Articles | Volume 16, issue 14
https://doi.org/10.5194/gmd-16-4017-2023
https://doi.org/10.5194/gmd-16-4017-2023
Development and technical paper
 | 
17 Jul 2023
Development and technical paper |  | 17 Jul 2023

A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)

Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung

Data sets

LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999-2006, V2 N. Restrepo-Coupe, H. R. da Rocha, L. R. Hutyra, A. C. de Araujo, L. S. Borma, B. Christoffersen, O. Cabral, P. B. de Camargo, F. L. Cardoso, A. C. L. Costa, D. R. Fitzjarrald, M. L. Goulden, B. Kruijt, J. M. F. Maia, Y. S. Malhi, A. O. Manzi, S. D. Miller, A. D. Nobre, C. von Randow, L. D. Abreu Safaj, R. K. Sakai, J. Tota, S. C. Wofsy, F. B. Zanchi, and S. R. Saleska https://doi.org/10.3334/ORNLDAAC/1842

Model code and software

A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES Lingcheng Li https://doi.org/10.5281/zenodo.7730685

Download
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.