Articles | Volume 16, issue 14
https://doi.org/10.5194/gmd-16-4155-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4155-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)
Hideki Ninomiya
Graduate School of Global Food Resources, Hokkaido University,
Sapporo, Hokkaido 060-0809, Japan
Tomomichi Kato
CORRESPONDING AUTHOR
Research Faculty of Agriculture, Hokkaido University, Sapporo,
Hokkaido 060-8589, Japan
Lea Végh
Research Faculty of Agriculture, Hokkaido University, Sapporo,
Hokkaido 060-8589, Japan
Lan Wu
College of Ecology and Environment, Hainan University, Hainan, China
Related authors
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024, https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Masahito Ueyama, Yuta Takao, Hiromi Yazawa, Makiko Tanaka, Hironori Yabuki, Tomo'omi Kumagai, Hiroki Iwata, Md. Abdul Awal, Mingyuan Du, Yoshinobu Harazono, Yoshiaki Hata, Takashi Hirano, Tsutom Hiura, Reiko Ide, Sachinobu Ishida, Mamoru Ishikawa, Kenzo Kitamura, Yuji Kominami, Shujiro Komiya, Ayumi Kotani, Yuta Inoue, Takashi Machimura, Kazuho Matsumoto, Yojiro Matsuura, Yasuko Mizoguchi, Shohei Murayama, Hirohiko Nagano, Taro Nakai, Tatsuro Nakaji, Ko Nakaya, Shinjiro Ohkubo, Takeshi Ohta, Keisuke Ono, Taku M. Saitoh, Ayaka Sakabe, Takanori Shimizu, Seiji Shimoda, Michiaki Sugita, Kentaro Takagi, Yoshiyuki Takahashi, Naoya Takamura, Satoru Takanashi, Takahiro Takimoto, Yukio Yasuda, Qinxue Wang, Jun Asanuma, Hideo Hasegawa, Tetsuya Hiyama, Yoshihiro Iijima, Shigeyuki Ishidoya, Masayuki Itoh, Tomomichi Kato, Hiroaki Kondo, Yoshiko Kosugi, Tomonori Kume, Takahisa Maeda, Shoji Matsuura, Trofim Maximov, Takafumi Miyama, Ryo Moriwaki, Hiroyuki Muraoka, Roman Petrov, Jun Suzuki, Shingo Taniguchi, and Kazuhito Ichii
Earth Syst. Sci. Data, 17, 3807–3833, https://doi.org/10.5194/essd-17-3807-2025, https://doi.org/10.5194/essd-17-3807-2025, 2025
Short summary
Short summary
The JapanFlux2024 dataset, created through collaboration across Japan and East Asia, includes eddy covariance data from 83 sites spanning 683 site-years (1990–2023). This comprehensive dataset offers valuable insights into energy, water, and CO2 fluxes, supporting research on land–atmosphere interactions and process models; fosters global collaboration; and advances research in environmental science and regional climate dynamics.
Marin Nagata, Astrid Yusara, Tomomichi Kato, and Yuji Masutomi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1885, https://doi.org/10.5194/egusphere-2025-1885, 2025
Short summary
Short summary
We developed maize version of process-based crop model coupled with a land surface model (MATCRO). It extends the original MATCRO-Rice by incorporating C4 photosynthesis and maize-specific parameters. The model was validated using field data from four sites and global yield data from FAOSTAT. MATCRO-Maize captured the interannual yield variability in global and county-level yield data, demonstrating its potential for climate impact assessments on maize production.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Astrid Yusara, Tomomichi Kato, Elizabeth A. Ainsworth, Rafael Battisti, Etsushi Kumagai, Satoshi Nakano, Yushan Wu, Yutaka Tsusumi-Morita, Kazuhiko Kobayashi, and Yuji Masutomi
EGUsphere, https://doi.org/10.5194/egusphere-2025-453, https://doi.org/10.5194/egusphere-2025-453, 2025
Short summary
Short summary
We developed a soybean model, an ecosystem model for crop yield (namely MATCRO-Soy), integrating crop response toward climate variable. It offers a detailed yield estimation. Parameter tuning in the model used literature and field experiments. The model shows a moderate correlation with observed yields at the global, national, and grid levels. Development of MATCRO-Soy enhances crop modeling diversity approaches, particularly in climate change impact studies.
