
Clearwater, FL, 8–10 June 2004, https://www3.epa.gov/ttnchie1/conference/ei13/mobile/lindhjem.pdf (last access: 18 July 2023), 2004.
Liu, H., Guensler, R., Lu, H., Xu, Y., Xu, X., and Rodgers, M.: MOVES-Matrix
for High-Performance On-Road Energy and Running Emission Rate Modeling
Applications, J. Air Waste Manage., 69, 1415–1428,
https://doi.org/10.1080/10962247.2019.1640806, 2019.
Luecken, D. J., Yarwood, G., and Hutzell, W. T.: Multipollutant modeling of
ozone, reactive nitrogen and HAPs across the continental US with CMAQ-CB6,
Atmos. Environ., 201, 62–72, https://doi.org/10.1016/j.atmosenv.2018.11.060, 2019.
Lv, Z., Liu, H., Ying, Q., Fu, M., Meng, Z., Wang, Y., Wei, W., Gong, H., and He, K.: Impacts of shipping emissions on PM2.5 pollution in China, Atmos. Chem. Phys., 18, 15811–15824, https://doi.org/10.5194/acp-18-15811-2018, 2018.
McDonald, B. C., McKeen, S. A., Cui, Y. Y., Ahmadov, R., Kim, S. W., Frost,
G. J., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J. S., Graus,
M., Warneke, C., Gilman, J. B., de Gouw, J. A., Kaiser, J., Keutsch, F. N.,
Hanisco, T. F., Wolfe, G. M., and Trainer, M.: Modeling Ozone in the Eastern
U.S. using a Fuel-Based Mobile Source Emissions Inventory, Environ. Sci.
Technol., 52, 7360–7370, https://doi.org/10.1021/acs.est.8b00778, 2018.
Mellios., G., Ntziachristos, L., Samaras, Z., White, L., Martini, G., and
Rose, K.: EMEP/EEA air pollutant emission inventory guidebook 2019, Gasoline
evaporation, European Environment Agency, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (last access: 28 July 2023), 2019.
Pavlovic, R., Chen, J., Anderson, K., Moran, M. D., Beaulieu, P. A.,
Davignon, D., and Cousineau, S.: The FireWork air quality forecast system
with near-real-time biomass burning emissions: Recent developments and
evaluation of performance for the 2015 North American wildfire season, J. Air
Waste Manage., 66, 819–841, https://doi.org/10.1080/10962247.2016.1158214, 2016.
Perugu, H.: Emission modelling of light-duty vehicles in India using the
revamped VSP-based MOVES model: The case study of Hyderabad, Transport.
Res. D-Tr. E., 68, 150–163, https://doi.org/10.1016/j.trd.2018.01.031, 2019.
Pierce, J. R. and Adams, P. J.: Global evaluation of CCN formation by direct
emission of sea salt and growth of ultrafine sea salt, J.
Geophys. Res.-Atmos., 111, D06203, https://doi.org/10.1029/2005JD006186, 2006.
Pouliot, G. A.: Emission processing for ETA/CMAQ, an air quality forecasting
model, 7th Conference on Atmospheric Chemistry American Meteorological
Society, San Diego, CA, 9–13 January 2005, https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=116409&Lab=NERL (last access: 28 July 2023), 2005.
Rao, S. T., Galmarini, S., and Puckett, K.: Air Quality Model Evaluation
International Initiative (AQMEII): Advancing the State of the Science in
Regional Photochemical Modeling and Its Applications, B.
Am. Meteorol. Soc., 92, 23–30, https://doi.org/10.1175/2010BAMS3069.1, 2011.
Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Liu, Z., Berner, J., Wang, W., Powers, G., Duda, G., Barker, D., and Yu Huang, X.: A Description of the Advanced Research WRF Model Version 4.3, NCAR/TN-556+STR, NCAR, https://doi.org/10.5065/1dfh-6p97, 2021.
Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Delle Monache, L., Tong, D., and Kim, H.-C.: A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods, Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017, 2017.
Tong, D. and Mauzerall, D. L.: Spatial variability of summertime
tropospheric ozone over the continental United States: Implications of an
evaluation of the CMAQ model, Atmos. Environ., 40, 3041–3056,
2006.
Tong, D., Lee, P., and Saylor, R.: New Direction: The need to develop
process-based emission forecasting models, Atmos. Environ., 47,
560–561, https://doi.org/10.1016/j.atmosenv.2011.10.070, 2012.
Tong, D., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T.,
Pickering, K. E., and Stajner, I.: Long-term NOx trends over large cities in
the United States during the great recession: Comparison of satellite
retrievals, ground observations, and emission inventories, Atmos. Environ., 107, 70–84, https://doi.org/10.1016/j.atmosenv.2015.01.035, 2015.
U.S. EPA: Derivation of humidity and NOx humidity correction factors, https://www.epa.gov/sites/default/files/2015-09/documents/noxcorr.pdf (last access: 18 July 2023), 1997.
U.S. EPA: Emission Adjustments for Temperature, Humidity, Air Conditioning, and
Inspection and Maintenance for on-Road Vehicles in MOVES2014, https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB2017101384.xhtml (last assess: 28 July 2023), 2015.
U.S. EPA: Overview of EPA’s MOtor Vehicle
Emission Simulator (MOVES3), Office of Transportation and Air Quality, EPA-420-R-21-004, US Environmental Protection Agency, https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1011KV2.pdf (last access: 28 July 2023), 2021a.
U.S. EPA: O2017 National Emissions Inventory: January 2021 Updated Release, Technical Support Document, Office of Air Quality Planning and Standards, EPA-454/R-21-001, US Environmental Protection Agency, https://www.epa.gov/sites/default/files/2021-02/documents/nei2017_tsd_full_jan2021.pdf (last access: 28 July 2023), 2021b.
Wong, K. W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W. H., Ren, X., Luke, W., and Stutz, J.: Daytime HONO vertical gradients during SHARP 2009 in Houston, TX, Atmos. Chem. Phys., 12, 635–652, https://doi.org/10.5194/acp-12-635-2012, 2012.
Xu, X., Liu, H., Anderson, J. M., Xu, Y., Hunter, M. P., Rodgers, M. O., and
Guensler, R. L.: Estimating Project-Level Vehicle Emissions with Vissim and
MOVES-Matrix, Transp. Res. Record, 2570, 107–117,
https://doi.org/10.3141/2570-12, 2016.
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
To enable the direct feedback effects of aerosols and local meteorology in an air quality...