Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4659-2023
https://doi.org/10.5194/gmd-16-4659-2023
Development and technical paper
 | 
18 Aug 2023
Development and technical paper |  | 18 Aug 2023

Dynamic Meteorology-induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis

Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo

Related authors

Spatiotemporally resolved emissions and concentrations of styrene, benzene, toluene, ethylbenzene, and xylenes (SBTEX) in the US Gulf region
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023,https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Quantifying the importance of vehicle ammonia emissions in an urban area of northeastern USA utilizing nitrogen isotopes
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022,https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
The Comprehensive Automobile Research System (CARS) – a Python-based automobile emissions inventory model
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022,https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Evaluating wildfire emissions projection methods in comparisons of simulated and observed air quality
Uma Shankar, Donald McKenzie, Jeffrey P. Prestemon, Bok Haeng Baek, Mohammed Omary, Dongmei Yang, Aijun Xiu, Kevin Talgo, and William Vizuete
Atmos. Chem. Phys., 19, 15157–15181, https://doi.org/10.5194/acp-19-15157-2019,https://doi.org/10.5194/acp-19-15157-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025,https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025,https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025,https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary

Cited articles

Andrade, M. d. F., Kumar, P., de Freitas, E. D., Ynoue, R. Y., Martins, J., Martins, L. D., Nogueira, T., Perez-Martinez, P., de Miranda, R. M., Albuquerque, T., Gonçalves, F. L. T., Oyama, B., and Zhang, Y.: Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives, Atmos. Environ., 159, 66–82, https://doi.org/10.1016/j.atmosenv.2017.03.051, 2017. 
Baek, B. H.: The Integration approach of MOVES and SMOKE models, the 19th Emissions Inventory Conference, San Antonio, TX, https://gaftp.epa.gov/air/nei/ei_conference/EI20/session2/baek.pdf (last access: 28 July 2023), 2010. 
Baek, B.: CMAQ-MetEmis: Development of Dynamic Meteorology-Induced Emissions Coupler (MetEmis) for Onroad Mobile Sources in the Community Multiscale Air Quality (CMAQ) (version 1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7150000, 2022. 
Baek, B. H. and Seppanen, C.: CEMPD/SMOKE: SMOKE v4.8.1 Public Release (January 29, 2021), Zenodo [data set], https://doi.org/10.5281/zenodo.4480334, 2021. 
Baek, B. H., Seppanen, C., Houyoux, M., Eyth, A., and Mason, R.: Installation Guide for the SMOKE-MOVES Integration Tool, https://www.cmascenter.org/smoke/documentation/0*moves_tool/SMOKE_MOVES_Tool_Installation_Guide.pdf (last access: 28 July 2023), 2010. 
Download
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.