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024, https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Yuma Sakai, Hideki Kobayashi, and Tomomichi Kato
Geosci. Model Dev., 13, 4041–4066, https://doi.org/10.5194/gmd-13-4041-2020, https://doi.org/10.5194/gmd-13-4041-2020, 2020
Short summary
Short summary
Chlorophyll fluorescence is one of the energy release pathways of excess incident light in the photosynthetic process. The canopy-scale Sun-induced chlorophyll fluorescence (SIF), which potentially provides a direct pathway to link leaf-level photosynthesis to global GPP, can be observed from satellites. We develop the three-dimensional Monte Carlo plant canopy radiative transfer model to understand the biological and physical mechanisms behind SIF emission from complex forest canopies.
Cited articles
Adams, H. D., Germino, M. J., Breshears, D. D., Barron-Gafford, G. A.,
Guardiola-Claramonte, M., Zou, C. B., and Huxman, T. E.: Nonstructural leaf
carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role
for carbon metabolism in mortality mechanism, New Phytol., 197,
1142–1151, https://doi.org/10.1111/nph.12102, 2013.
Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H.,
Landhäusser, S. M., Tissue, D. T., Huxman, T. E., Hudson, P. J., Franz,
T. E., Allen, C. D., Anderegg, L. D. L., Barron-Gafford, G. A., Beerling, D.
J., Breshears, D. D., Brodribb, T. J., Bugmann, H., Cobb, R. C., Collins, A.
D., Dickman, L. T., Duan, H., Ewers, B. E., Galiano, L., Galvez, D. A.,
Garcia-Forner, N., Gaylord, M. L., Germino, M. J., Gessler, A., Hacke, U.
G., Hakamada, R., Hector, A., Jenkins, M. W., Kane, J. M., Kolb, T. E., Law,
D. J., Lewis, J. D., Limousin, J. M., Love, D. M., Macalady, A. K.,
Martínez-Vilalta, J., Mencuccini, M., Mitchell, P. J., Muss, J. D.,
O'Brien, M. J., O'Grady, A. P., Pangle, R. E., Pinkard, E. A., Piper, F. I.,
Plaut, J. A., Pockman, W. T., Quirk, J., Reinhardt, K., Ripullone, F., Ryan,
M. G., Sala, A., Sevanto, S., Sperry, J. S., Vargas, R., Vennetier, M., Way,
D. A., Xu, C., Yepez, E. A., and McDowell, N. G.: A multi-species synthesis
of physiological mechanisms in drought-induced tree mortality, Nat. Ecol.
Evol., 1, 1285–1291, https://doi.org/10.1038/s41559-017-0248-x, 2017.
Asaadi, A., Arora, V. K., Melton, J. R., and Bartlett, P.: An improved parameterization of leaf area index (LAI) seasonality in the Canadian Land Surface Scheme (CLASS) and Canadian Terrestrial Ecosystem Model (CTEM) modelling framework, Biogeosciences, 15, 6885–6907, https://doi.org/10.5194/bg-15-6885-2018, 2018.
Braakhekke, M. C., Doelman, J. C., Baas, P., Müller, C., Schaphoff, S., Stehfest, E., and van Vuuren, D. P.: Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model, Earth Syst. Dynam., 10, 617–630, https://doi.org/10.5194/esd-10-617-2019, 2019.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear
skies, Water Resour. Res., 11, 742–744, https://doi.org/10.1029/WR011i005p00742,
1975.
Carbone, M. S., Czimczik, C. I., Keenan, T. F., Murakami, P. F., Pederson,
N., Schaberg, P. G., Xu, X., and Richardson, A. D.: Age, allocation and
availability of nonstructural carbon in mature red maple trees, New Phytol.,
200, 1145–1155, https://doi.org/10.1111/nph.12448, 2013.
Canelles, Q., Aquilué, N., James, P. M. A., Lawler, J., and Brotons, L.:
Global review on interactions between insect pests and other forest
disturbances, Landsc. Ecol., 36, 945–972,
https://doi.org/10.1007/s10980-021-01209-7, 2021.
Chen, Z., Wang, L., Dai, Y., Wan, X., and Liu, S.: Phenology-dependent
variation in the non-structural carbohydrates of broadleaf evergreen species
plays an important role in determining tolerance to defoliation (or
herbivory), Sci. Rep., 7, 10125, https://doi.org/10.1038/s41598-017-09757-2, 2017.
Chuste, P. A., Maillard, P., Bréda, N., Levillain, J., Thirion, E.,
Wortemann, R., and Massonnet, C.: Sacrificing growth and maintaining a
dynamic carbohydrate storage are key processes for promoting beech survival
under prolonged drought conditions, Trees – Struct. Funct., 34, 381–394,
https://doi.org/10.1007/s00468-019-01923-5, 2020.
Dietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J. A.,
Richardson, A. D., and Vargas, R.: Nonstructural carbon in woody plants,
Annu. Rev. Plant Biol., 65, 667–687,
https://doi.org/10.1146/annurev-arplant-050213-040054, 2014.
Furze, M. E., Huggett, B. A., Aubrecht, D. M., Stolz, C. D., Carbone, M. S.,
and Richardson, A. D.: Whole-tree nonstructural carbohydrate storage and
seasonal dynamics in five temperate species, New Phytol., 221,
1466–1477, https://doi.org/10.1111/nph.15462, 2019.
Gough, C. M., Flower, C. E., Vogel, C. S., Dragoni, D., and Curtis, P. S.:
Whole-ecosystem labile carbon production in a north temperate deciduous
forest, Agric. For. Meteorol., 149, 1531–1540,
https://doi.org/10.1016/j.agrformet.2009.04.006, 2009.
Gough, C. M., Flower, C. E., Vogel, C. S., and Curtis, P. S.: Phenological
and temperature controls on the temporal non-structural carbohydrate
dynamics of Populus grandidentata and Quercus rubra, Forests, 1, 65–81, https://doi.org/10.3390/f1010065, 2010.
Gruber, A., Pirkebner, D., Oberhuber, W., and Wieser, G.: Spatial and
seasonal variations in mobile carbohydrates in Pinus cembra in the
timberline ecotone of the Central Austrian Alps, Eur. J. For. Res., 130,
173–179, https://doi.org/10.1007/s10342-010-0419-7, 2011.
Gruber, A., Pirkebner, D., Florian, C., and Oberhuber, W.: No evidence for
depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under
drought stress, Plant Biol., 14, 142–148,
https://doi.org/10.1111/j.1438-8677.2011.00467.x, 2012.
Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hartmann, H., Adams, H. D., Hammond, W. M., Hoch, G., Landhäusser, S.
M., Wiley, E., and Zaehle, S.: Identifying differences in carbohydrate
dynamics of seedlings and mature trees to improve carbon allocation in
models for trees and forests, Environ. Exp. Bot., 152,
7–18, https://doi.org/10.1016/j.envexpbot.2018.03.011, 2018.
Hartmann, H., Bahn, M., Carbone, M., and Richardson, A. D.: Plant carbon
allocation in a changing world – challenges and progress: introduction to a
Virtual Issue on carbon allocation: Introduction to a virtual issue on
carbon allocation, New Phytol., 227, 981–988, https://doi.org/10.1111/nph.16757,
2020.
Hatfield, J. L. and Prueger, J. H.: Temperature extremes: Effect on plant
growth and development, Weather Clim. Extrem., 10, 4–10,
https://doi.org/10.1016/j.wace.2015.08.001, 2015.
He, W., Liu, H., Qi, Y., Liu, F., and Zhu, X.: Patterns in nonstructural
carbohydrate contents at the tree organ level in response to drought
duration, Glob. Change Biol., 26, 3627–3638, https://doi.org/10.1111/gcb.15078,
2020.
Herrera-Ramírez, D., Muhr, J., Hartmann, H., Römermann, C.,
Trumbore, S., and Sierra, C. A.: Probability distributions of nonstructural
carbon ages and transit times provide insights into carbon allocation
dynamics of mature trees, New Phytol., 226, 1299–1311,
https://doi.org/10.1111/nph.16461, 2020.
Hickler, T., Smith, B., Sykes, M. T., Davis, M. B., Sugita, S., and Walker,
K.: Using a generalized vegetation model to simulate vegetation dynamics in
northeastern USA, Ecology, 85, 519–530, https://doi.org/10.1890/02-0344, 2004.
Hoch, G., Richter, A., and Körner, C.: Non-structural carbon compounds in
temperate forest trees, Plant, Cell Environ., 26, 1067–1081,
https://doi.org/10.1046/j.0016-8025.2003.01032.x, 2003.
Huang, J., Kautz, M., Trowbridge, A. M., Hammerbacher, A., Raffa, K. F.,
Adams, H. D., Goodsman, D. W., Xu, C., Meddens, A. J. H., Kandasamy, D.,
Gershenzon, J., Seidl, R., and Hartmann, H.: Tree defence and bark beetles in
a drying world: carbon partitioning, functioning and modelling, New Phytol.,
225, 26–36, https://doi.org/10.1111/nph.16173, 2020.
Hui, D., Deng, Q., Tian, H., and Luo, Y.: Climate Change and Carbon Sequestration in Forest Ecosystems, in: Handbook of Climate Change Mitigation and Adaptation, edited by: Chen, W. Y., Suzuki, T., and Lackner, M., Springer, Cham, 555–594, https://doi.org/10.1007/978-3-319-14409-2_13, 2017.
IPCC: 2014: Climate Change 2014: Synthesis Report. Contribution of Working
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and
Meyer, L. A., IPCC, Geneva, Switzerland, https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf (last access: 5 April 2022), 2014.
Jones, S., Rowland, L., Cox, P., Hemming, D., Wiltshire, A., Williams, K., Parazoo, N. C., Liu, J., da Costa, A. C. L., Meir, P., Mencuccini, M., and Harper, A. B.: The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought, Biogeosciences, 17, 3589–3612, https://doi.org/10.5194/bg-17-3589-2020, 2020.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, B. Am. Meteorol.
Soc., 77, 437–472, 1996
Klein, T. and Hoch, G.: Tree carbon allocation dynamics determined using a
carbon mass balance approach, New Phytol., 205, 147–159,
https://doi.org/10.1111/nph.12993, 2015.
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of 20th-century
surface air temperature and precipitation series for the European Climate
Assessment, Int. J. Climatol., 22, 1441–1453, 2002.
Körner, C.: Carbon limitation in trees, J. Ecol., 91, 4–17,
https://doi.org/10.1046/j.1365-2745.2003.00742.x, 2003.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199,
2005.
Landhäusser, S. M. and Lieffers, V. J.: Seasonal changes in carbohydrate
reserves in mature northern Populus tremuloides clones, Trees – Struct.
Funct., 17, 471–476, https://doi.org/10.1007/s00468-003-0263-1, 2003.
Madani, N., Parazoo, N. C., Kimball, J. S., Ballantyne, A. P., Reichle, R.
H., Maneta, M., Saatchi, S., Palmer, P. I., Liu, Z., and Tagesson, T.: Recent
Amplified Global Gross Primary Productivity Due to Temperature Increase Is
Offset by Reduced Productivity Due to Water Constraints, AGU Adv., 1, e2020AV000180,
https://doi.org/10.1029/2020av000180, 2020.
Martínez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch, G.,
Palacio, S., Piper, F. I., and Lloret, F.: Dynamics of non-structural
carbohydrates in terrestrial plants: A global synthesis, Ecol. Monogr.,
86, 495–516, https://doi.org/10.1002/ecm.1231, 2016.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N.,
Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., and Yepez, E. A.:
Mechanisms of plant survival and mortality during drought: Why do some
plants survive while others succumb to drought?, New Phytol., 178,
719–739, https://doi.org/10.1111/j.1469-8137.2008.02436.x, 2008.
McDowell, N. G.: Mechanisms linking drought, hydraulics, carbon metabolism,
and vegetation mortality, Plant Physiol., 155, 1051–1059,
https://doi.org/10.1104/pp.110.170704, 2011.
McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H.,
Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C.,
Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers,
L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R.,
Turner, M. G., Uriarte, M., Walker, A. P., and Xu, C.: Pervasive shifts in
forest dynamics in a changing world, Science, 368, eaaz9463,
https://doi.org/10.1126/science.aaz9463, 2020.
Mitchard, E. T. A.: The tropical forest carbon cycle and climate change,
Nature, 559, 527–534, https://doi.org/10.1038/s41586-018-0300-2, 2018.
Ninomiya, H., Kato, T., Végh, L., and Wu, L.: Modeling of non-structural carbohydrate dynamics by the spatially explicitly individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC ver1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.8080601, 2022.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A large and persistent carbon sink in the world's
forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 2011.
Rademacher, T., Fonti, P., LeMoine, J. M., Fonti, M. V., Basler, D., Chen,
Y., Friend, A. D., Seyednasrollah, B., Eckes-Shephard, A. H., and Richardson,
A. D.: Manipulating phloem transport affects wood formation but not local
nonstructural carbon reserves in an evergreen conifer, Plant Cell Environ.,
44, 2506–2521, https://doi.org/10.1111/pce.14117, 2021.
Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I.,
Hollinger, D. Y., Murakami, P., Schaberg, P. G., and Xu, X.: Seasonal
dynamics and age of stemwood nonstructural carbohydrates in temperate forest
trees, New Phytol., 197, 850–861, https://doi.org/10.1111/nph.12042, 2013.
Sala, A., Woodruff, D. R., and Meinzer, F. C.: Carbon dynamics in trees:
Feast or famine?, Tree Physiol., 32, 764–775,
https://doi.org/10.1093/treephys/tpr143, 2012.
Sato, H. and Ise, T.: Effect of plant dynamic processes on African
vegetation responses to climate change: Analysis using the spatially
explicit individual-based dynamic global vegetation model (SEIB-DGVM), J.
Geophys. Res.-Biogeo., 117, G03017, https://doi.org/10.1029/2012JG002056, 2012.
Sato, H., Itoh, A., and Kohyama, T.: SEIB-DGVM: A new Dynamic Global
Vegetation Model using a spatially explicit individual-based approach, Ecol.
Modell., 200, 279–307, https://doi.org/10.1016/j.ecolmodel.2006.09.006, 2007.
Sato, H., Kobayashi, H., Iwahana, G., and Ohta, T.: Endurance of larch
forest ecosystems in eastern Siberia under warming trends, Ecol. Evol., 6,
5690–5704, https://doi.org/10.1002/ece3.2285, 2016.
Sato, H., Kobayashi, H., Beer, C., and Fedorov, A.: Simulating interactions
between topography, permafrost, and vegetation in Siberian larch forest,
Environ. Res. Lett., 15, 095006, https://doi.org/10.1088/1748-9326/ab9be4, 2020.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M.,
Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J.,
Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer,
C. P. O.: Forest disturbances under climate change, Nat. Clim. Change, 7,
395–402, https://doi.org/10.1038/nclimate3303, 2017.
Sevanto, S. and Dickman, L. T.: Where does the carbon go?-Plant carbon
allocation under climate change, Tree Physiol., 35, 581–584,
https://doi.org/10.1093/treephys/tpv059, 2015.
Signori-Müller, C., Oliveira, R. S., Valentim Tavares, J., Carvalho
Diniz, F., Gilpin, M., de V. Barros, F., Marca Zevallos, M. J., Salas
Yupayccana, C. A., Nina, A., Brum, M., Baker, T. R., Cosio, E. G., Malhi,
Y., Monteagudo Mendoza, A., Phillips, O. L., Rowland, L., Salinas, N.,
Vasquez, R., Mencuccini, M., and Galbraith, D.: Variation of non-structural
carbohydrates across the fast–slow continuum in Amazon Forest canopy trees,
Funct. Ecol., 36, 341–355, https://doi.org/10.1111/1365-2435.13971, 2022.
Singh, K. P. and Srivastava, K.: Seasonal variation in the biomass and
non-structural carbohydrate content of fine roots of teak (Tectona grandis
L. f.) plantations in a dry tropical region, Tree Physiol., 1, 31–36,
https://doi.org/10.1093/treephys/1.1.31, 1986.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation
dynamics in the modelling of terrestrial ecosystems: Comparing two
contrasting approaches within European climate space, Glob. Ecol. Biogeogr.,
10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
Smith, M. G., Miller, R. E., Arndt, S. K., Kasel, S., and Bennett, L. T.:
Whole-tree distribution and temporal variation of non-structural
carbohydrates in broadleaf evergreen trees, Tree Physiol, 38, 570–581,
https://doi.org/10.1093/treephys/tpx141, 2018.
Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother,
M. T., Donato, D. C., Morgan, P., and Veblen, T. T.: Evidence for declining
forest resilience to wildfires under climate change, Ecol. Lett., 21,
243–252, https://doi.org/10.1111/ele.12889, 2018.
Sveinbjörnsson, B., Smith, M., Traustason, T., Ruess, R. W., and
Sullivan, P. F.: Variation in carbohydrate source-sink relations of forest
and treeline white spruce in southern, interior and northern Alaska,
Oecologia, 163, 833–843, https://doi.org/10.1007/s00442-010-1597-1, 2010.
Tei, S., Sugimoto, A., Liang, M., Yonenobu, H., Matsuura, Y., Osawa, A.,
Sato, H., Fujinuma, J., and Maximov, T.: Radial Growth and Physiological
Response of Coniferous Trees to Arctic Amplification, J. Geophys. Res.-Biogeo., 122, 2786–2803, https://doi.org/10.1002/2016JG003745, 2017.
Wang, Z., Zhou, Z., and Wang, C.: Defoliation-induced tree growth declines
are jointly limited by carbon source and sink activities, Sci. Total
Environ., 762, 143077, https://doi.org/10.1016/j.scitotenv.2020.143077, 2021.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI Meteorological Forcing Data, Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory [data set], https://doi.org/10.5065/486N-8109, 2018.
Woodruff, D. R. and Meinzer, F. C.: Water stress, shoot growth and storage
of non-structural carbohydrates along a tree height gradient in a tall
conifer, Plant, Cell Environ., 34, 1920–1930,
https://doi.org/10.1111/j.1365-3040.2011.02388.x, 2011.
Würth, M. K. R., Peláez-Riedl, S., Wright, S. J., and Körner, C.:
Non-structural carbohydrate pools in a tropical forest, Oecologia, 143,
11–24, https://doi.org/10.1007/s00442-004-1773-2, 2005.
Xu, C., Liu, H., Anenkhonov, O. A., Korolyuk, A. Y., Sandanov, D. V.,
Balsanova, L. D., Naidanov, B. B., and Wu, X.: Long-term forest resilience to
climate change indicated by mortality, regeneration, and growth in semiarid
southern Siberia, Glob. Change Biol., 23, 2370–2382,
https://doi.org/10.1111/gcb.13582, 2017.
Zheng, Y., Shen, R., Wang, Y., Li, X., Liu, S., Liang, S., Chen, J. M., Ju, W., Zhang, L., and Yuan, W.: Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017, Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, 2020.
Short summary
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of climate change. We added a new NSC module into the SEIB-DGVM, an individual-based ecosystem model. The simulated NSC levels and their seasonal patterns show a strong agreement with observed NSC data at both point and global scales. The model can be used to simulate the biotic effects resulting from insufficient NSCs, which are otherwise difficult to measure in terrestrial ecosystems globally.
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of...